Beetle’s Best Friend: Trained dogs most efficient in monitoring hermit beetle larvae

Hermit beetles (Osmoderma eremita) are considered at risk, but in order to be effectively protected, they first need to be identified and consistently monitored.

However, this turns out to be a tough task, given that the species is only present for a short time as an adult while it is also extremely elusive. On the other hand, although it remains as a larva for up to three years, once again, it is difficult to spot as it hides inside hollow trees living in the wood mould.

The standard method for detecting hermit beetles involves wood mould sampling which is not only arguable in its overall efficiency, but is also unreasonably time-consuming and quite damaging to both the species communities and their habitat.

Searching for an alternative, Italian scientists, led by Dr. Fabio Mosconi of the Italian Agricultural Research Council and Sapienza University of Rome, suggested that trained dogs might be more successful. Such conservation detection dogs are currently being widely deployed when searching for mammals, reptiles and birds and have already been tested for locating a number of invertebrates.

In their paper, published in the open access journal Nature Conservation, the team tested a training programme before comparing it with the traditional method. The study has been conducted as part of the MIPP Project aimed at the development of non-invasive methods for monitoring selected saproxylic beetles.

Image 2Starting from the choice of a dog, the scientists carefully made their choice from a number of individuals as well as breeds. They settled on a Golden Retriever – a breed widely used in searches for biological targets. As for the particular dog, they chose Teseo – a six-month pup coming from a line with a strong background in locating illegally imported animals and animal parts.

The training of Teseo began with the assignment of a trainer/handler and some basic obedience training, involving teaching simple commands, search games and agility activities.

The next step was introducing the dog to various types of odours, since the hermit beetles might give off a different odour dependent on their habitats, such as the presence of fungi, sawdust and other organic materials. Immediately after detecting the target smell, the animal would be given a reward such as food or play, so that its behaviour could be positively reinforced.

Then, the dog was taught to differentiate between different odours. The researchers presented a number of targets to the animal where it needed to select the right one. At this stage, the dog was only rewarded for correct signalling. Should the dog be distant from the trainer, a special clicker was used to ‘announce’ the treat in advance. The researchers noted that it was at this stage when the relationship between the dog and the handler needed to be really strong, so that the training was as efficient as possible.

In conclusion, the scientists reported a significantly higher probability (73%) of Teseo successfully detecting a tree colonised by the larvae, as opposed to two people conducting the traditional wood mould sampling (34-50%). Moreover, the dog would cover a particular area in a very short time when compared to the traditional method – on average it would take it 6 minutes and 50 seconds to examine the whole tree, while the operators using wood mould sampling would need about 80 minutes. Additionally, searching for larvae with dogs poses no risk to either the insects or other organisms that might be living in the trees.

Furthermore, the researchers provided a list of precautions in order to increase the efficiency when searching for beetle larvae with the help of trained dogs. The list included familiarising the dog with the survey site beforehand, opting for the part of the day with the most favourable atmospheric conditions and carefully monitoring the dog for signs of fatigue.

“A conservation detection dog is a powerful tool for locating O. eremita and these results can be useful for other related European species of Osmoderma“, commented the scientists.Image 3

“In fact, the use of a trained dog is a fast, accurate and non-invasive method that allows the detection of a target species in an area and to identify the colonised trees; this means that a conservation detection dog can locate new populations, can confirm the presence of the target species and can assist in the mapping of colonised trees in an area, accurately and efficiently.”

###

Original source:

Mosconi F, Campanaro A, Carpaneto GM, Chiari S, Hardersen S, Mancini E, Maurizi E, Sabatelli S, Zauli A, Mason F, Audisio P (2017) Training of a dog for the monitoring of Osmoderma eremita. In: Carpaneto GM, Audisio P, Bologna MA, Roversi PF, Mason F (Eds) Guidelines for the Monitoring of the Saproxylic Beetles protected in Europe. Nature Conservation 20: 237-264. https://doi.org/10.3897/natureconservation.20.12688

Special Nature Conservation issue: Monitoring protected insects in the European Union

A collection of thirteen research papers has been published to address the conservation of saproxylic beetles and other insects listed in the Habitats Directive

With biodiversity loss well underway, conservation measures are urgent on a global scale and the European Union is no exception. However, for efficient strategies and actions to be put in place, plenty of information, acquired primarily through monitoring, is needed to identify priorities for the conservation of threatened species, also for the elusive saproxylic insects, an ecological group of species that depends on dead wood.

