Comprehensive review of Burmese python science released

A USGS-led publication offers a new look at the constrictor that has invaded southern Florida.

The U.S. Geological Survey has released a comprehensive synthesis of Burmese python science, showcasing results from decades of USGS-funded research on python biology and potential control tools. The giant constrictor now represents one of the most challenging invasive species management issues worldwide.

Occurrence records were obtained from a large geospatial database of invasive species reports (Early Detection & Distribution Mapping System) submitted by both researchers and the public. The map illustrates the chronology of python removals across southern Florida and represents the best professional estimate of the invasion front, which is not exact and will change over time.

“For the first time, all the science on python ecology and potential control tools has been consolidated into one document, allowing us to identify knowledge gaps and important research areas to help inform future python management strategies. This synthesis is a major milestone for Burmese python research; six years in the making, it represents the consensus of the scientific community on the python invasion,” said USGS Ecologist Jacquelyn Guzy, lead author for the publication.

Burmese pythons were confirmed to have an established breeding population in Everglades National Park in 2000. The population has since expanded and now occupies much of southern Florida. They consume a wide range of animals and have altered the food web and ecosystems across the Greater Everglades.

The synthesis, which pulled together the expertise of scientists and managers nationwide, provides a breakdown of 76 prey species found in python digestive tracts, which primarily included mammals and birds, as well as two reptile species, American alligator and Green iguana. However, as the scientists noted, the number of animals may increase as the python population expands to new areas.

It also reports new findings including a summary of body sizes of pythons measured by state and federal agencies between 1995 and 2022, as well as descriptions of length-mass relationships, the estimated geographic spread of pythons over time, and a comprehensive assessment of all control tools explored to date.

Illustration by Natalie Claunch demonstrates typical features of the Burmese python.

One of the hallmark issues of the Burmese python invasion has been the difficulty of visually detecting or trapping pythons in an immense natural landscape, Guzy said. Pythons do not readily enter any type of trap, occupy vast stretches of inaccessible habitat, and camouflage extremely well within the subtropical Florida environment.

“Extremely low individual python detection rates hamper our ability to both estimate python abundance and expand control tools across the extensive natural landscape” says USGS Research Ecologist Kristen Hart, an author of the publication.

Because the Burmese python has spread throughout southern Florida, eradication of the population across the landscape is not possible with existing tools, the publication states. However, researchers at USGS and partner institutions are exploring potential novel techniques such as genetic biocontrol, that may one day provide an avenue towards larger-scale population suppression.

In the meantime, important areas of research according to the publication include reproductive life history and estimation of demographic vital rates such as survival, to help managers evaluate and refine existing control tools. With improved control tools managers may be able to reduce population expansion and minimize the future impact of pythons on the environment.

The USGS python research over the past decades has been largely supported by the USGS Greater Everglades Priority Ecosystem Sciences (GEPES) Program with additional support from the USGS Biothreats and Invasive Species program.

Research article:

Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM (2023) Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NeoBiota 80: 1-119. https://doi.org/10.3897/neobiota.80.90439

Story originally published by the USGS. Republished with permission.

Naturalists can mediate silent plankton invasions

Plankton can easily spread between water bodies on hydrobiological instruments if naturalists use inadequate biosecurity treatments in their work.

Homo sapiens is not only a great (perhaps the best) candidate for the world’s most invasive species award. Humans, due to their actions and technological wonders, are also at the forefront of good vectors for organismal dispersion. Can we break this inglorious streak?

Because humans will continue to interact with terrestrial and aquatic environments, it is impossible to stop the human-aided dispersal of organisms completely. The best we can do is minimise the risk of human-mediated organism dispersal events by implementing adequate biosecurity methods in our activity” explains Dr Wejnerowski from Adam Mickiewicz University (Poland). 

Plankton sampling using net. Photo by Sandra Wejnerowska

We should be aware that all our activities can affect biodiversity, and adequate biosecurity treatments should be applied whenever the risk of inadvertent spreading of organisms is non-zero” adds Dr Marcin Krzysztof Dziuba from the University of Michigan (United States of America).

