Rare glimpse into the origin of species

Plant overcomes infertility to give rise to a new species in Scotland

A new species of monkey flower, created by the union of two foreign plant species, has been discovered on the bank of a stream in Scotland. Genetic changes in this attractive yellow-flowered hybrid have allowed it to overcome infertility and made it a rare example of a brand new species that has originated in the wild in the last 150 years. Thousands of wild species and some crops are thought to have originated in this way, yet only a handful of examples exist where this type of species formation has occurred in recent history.

The ancestors of the new plant were brought from the Americas as botanical curiosities in the 1800s and were quickly adopted by Victorian gardeners. Soon after their arrival, they escaped the confines of British gardens and can now be found growing in the wild, along the banks of rivers and streams. Reproduction between these species produces hybrids that are now widespread in Britain. Yet, genetic differences between the two parents mean that the hybrids are infertile and cannot go beyond the first generation.

Dr Mario Vallejo-Marin, a plant evolutionary biologist at the University of Stirling, has documented the first examples of hybrid monkey flowers that have overcome these genetic barriers and show fully restored fertility. This fertile hybrid derived from ‘immigrant’ parents represents a new species, native to Scotland. Dr Vallejo-Marin has chosen to name this species Mimulus peregrinus, which translates as ‘the wanderer’. The species is described in the open access journal PhytoKeys.

‘The two American monkey flowers are unable to produce fertile hybrids due to differences in the amount of DNA present in each species, the equivalent of getting a sterile mule from crossing a horse and a donkey’, said Dr. Vallejo-Marin. ‘However, in rare cases, duplication of the entire hybrid DNA, known as polyploidization, can balance the amount of DNA and restore fertility. Our studies suggest that this is what has happened here.’

The discovery will help scientists to understand how new species form. It is thought that many existing plant species including crops such as wheat, cotton and tobacco may have originated in a similar way, but finding examples of this process in action is rare. ‘This is an exciting opportunity to study evolution as it happens,’ said Vallejo Marin. ‘We do not yet know how common the new species is or how well it will fare, so the next step will be to find out its distribution and whether its ecological characteristics, allow it to colonise environments that cannot be currently exploited by its parents.’

Original source:
Vallejo-Marín M (2012) Mimulus peregrinus (Phrymaceae): A new British allopolyploid species. PhytoKeys 14: 1-14. doi: 10.3897/phytokeys.14.3305

A new species of wirerush from the wetlands in northern New Zealand

The northern part of the North Island of New Zealand is marked at approximately 38° S latitude by a distinct ecological boundary known as the "kauri line". This region forms the southern distributional limit of many plants and is the warmest part of New Zealand. A number of endemic plants are found there. Ecologists have recently discovered a new species of wirerush from peatlands north of the "kauri line".

Wetlands serve vital ecological functions by providing wildlife habitat, carbon storage, nutrient regulation and water balance. New Zealand has a number of wetland types. The peat-forming wetlands are dominated by a plant commonly known as wirerush (Empodisma, Restionaceae). The name Empodisma is derived from a Greek word meaning "to hinder". Both the common and the Greek name describe its dense scrambling growth form. Empodisma is in the southern hemisphere family Restionaceae.

The horizontal root systems of wirerush branch profusely forming finely divided rootlets with long-lived root hairs. In wirerush bogs, the underlying peat is formed largely from the remains of the root systems, stems bases and trapped plant litter. The peat mass absorbs water like a sponge. In peat bogs, incoming rainfall and atmospheric particles are the only source of nutrients. These are removed from the flow of water in the porous upper layers of peat. This may be an adaptive feature in nutrient-poor environments such as peat bogs.

Steve Wagstaff and Beverly Clarkson recognize three species of wirerush including the newly described species Empodisma robustum. Empodisma robustum is only found in peatlands in northern New Zealand, whereas E. minus is found in central and southern New Zealand and eastern Australia, and E. gracillimum is restricted to western Australia. Their study provides an account of the origin, diversification and ecology of the genus with descriptive keys and illustrations.

