New unusual bee species discovered with dog-like snout

Published in the Journal of Hymenoptera Research, author Dr Kit Prendergast named the new species after her pet dog Zephyr.

A new native bee species with a dog-like “snout” has been discovered in Perth bushland though Curtin-led research that sheds new light on our most important pollinators.

Published in the Journal of Hymenoptera Research, author Dr Kit Prendergast, from the Curtin School of Molecular and Life Sciences, has named the new species after her pet dog Zephyr after noticing a protruding part of the insect’s face looked similar to a dog’s snout, and to acknowledge the role her dog played in providing emotional support during her PhD.

Dr Prendergast said the rare and remarkable finding would add to existing knowledge about our evolving biodiversity and ensure the bees, named Leioproctus zephyr, were protected by conservation efforts.

“When I first examined the specimens that I collected during my PhD surveys discovering the biodiversity of native bees in urbanised regions of the southwest WA biodiversity hotspot, I was instantly intrigued by the bee’s very unusual face,” Dr Prendergast said.

Insects in general are so diverse and so important, yet we don’t have scientific descriptions or names for so many of them.

Dr Kit Prendergast

“When I went to identify it, I found it matched no described species, and I was sure that if it was a known species, it would be quite easy to identify given how unusual it was in appearance.

“You can only confirm a particular species once you look at them under a microscope and go through the long process of trying to match their characteristics against other identified species, then going through museum collections.

“When perusing the WA Museum’s Entomology collection, I discovered that a few specimens of Leioproctus zephyrus had first been collected in 1979, but it had never been scientifically described.”

Dr Prendergast said she was excited to play a role in making this species known and officially naming them.

“Insects in general are so diverse and so important, yet we don’t have scientific descriptions or names for so many of them,” Dr Prendergast said.

“The Leioproctus zephyr has a highly restricted distribution, only occurring in seven locations across the southwest WA to date, and have not been collected from their original location. They were entirely absent from residential gardens and only present at five urban bushland remnants that I surveyed, where they foraged on two plant species of Jacksonia.

“Not only is this species fussy, they also have a clypeus that looks like a snout. Hence, I named them after my dog Zephyr. She has been so important to my mental health and wellbeing during the challenging period of doing a PhD and beyond.”

Through DNA barcoding, Dr Prendergast was able to confirm that the new species was most closely related to other species of unidentified Leioproctus.

Originally published by Curtin University. Republished with permission.

Follow the Journal of Hymenoptera Research on Facebook and Twitter.

Canadian scientist names a new species of cuckoo bee after Sir David Attenborough

A total of fifteen new species of bees, where one honors the English broadcaster and naturalist Sir David Attenborough, are described by Thomas Onuferko, PhD candidate at York University in Toronto, Canada. His paper is published in the open access journal ZooKeys.

The new species, called Attenborough’s epeolus (pronounced ee-pee-oh-lus), is rare and known from only nine specimens observed at two localities, in Colorado and New Mexico.

To name the other new species, the author referred to colleagues or relatives, the species’ physical appearance, their collectors, or the flowers on which the insects have been found.

Currently, not much is known about any of the newly described species, except that they belong to a specialized group of bees called cuckoo bees. Much like cuckoo birds, these bees sneakily lay their eggs in the nests of other species. When they hatch, the younglings seek out and kill the host egg or larva and then feed on the pollen stored by the female who has built the nest.

Female of the newly described cuckoo bee species, Epeolus attenboroughi . This specimen is the holotype for the species, meaning it is the one used to describe the new bee.

All new species belong to the cuckoo bee genus Epeolus, known to invade nests of polyester bees in the genus Colletes. In his publication, Thomas speculates that the name ‘epeolus’ is probably a diminutive of Epeus/Epeius, the soldier in Greek mythology said to have come up with the Trojan Horse. The sinister nature of these cleptoparasitic bees must have been compared to the Greek’s famous war strategy.

Cuckoo bees are difficult to recognize as bees because they lack the characteristic fuzzy look, which comes from the numerous long branched hairs evolved to efficiently pick up pollen. Instead, cuckoo bees rely on other bees to collect pollen for their offspring, leading to the trait being lost.

While, as a result, these species would rather be likened to wasps, their appearance is not plain at all. Cuckoo bees, including Attenborough’s epeolus, possess very short black, white, red, and yellow hairs that form beautiful patterns.

“It only seemed appropriate to name a species with such an unusual life strategy and attractive appearance after someone who has dedicated his life to illustrating the beauty and complexity of the natural world,” explains Thomas.

Including the new species, there are now 43 known Epeolus species in North America.

“It may seem surprising to some that in well-researched places like Canada and the United States there is still the potential for the discovery of new species,” says the scientist.

Male of the newly described cuckoo bee species, Epeolus attenboroughi , with its proboscis (i.e. mouthparts) extended. These are elongated in order to reach and feed on the nectar within flowers.

Since cuckoo bees are rarer than their hosts – as predators are rarer than their prey – and relatively small (5.5–10.0 mm in body length), they are likely to go undetected, which partly explains why it’s taken so long to identify these new ones.