Recently, a team of researchers from Adam Mickiewicz University, Istanbul University (Turkey), Åbo Akademi University (Finland), and the University of Michigan empirically proved that plankton net – a basic hydrobiological instrument of almost every aquatic scientist and water manager – is a good vector for the dispersal of various phyto- and zooplankton taxa, including species of high invasive potential. Nuisance, bloom-forming, also toxic filamentous cyanobacteria are efficient hitch-hikers, and they are able to successfully compete with native residents in the new environment.

Instructions for US citizens to avoid spreading invasive species during lake recreation. Photo by Marcin Krzysztof Dziuba

Apart from identifying hitch-hiking plankton on the net and its fate in the new environment, the paper they published in the journal NeoBiota also describes the most commonly used biosecurity treatments that naturalists worldwide use to prevent plankton spread between water bodies via the net.

Their findings sound disturbing: naturalists use inadequate or questionable biosecurity treatments. As revealed by the survey data, only 9% of plankton samplers clean plankton nets using disinfectant liquids after sampling, while a majority of people either rinse the net with distilled or tap water, immerse the net with an open outflow in the water body and let it dry, or do not care about the cleanness of the net after sampling at all.

Exemplary photos of some phyto- (A – Limnothrix redekei, B – Planktothrix agardhii, C – Pseudanabaena limnetica, D – Melosira varians, E – Desmodesmus armatus, F – Asterionella formosa, G – Tetradesmus obliquus) and zooplankton ( H – Keratella cochlearis f. typica) hitch-hikers on the plankton net. Micrograph I shows the plankton biomass on the surface of the plankton net after immersing the net with an open outflow in the water body (inadequate biosecurity treatment). Photos by Tumer Orhun Aykut and Łukasz Wejnerowski. Identification of organisms by Aleksandra Pełechata and Marcin Krzysztof Dziuba.

“Indeed, the reality presented in the paper is unsettling. It worries me when I think of how often I have accidentally facilitated dispersion of nuisance plankton and how much I contributed to the invasion of plankton taxa into new water bodies when using inappropriate biosecurity treatments in my fieldwork,” admits Dr Wejnerowski, and adds: “We do not mean to reinvent the wheel; the problem of aquatic organism dispersal through hydrobiological instruments is already known. For years, it was neglected despite some recalls from the scientific community. It comes back like a bad penny because it needs a complex solution from the society of aquatic naturalists. It should happen. After all, naturalists are a human line of defence, protection and rescue for nature.”

Research article:

Wejnerowski  Ł, Aykut TO, Pełechata A, Rybak M, Dulić T, Meriluoto J, Dziuba MK (2022) Plankton hitch-hikers on naturalists’ instruments as silent intruders of aquatic ecosystems: current risks and possible prevention. NeoBiota 73: 193-219. https://doi.org/10.3897/neobiota.73.82636

More and more people are becoming aware of the dangers posed by invasive hornets

A study published in the open access journal NeoBiota reveals that citizens and stakeholders are becoming more and more aware of the Asian yellow-legged hornet

Wasps and hornets have a remarkable capacity of surviving transportation and establishing invasive populations in new areas. In some cases, this can generate massive environmental and socio-economic impacts. Such is the case of the Asian yellow-legged hornet (Vespa velutina), which has been spreading throughout Europe and worldwide, threatening to seriously impact beekeeping.

However, research shows that such invasions do not go unnoticed. A team of researchers working on the Asian yellow-legged hornet in Italy (Dr Jacopo Cerri from the University of Primorska, Slovenia, and Dr Simone Lioy, Prof. Marco Porporato and Prof. Sandro Bertolino, from Turin University, Italy) discovered that citizen awareness about invasive hornets is increasing

Asian yellow-legged hornet (Vespa velutina) attacking a colony of honey bees (Apis mellifera) in Italy. Photo by Prof. Marco Porporato

Moreover, they found that the relevant stakeholders – such as beekeepers – are aware of the hornet’s impacts. They consider the Asian yellow-legged hornet as one of the major causes of honey bee decline in Italy, comparing its effects to those of pesticides, and believing it causes more damage than diseases or other native insects.

To evaluate public awareness of this invasive hornet,the researchers adopted an innovative methodology, which they describe in a paper in the open-access journal NeoBiota. In addition to surveying beekeepers, the authors also analysed Internet searches, focusing on Google queries and visits to relevant Wikipedia pages.