Original source:
Wagstaff SJ, Clarkson BR (2012) Systematics and ecology of the Australasian genus Empodisma (Restionaceae) and description of a new species from peatlands in northern New Zealand. PhytoKeys 13: 39-79. doi: 10.3897/phytokeys.13.3259

Data papers designed to publish online interactive keys

Data Papers are a new type of scholarly articles, which are rapidly gaining momentum in the scientific community. They are peer-reviewed scholarly publications that describe data sets and provide an opportunity for data authors to receive the academic credit through citation and re-use of the published data. Data Papers of this kind have been recently published in cooperation among the international organization Global Biodiversity Information Facilities (GBIF) and the journals ZooKeys and PhytoKeys.

Most online keys to identify biodiversity (e.g., species and genera) are usually based on structured data. There are several software packages to create interactive keys; however a significant deficiency of them is the lack of a permanent scientific record and of a proper citation mechanism. Now, a new initiative is being put forward, for establishing the Online Identification Key (OIK) as a new type of scientific article, that is a derivative of the Data Paper. The model is illustrated by an exemplar paper describing a new software platform for creating online keys, MOSCHweb. The paper and an associated editorial piece are published in the open access journal ZooKeys.

"MOSCHweb is a new software platform that facilitates constructing of online identification keys. Our ZooKeys paper describes the main features of an interactive key to the Euro-Asiatic genera of tachinid flies implemented as an original web application and discusses briefly the advantages of these tools for both biologists and general users", said the lead author Dr Pierfilippo Cerretti from the University of Roma ‘La Sapienza’.

"The publication of an online key in the form of a scholarly article is a pragmatic compromise between the dynamic structure of the internet and the static character of scientific articles. The authors of the key will be able to continuously update their product, to the benefit of its users. At the same time, the users will have available a citation mechanism for the online key, identical to that used for any other scientific article, to properly credit its authors" commented Prof. Lyubomir Penev, founder and managing director of Pensoft Publishers.

The elaboration of the data paper format was funded in part by the European Union’s FP7 project ViBRANT.

Original sources:
Penev L, Cerretti P, Tschorsnig H-P, Lopresti M, Di Giovanni F, Georgiev T, Stoev P (2012) Publishing online identification keys in the form of scholarly papers. ZooKeys 205: 1-3. doi: 10.3897/zookeys.205.3581

Cerretti P, Tschorsnig H-P, Lopresti M, Di Giovanni F (2012) MOSCHweb — a matrix-based interactive key to the genera of the Palaearctic Tachinidae (Insecta, Diptera). ZooKeys 205: 5-18. doi: 10.3897/zookeys.205.3409

BioFresh science blog interviews Pensoft’s managing director Prof. Lyubomir Penev on Data papers

One of the realities of modern science is that publications and citations are key metrics when evaluating performance impact of scientists. Data papers can be compared to papers describing a newly found taxon: the articles have a standard format and data set users will cite the data paper in a manner, similar to how scientists cite authority when mentioning a scientific name. Thus, scientists contributing data sets will also gain publication credit, while the number of citations their data set generates will provide a way of measuring the scientific value of the data.

Biofresh Blog: What motivated you to launch a family of innovative journals for the publication and dissemination of biodiversity information?
Lyubomir Penev: The main motivation is perhaps that, as a biodiversity scientist, I have often been disappointed with the speed and manner with which conventional journals handle manuscripts and data. I was even more disappointed with the dissemination of published results, which are often hidden behind a pay-wall barrier with restrictions for copyright and use. Our journals build on three important pillars, namely open access, high-tech XML-based editorial workflow, and active dissemination of the results we publish for our authors.