***

Original source:

Onuferko TM (2018) A revision of the cleptoparasitic bee genus Epeolus Latreille for Nearctic species, north of Mexico (Hymenoptera, Apidae). ZooKeys 755: 1–185. https://doi.org/10.3897/zookeys.755.23939.

One new fly species, zero dead bodies: First insect description solely from photographs

The importance of collecting dead specimens or not when verifying a new species has been a hot ongoing discussion for quite a while now. Amid voiced opinions ranging from specimen collection being “no longer required” to relying on anything but physical evidence being defined as mere “malpractice,” science is now witnessing the first description of an insect species based solely on high-resolution photographs.

The unequivocally new bee fly species belongs to an extremely rare genus and was described by Drs. Stephen A. Marshall from the University of Guelph, Canada, and Neal Evenhuis from the Bishop Museum, Hawaii. Their research along with their commentary on the controversial topic are published in the open-access journal ZooKeys.

The authors in no way denounce dead specimen collection and dissection and even speak of it as the “gold standard” in new species description, they stress the fact that given the continued increased difficulty in obtaining permits to collect in many areas, and the resulting low probability of collecting and preserving specimens, there ought to be an alternative.

The newly described bee fly species, called Marleyimyia xylocopae, is a huge fly with a remarkable resemblance to a co-occurring carpenter bee. The new species might be a parasite of the bee, but not much is known about its behaviour. Therefore, the scientists stress that more observations are needed, something that will be encouraged by the availability of a name and an associated image.

Speaking of their own experience while studying their presently described new species, the scientists point out that relying on several high-resolution photographs has not only increased their knowledge of the biodiversity of the area and the genus, but has also provided some “interesting ecological and biological information”.

“As these image collections become curated just as dead specimens are curated today, the digital specimens will find their way into the work of practicing taxonomists, and they will need names,” the team explained. “It is unrealistic to think that distinct and diagnosable new taxa known only from good photographs and appropriate associated metadata should be organized and referred to only as “undescribed species” when they can and should be organized and named using the existing rules of nomenclature.”

###

Original source:

Marshall SA, Evenhuis NL (2015) New species without dead bodies: a case for photo-based descriptions, illustrated by a striking new species of Marleyimyia Hesse (Diptera, Bombyliidae) from South Africa. ZooKeys 525: 117-127. doi: 10.3897/zookeys.525.6143

Bush Blitz: The largest Australian nature discovery project finds 4 new bee species

Four new native bee species were recognised as part of the largest Australian nature discovery project, called ‘Bush Blitz‘. The South Australian bee specialists used molecular and morphological evidence to prove them as new. Three of the species had narrow heads and long mouth parts – adaptations to foraging on flowers of emu-bushes, which have narrow constrictions at the base. The new species are described in the open access journal ZooKeys.

Bees are important pollinators of crops and native plants, but habitat loss and pesticides are proved to be causing a serious decline in their populations in Europe and the United States of America. Meanwhile, the conservation status of native Australian bees is largely unknown because solid baseline data are unavailable and about one third of the species are as yet unknown to science. Furthermore, identification of Australian bees is hampered by a lack of keys for about half of the named species.

With their present publication, bee specialists Katja Hogendoorn (University of Adelaide), Remko Leijs and Mark Stevens (South Australian Museum) are now trying to make Australian native bees more accessible to the scientific community. The study introduces a new Barcoding of Life project, ‘AUSBS‘, which will be built to contain the barcode sequences of the identified Australian native bees.

In future, this database can help scientists who have molecular tools, but insufficient knowledge of bees, to identify known species. Yet, that is not the only use of the database. “Bee taxonomists can access and use the molecular information to answer specific problems, for example, how certain species are related or whether or not a male and female belong to the same species”, says Dr. Hogendoorn. “And combined with morphological information, the molecular database can help to identify new species”, she adds.

In their publication, the researchers demonstrate the utility of the database. After careful evaluation of the DNA sequence data and subsequent morphological comparison of the collected bees to museum type specimens, they recognised four new species in the genusEuhesma, which they subsequently described.

Three of the species belong to the group of bees that specialise on the flowers of emu-bushes. These bees have evolved narrow faces and very long mouth parts to collect the nectar through a narrow constriction at the base of the flowers. A similar evolution has been already observed in other groups of bees. The fourth species belongs to a different group within this large genus and has a normally shaped head.

So far, the project includes 271 sequences of 120 species that were collected during the Bush Blitz surveys, Australia’s largest nature discovery project. The researchers intend to build on the existing DNA database to cover as many as possible of the Australian species. “It is hoped that this will stimulate native bee research”, says Dr. Hogendoorn. “With about 750 Australian bee species still undescribed and many groups in need of revision there is an enormous job to do”, she concludes.

###

Original source:

Hogendoorn K, Stevens M, Leijs R (2015) DNA barcoding of euryglossine bees and the description of new species of Euhesma Michener (Hymenoptera, Colletidae, Euryglossinae).ZooKeys 520: 41-59.doi: 10.3897/zookeys.520.6185