Honey bee. Photo by Andy Murray, CC BY-SA 2.0, via Wikimedia Commons

The team found that beekeepers stayed up to date with information on the Asian yellow-legged hornet thanks to a wide range of different channels, such as the Internet, specialized magazines, and activities with other members of their community. Interestingly, they found that conventional media and mailing lists seemed to be of little contribution to knowledge on this species.

With high reproductive potential and no specialized predators, the Asian yellow-legged hornet predates intensively upon the western honey bee, which could decrease pollination, undermine honey production and inflict consequences for the overwinter survival of colonies. It also limits the foraging activity of honey bees by determining a “foraging paralysis”, a state in which honey bees do not leave the colony, fearing its predation. On top of that, as the species builds its nests mainly in or near urban areas, it poses a risk of stings to people, which in some cases could lead to fatalities.

An increased consciousness in citizens and stakeholders will hopefully lead to a higher number of ‘aware eyes’ able to spot invasive hornets in different environments, the researchers explain. Timely reporting of their presence would allow the speedy activation of more appropriate management measures, containing any possible damages before it’s too late.

Research article:       

Cerri J, Lioy S, Porporato M, Bertolino S (2022) Combining surveys and on-line searching volumes to analyze public awareness about invasive alien species: a case study with the invasive Asian yellow-legged hornet (Vespa velutina) in Italy. NeoBiota 73: 177-192. https://doi.org/10.3897/neobiota.73.80359

Pets or threats? Goldfish might be harmful for biodiversity

Goldfish pose a triple threat: not only are they readily available, but they combine insatiable appetites with bold behaviour

Invasive species are one of the leading causes of global biodiversity loss, and the pet trade is responsible for a third of all aquatic invasive species. Pet owners releasing unwanted pets into the wild is a major problem. Whilst many believe this is a humane option, a new research suggests that attempting to ‘save’ the life of a goldfish could in fact lead to catastrophic outcomes for native biodiversity.

To better understand the ecological risks posed by species within the pet trade, the researchers focused on the two most commonly traded fish species in Northern Ireland: goldfish and the white cloud mountain minnow.

Photo by Jeff-o-matic under a CC BY-NC 2.0 license

The globally popular goldfish was first domesticated over a thousand years ago and has since established non-native populations around the world. The white cloud mountain minnow on the other hand is a species with a limited invasion history to date.

This study, published in NeoBiota, developed a new method for assessing the ecological impacts and risks of potential pet trade invaders, based on availability, feeding rates and behaviour. The research showed goldfish to be voracious, consuming much more than the white cloud mountain minnow or native species. In terms of behaviour patterns, goldfish were also found to be much braver, a trait linked with invasive spread.

Dr James Dickey.

Lead author, Dr James Dickey from Queen’s University Belfast, explains: “Our research suggests that goldfish pose a triple threat. Not only are they readily available, but they combine insatiable appetites with bold behaviour. While northern European climates are often a barrier to non-native species surviving in the wild, goldfish are known to be tolerant to such conditions, and could pose a real threat to native biodiversity in rivers and lakes, eating up the resources that other species depend on.

“Our research highlights that goldfish are high risk, but we hope that the methods developed here can be used to assess others in the pet trade across Ireland and further afield. Readily available species are most likely to be released, so limiting the availability of potentially impactful ones, alongside better education of pet owners, is a solution to preventing damaging invaders establishing in the future.”

The research led by Queen’s University Belfast was funded by the Alexander von Humboldt Foundation, Inland Fisheries Ireland and the Department of Agriculture, Environment and Rural Affairs (DAERA) NI. The study was presented at the International Conference on Aquatic Invasive Species in Oostende, Belgium along with a range of other leading research from Queen’s on alien species.

Research article:

Dickey JWE, Arnott G, McGlade CLO, Moore A, Riddell GE, Dick JTA (2022) Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes. NeoBiota 73: 109–136. https://doi.org/10.3897/neobiota.73.80542

How to get people interested in invasive species?

While blacklists are an effective tool for preventing and managing new biological invasions, they don’t always raise public awareness of invasive alien species, a new study published in the open-access journal NeoBiota found. Important policy-making initiatives do not necessarily raise public awareness about biological invasions, and efforts should be more focused on supporting policy-making with well-planned communication campaigns, the research concludes.