BB: Why do you think scientists should make the effort to submit data papers: what’s in it for them?
LP: There are many benefits here and they are certainly not restricted to the authors of data papers alone. First, data collectors, managers and authors will be properly credited through a permanent scientific record, priority registration and citation of the data paper. Second, the extended metadata associated with a data set will be properly described and published in order to make data easy to share, use and re-use for others scientists. Sharing data will open new perspectives for collaboration with other scientific groups and institution. Last but not least, re-use of original and collated data sets will tremendously increase the efficiency of public funds investments in gathering all these data!

BB: To what extent do you think data journals will change the way we do Science?
LP: The change will be dramatic and extremely useful in my opinion. The appearance of new data visualization and analysing tools will lead to an ever increasing interest in inter-operability and collation of data with compatible data gathered by other groups. This should provide exciting new views and produce better proven scientific results.

Read full text here.

Two hundred issues in four years: ZooKeys continues to grow

On 5th of June 2012, Zookeys published its 200th jubilee issue. The journal continues to experience steady growth ever since its inception in 2008. Since the start of 2012, the journal reported 164% increase of the number of published articles (202), in comparison to the same period of the previous year (123). The number of published issues has also increased, from 29 to 40 for the same timeframe. Additionally, ZooKeys continues to evolve it’s editorial workflow, constantly implementing new and improved publishing and dissemination technologies, always striving to be on point for digital biodiversity science.

The jubilee issue is a monograph, devoted to the ants in the Philippines. The authors encounter more than 90 genera of ants, native to the archipelago, with 3 genera entirely new to science. 12% of the species are recorded for the first time in the region. The Philippines is considered one of the hottest of the biodiversity hotspots, though imposed to a severe human pressure on its highly endemic (unique) native flora and fauna. Despite decades of nature conservation measures and reforestation, natural habitats continue to dwindle. Aside from habitat destruction, invasive ant species also impact the native ones, although the extent and severity of this influence is yet to be determined.

ZooKeys 200

Original source citation:
General DM, Alpert GD (2012) A synoptic review of the ant genera (Hymenoptera, Formicidae) of the Philippines. ZooKeys 200: 1-111. doi: 10.3897/zookeys.200.2447

An introduced bird competitor tips the balance against Hawaiian species

Biologists Leonard Freed and Rebecca Cann from the University of Hawaii at Manoa have been studying birds at Hakalau Forest National Wildlife Refuge for 20 years. Located on an old cattle ranch on the windward slope of Mauna Kea on the Island of Hawaii, it was established in 1985 to protect 8 species of rare and endangered perching birds. The refuge and its volunteers planted over 400,000 seedlings of native koa trees in an abandoned pasture to restore high elevation forest. The once-rare white-eye colonized the restoration area, grew rapidly in it, but then surged into the old-growth forest below. Freed and Cann estimated that tens of thousands of native birds were lost. Their study was recently published in the open access journal NeoBiota.

The researchers had previously shown competition between white-eyes and native birds on their study sites. With increased numbers of white-eyes, young of all native species measured had stunted growth, indicating that food was becoming a problem. They also documented that birds of all ages had difficulty replacing their feathers. Each problem, both unprecedented in nature, occurred at the same time. In contrast to the forest adjacent to the restoration area, native birds deeper within the forest had normal growth and feather replacement where white-eyes were still rare.

Freed and Cann then used the refuge’s own survey data collected over 3,373 ha of open forest and 1,998 ha of closed forest to determine if changes observed on their study sites were a general problem on the entire refuge. They documented a stepwise increase in density of white-eyes in the open forest area that had been sustained for 8 years between 2000 and 2007, and a more gradual increase in the closed forest area below that.

Loss of native birds followed the refuge-wide surge of white-eyes. Greater declines occurred in the open forest area where white-eyes increased first, amounting to a drop of one-third of native birds. About 10% of birds disappeared from the closed forest area, but there was strong correlation among losses of native species in the two areas. The researchers expect that losses in the more pristine closed forest area will continue, because the white-eye is still increasing there. Ironically, only an alien species is increasing on a refuge set aside to protect native Hawaiian birds. Forest restoration has precipitated a problem that requires additional action in the forest below. Hawaiian birds are considered to be “conservation reliant” species from other threats. Now the future of native birds on the refuge requires control of an introduced bird.