Catchy news and viral videos work best to attract public attention to invasive alien species

Blacklists are one of the most common policy measures to limit biological invasions. They identify small groups of highly impactful invasive alien species: species introduced outside their native range that threaten biodiversity. By doing so, they inform key decision-makers, who then impose limitations or bans on their trade and introduction, or set requirements about specific actions to manage already established populations.

While they have been found to be effective at preventing and managing new biological invasions, we don’t know if blacklists actually raise public awareness of invasive alien species. In principle, they could do so, as they might attain a certain echo in the media and provide the general public with notorious examples of invasive alien species.

Coypu. Photo by Aurelio Perrone

In 2016, the European Union published the List of Invasive Alien Species of Union concern, which contains species that are banned from import, trade, and release in Europe. It had a certain echo in the media, and having come at a time where Internet searches are so pervasive that they can be used to measure public attention,  the Union List made a good case study for exploring blacklist impact on public awareness.

A research study, coordinated by Jacopo Cerri from the University of Primorska, Slovenia, and Sandro Bertolino from the University of Turin, Italy, explored if the publication of the Union List increased visits of the  Italian Wikipedia pages about invasive alien mammals, many of which were included in the list. Wikipedia is the largest online encyclopedia and a major source of information for motivated Internet users who go beyond search engines such as Google. As a comparison, the researchers used visits to Wikipedia pages about native mammals in Italy, and adopted a causal impact analysis to quantify differences.

The study found no effect of the publication of the Union lists over visits to Italian Wikipedia pages of invasive alien mammals, compared to pages about native mammals. After 2016, there were single peaks of visits to pages of some of the species, probably caused by viral videos and news about large-scale control initiatives or mass escapes from captivity. In one instance, peaks in visits aligned with news about the coypu – at the time, several national media outlets ran stories addressing the concerns of public administrations regarding the rodent’s impact on the stability of river banks. Similarly, a peak observed between late 2018 and February 2019 was likely caused by news about the release of 4,000 minks from a fur factory in Northern Italy, which attracted considerable attention in the national and regional media.

These attention peaks, however, did not last in time and don’t reflect a systematic change in public awareness about invasive alien species.

“Overall, our findings indicate that blacklists, despite having the potential to raise public awareness towards biological invasions, might fail to do so in practice,” the researchers conclude.

“Agencies who want to achieve this goal should rather develop tailored communication campaigns, or leverage on sensational news published in the media.”
 

Research article:

Cerri J, Carnevali L, Monaco A, Genovesi P, Bertolino S (2022) Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy. NeoBiota 71: 113-128. https://doi.org/10.3897/neobiota.71.69422

Unwelcome guests: International tourism and travel can be a pathway for introducing invasive species

International tourism can facilitate the dispersal of exotic species. A new analysis of data from tourism accommodations and exotic organism detections in New Zealand, published in NeoBiota, shows that levels of detection significantly correlated to international and domestic tourist movement, even with population levels taken into account. There was no detectable difference between the risk from international and domestic tourists, indicating that tourism as an activity correlates with the introduction and spread of exotic species.

Tourists, albeit unwittingly, may help such unwanted organisms spread further and conquer new lands – they can carry them over in their luggage or on their clothes and shoes. In 2011, a study from New Zealand found that, for every gram of soil on the footwear of aircraft passengers arriving from abroad, there were 2.5 plant seeds, 41 roundworms, 0.004 insects and mites, and many microorganisms, such as fungi that could cause plant diseases. Moreover, these organisms were alive, and some of them were known to be biosecurity threats. Importantly, tourism can introduce risk in two directions, namely from the arrival of international travellers and also the return of residents from international travel.

An important question, then, is to what degree they play a role in the spread of exotic organisms. A study, carried out by Dr Andrew Robinson of the Centre of Excellence for Biosecurity Risk Analysis at the University of Melbourne and Mark McNeill of AgResearch New Zealand, looks to answer that question.

To do so, the researchers compared data on the interceptions of exotic organisms in New Zealand against accommodation data for international and domestic tourists, factoring for the country’s population distribution. The study, recently published in the open-access journal NeoBiota, covered the period between 2011 and 2017, and the exotic organisms that were detected included insects, spiders, mites, snails, plants, and roundworms. 