Original source:
Freed LA, Cann RL (2012) Increase of an introduced bird competitor in old-growth forest associated with restoration. NeoBiota 13: 43-60. doi: 10.3897/neobiota.13.2946

Velvet spiders emerge from underground in new cybertaxonomic monograph

Velvet spiders include some of the most beautiful arachnids in Europe and some of the world’s most cooperative species. Social species can be very abundant in parts of tropical Africa and Asia with conspicuous colonies dotting the landscape. Social colonies may consist of hundreds of closely-related individuals that participate in dramatic mass attacks on prey (Figure 1) and care for their young. The ecology of these social species is fascinating and has been the subject of several landmark scientific papers. The study was published in a special issue of the open access journal ZooKeys.

By contrast, most kinds of velvet spider are rarely encountered. Most species keep well hidden or dig burrows and live underground. Because of the cryptic habits of most velvet spiders, scientific knowledge of this spider family is uneven to say the least. The name velvet spider accurately describes the dark and shiny appearance of these spiders. Some species also have brightly colored highlights, such as the red, white, and black ladybird spiders of Europe and North Asia (Figure 2). With the exception of one species from Brazil, velvet spiders live in Europe, Asia, and Africa.

The international team assembled to advance basic knowledge about velvet spiders included people and institutions from the Netherlands, Denmark, United States, Czechia, Hungary, and Iran. International collaboration in taxonomic research was the goal of the EDIT (European Distributed Institute of Taxonomy) Integrated Research grant, which provided most of the funding for this project. The team assembled a hefty library of images documenting the anatomy of all the major kinds of velvet spider. This included both portrait-like color photographs and electron micrographs showing details of the spigots that these spiders use to make silk. San Francisco-based artist Giovanni Maki contributed beautiful drawings of the male genitalia. The project also used DNA sequence data to reconstruct the evolutionary history of velvet spiders. The DNA data confirmed that one particularly enigmatic species belongs to a new genus (Figure 3).

In recognition of the fact that this velvet spider lives underground, the new genus has been named Loureedia in a whimsical salute to the musician who began his distinguished career leading the 60s rock band "The Velvet Underground."

In spite of all the progress that this new monograph represents, there is much more work still to be done. Taxonomy is a fundamental science, and advances in it can promote research in other areas. Some of the most obscure groups of velvet spiders from the Mediterranean and Southern Africa will now be more easy to identify and study. This is thanks to the progressive approach taken by publisher Pensoft. The full-color monograph is freely available for download through the web site of the journal ZooKeys. Pictures and descriptions also appear on the wiki web site Species-ID and an interactive map of the specimens used in the study is explorable using Google Earth (please note you must have it installed in order to view the map). So this publically-funded research on a remarkable and often beautiful group of spiders will be freely available not only to scientists but to the public as well.

Original source:
Miller JA, Griswold CE, Scharff N, Řezáč M, Szűts T, Marhabaie M (2012) The velvet spiders: an atlas of the Eresidae (Arachnida, Araneae). ZooKeys 195: 1-144. doi: 10.3897/zookeys.195.2342

Read in Zulu.

Read in Farsi.

Read in Hungarian.

Read in Czech.

Read in Dutch [link].

New tool for visualizing the distribution of vascular plants in Belgium

The Belgian Biodiversity Platform has just released a new website "IFBL Data Portal, Explore Flora Checklists of Belgium". It aggregates about 23,000 checklists of vascular plants in Belgium, compiled since 1939. Users can search a database of over 2.5 million observations of over 2,800 different species. The website will be updated on a monthly basis, in cooperation with the Florabank database.

This website is a result of the cooperation between the Belgian Biodiversity Platform, Flo.Wer, the National Botanic Garden of Belgium and the Research Institute for Nature and Forest (INBO). The data originates from two digitization projects funded by the Belgian Biodiversity Platform (IFBL1 and IFBL2), aiming to digitize data used for the production of the "Atlas of the Belgian and Luxembourg flora", and from Florabank1, the database that deals with the distribution data of the wild flora (indigenous species, archeophytes and naturalised aliens) of Flanders and the Brussels Capital Region.

The website is also helpful for analysis, comparing floral data over successive periods and could be used for the production of Belgian flora atlases.

The database "Florabank1" has been described in a data paper, published in the open access journal PhytoKeys in a collaboration with GBIF. A ‘data paper’ allows data creators to be credited for their work, and also communicates to other scientists that such a dataset has been released and is available freely for re-use in future studies. Such a paper invites others to use the data for any number of purposes immediately, and to provide feedback on any inconsistencies they find. Pensoft Publishers have detailed their "Data Publishing Policies and Guidelines for Biodiversity Data", with the goal to introduce this concept to authors and to help them to start using it effectively.

The data paper combines the static, unchangeable character of a published scientific paper with the dynamic nature of a continuously updated database.

For more information on the IFBL methodology, see here. Institutions dealing with data on vascular plants in Belgium can contact Nicolas Noé to import their data into the IFBL Data Portal: n.noe@biodiversity.be

Original source:
Van Landuyt W, Vanhecke L, Brosens D (2012) Florabank1: a grid-based database on vascular plant distribution in the northern part of Belgium (Flanders and the Brussels Capital region). PhytoKeys 12: 59-67. doi: 10.3897/phytokeys.12.2849

Contacts:
For technical questions, please contact: Nicolas Noe; n.noe@biodiversity.be
For science-related questions, please contact: Wouter Van Landuyt; Wouter.vanlanduyt@inbo.be

Does polyploidy play a role in the onset of the Italian endemic flora?

Besides the obvious differences between plants and animals, subtle ones lie concealed within the cell, even within the nucleus. In both plant and animal cells, the nucleus contains DNA, which condenses into chromosomes during cell division. Chromosomes can be counted at that stage, revealing the chromosome number for each species. Here comes a difference: while the chromosome number spans a relatively short range across animal species (2-296: 46 in man), some plant species have over 1000 chromosomes. The adder’s-tongue Ophioglossum reticulatum, a fern ally from the tropics, has 1440 chromosomes in its vegetative cells.

High chromosome numbers are generally linked to polyploidy, i.e. the occurrence of more than two haploid sets of chromosomes. In this research, the chromosome number variation of endemic Italian plants was evaluated. Endemics are species that are unique to a defined geographic location, where they establish through some form of isolation – geographic or reproductive – from other species. As polyploidy can bring about reproductive isolation, it was interesting to study to what extent this process was involved in the evolutionary pathway leading to the endemic species of the Italian flora.

Using data from the online database "Chrobase.it", the researchers found that for about 55% of endemic species, the chromosome number is known. Statistical analyses of these chromosome numbers suggest that similar evolutionary trends acted upon endemics and species with wider distribution. Based on estimates for a subset of data, it was also shown that the vast majority (above 70%) of Italian endemics are diploid. The study was published in the open access journal Comparative Cytogenetics.

An intriguing result was obtained by comparing the number of species with even ploidy level (diploid, tetraploid, hexaploid, octoploid, etc.): it was discovered that those parameters are linked by an exponential function, implying that the higher the (even) ploidy level, the lower its frequency in terms of number of species.

The biological implications of this find are not yet clear and must be further investigated. To say the least, this phenomenon opens a new line of investigation in cytogenetics, aimed to clarify the evolutionary mechanisms giving rise to these constant relationships among increasing even ploidy levels.

Original source:
Bedini G, Garbari F, Peruzzi L (2012) Chromosome number variation of the Italian endemic vascular flora. State-of-the-art, gaps in knowledge and evidence for an exponential relationship among even ploidy levels. Comparative Cytogenetics 6(2): 192. doi: 10.3897/CompCytogen.v6i2.3107