Robinson and McNeill found a significant relationship between levels of incursion detection and tourism accommodation records: the number of nights spent in hotels significantly correlated to the detection of exotic pests for that period. Importantly, the study found no significant difference between the effect of international and domestic tourism, proving that even travel within the country can facilitate the spread of exotic species. A significant positive correlation was also found between the detection of exotic organisms and population numbers across different regions. 

“The core take-home message is that within-country tourism movements are significantly correlated to the detection of exotic pests,” the researchers explained. That is, tourists and returning residents bring bugs in, and both are implicated at spreading them once they are in the country. They suggest that biosecurity authorities should continue allocating resources to the management of invasive species and pests that get carried around by tourists and their activities. 

However, they also point to the biosecurity risk posed by other possible pathways for of exotic organisms, such as sea freight. A comparison between the different ways of introduction and dispersal would provide a better understanding of relative risk, they conclude.

Research article:

Robinson AP, McNeill MR (2022) Biosecurity and post-arrival pathways in New Zealand: relating alien organism detections to tourism indicators. NeoBiota 71: 51-69. https://doi.org/10.3897/neobiota.71.64618

Scientists dive into museum collections to reveal the invasion route of a small crustacean

Biological invasions are widely recognised as one of the most significant components of global change. Far-reaching and fast-spreading, they often have harmful effects on biodiversity.

Therefore, acquiring knowledge of potentially invasive non-native species is crucial in current research. In particular, it is important that we enhance our understanding of the impact of such invasions.

To do so, Prof Sabrina Lo Brutto and Dr Davide Iaciofano, both working at the Taxonomy Laboratory of the University of Palermo, Italy, performed research on an invasive alien crustacean (Ptilohyale littoralis) known to have colonised the Atlantic European Coast. Their findings are published in the open access journal ZooKeys.

The studied species belongs to a group of small-sized crustaceans known as amphipods. These creatures range from 1 to 340 mm in length and feed on available organic matter, such as dead animals and plants. Being widely distributed across aquatic environments, amphipods have already been proven as excellent indicators of ecosystem health.

While notable for their adaptability and ecological plasticity, which secure their abundance in various habitats, these features also make amphipods especially dangerous when it comes to playing the role of invaders.

Having analysed specimens stored at the Museum of Natural History of Verona and the Natural History Museum in Paris, the scientists concluded that the species has colonised European waters 24 years prior to the currently available records.

The problem was that, back in 1985, when the amphipod was first collected from European coasts, it was misidentified as a species new to science instead of an invader native to the North American Atlantic coast.

A closer look into misidentified specimens stored in museum collections revealed that the species has been successfully spreading along the European coastlines.

Male of the invasive amphipod species (Ptilohyale littoralis), sampled in October 2015, from Bay of Arcachon, France.

Moreover, it was predicted that the amphipod could soon reach the Mediterranean due to the high connectivity between the sea and the eastern Atlantic Ocean through the Straits of Gibraltar – a route already used by invasive marine fauna in the past.

In the event that the invader reaches the Mediterranean, it is highly likely for the crustacean to meet and compete with a closely related “sister species” endemic to the region. To make matters worse, the two amphipods are difficult to distinguish due to their appearance and behaviour both being extremely similar.

However, in their paper, the scientists have also provided additional information on how to distinguish the two amphipods – knowledge which could be essential for the management of the invader and its further spread.

The authors believe that their study demonstrates the importance of taxonomy – the study of organism classification – and the role of natural history collections and museums.

“Studying and monitoring biodiversity can acquire great importance in European aquatic ecosystems and coastal Mediterranean areas, where biodiversity is changing due to climate change and invasions of alien species,” Prof Lo Brutto says. “In this context, specific animal groups play a crucial role in detecting such changes and they, therefore, deserve more attention as fundamental tools in biodiversity monitoring.”

“Regrettably, the steadily diminishing pool of experts capable of accurately identifying species poses a serious threat in this field.”

###

Original source:

Lo Brutto S, Iaciofano D (2018) A taxonomic revision helps to clarify differences between the Atlantic invasive Ptilohyale littoralis and the Mediterranean endemic Parhyale plumicornis(Crustacea: Amphipoda). ZooKeys, 754: 47-62. https://doi.org/10.3897/zookeys.754.22884