Monitoring and conservation of elusive invertebrates is a particularly complex task, as shown in the papers comprising the special issue “Monitoring of saproxylic beetles and other insects protected in the European Union,” supported by the EU’s LIFE Programme and published in the open access journal Nature Conservation. This special issue was produced in the framework of the Life Project “Monitoring of insects with public participation” (LIFE11 NAT/IT/000252 MIPP) and is a direct result of a European Workshop held in Mantova in May, 2017.

Colonel Franco Mason, project manager of the MIPP project, notes that the European Workshop was aimed primarily at monitoring of saproxylic beetles. The project MIPP resulted in two special issues: “Monitoring of saproxylic beetles and other insects protected in the European Union” and “Guidelines for the Monitoring of saproxylic beetles and other insects protected in the European Union“. The first one is now available in the open access journal Nature Conservation.

This is a female European stag beetle equipped with a radio transmitter in order to detect oviposition sites.
This is a female European stag beetle equipped with a radio transmitter in order to detect oviposition sites.

“No knowledge exists of the success rate of monitoring elusive invertebrates,” writes Dr. Arno Thomaes, Research Institute for Nature and Forest, Belgium, and his team in their paper assessing the feasibility of monitoring the European stag beetle. Having conducted their analysis, though, the scientists conclude that, “monitoring of stag beetles is feasible and the effort is not greater than that which has been found for other invertebrates.”

Alessandro Campanaro, a researcher at the “Bosco Fontana” National Center of Carabinieri, highlights the fundamental role of Citizen Science as an essential tool for acquiring data on species, while simultaneously increasing the public awareness about Natura 2000 and the role of saproxylic species in forests.

###

 

Additional information:

About the Life project MIPP

The main objective of the project MIPP is to develop and test methods for the monitoring of five beetle species listed in the Annexes II and IV of the Habitats Directive (Osmoderma eremita, Lucanus cervus, Cerambyx cerdo, Rosalia alpina, Morimus funereus).

A decade of monitoring shows the dynamics of a conserved Atlantic tropical forest

Characterised with its immense biodiversity and high levels of endemism, the Atlantic Tropical Forest has been facing serious anthropogenic threats over the last several decades, demanding for such activities and their effects to be closely studied and monitored as part of the forest dynamics.

Cattle farming, expanding agricultural land areas and mining have reduced the Atlantic Forest to many small patches of vegetation. As a result, important ecosystem services, such as carbon stock, are steadily diminishing as the biomass decreases.

Brazilian researchers, led by Dr. Écio Souza Diniz, Federal University of Viçosa, spent a decade monitoring a semi-deciduous forest located in an ecological park in Southeast Brazil. Their observations are published in the open access Biodiversity Data Journal.

The team surveyed two stands within the forest to present variations in the structure and diversity of the plants over time, along with their dynamics, including mortality and establishment rates. They based their findings on the most abundant tree species occurring within each stand.

At the forest stands, the most abundant and important species for biomass accumulation are concluded to be trees larger than 20 cm in diameter, which characterise advanced successional stage within the forest.

“It is fundamental that opportunities to monitor conserved sites of the Atlantic Forest are taken, so that studies about their dynamics are conducted in order to better understand how they work,” note the scientists.

“The information from such surveys could improve the knowledge about the dynamics at anthropised and fragmented sites compared with protected areas.”

In order to encourage further research into the composition, diversity and structure of the Atlantic Forest over time and the subsequent contributions to the preservation of this threatened ecosystem, the authors made their data publicly available. The datasets, including species occurrences, are now openly accessible via the Global Biodiversity Information Facility(GBIF) and the biodiversity informatics data standard Darwin Core.

###

Original source:

Diniz ES, Carvalho W, Santos R, Gastauer M, Garcia P, Fontes M, Coelho P, Moreira A, Menino G, Oliveira-Filho A (2017) Long-term monitoring of diversity and structure of two stands of an Atlantic Tropical Forest. Biodiversity Data Journal 5: e13564. https://doi.org/10.3897/BDJ.5.e13564

Effects of soil and drainage on the savanna vegetation in the northern Brazilian Amazonia

It is a well-known fact that environmental factors such as soil texture and drainage determine to a very large degree the vegetation appearance, richness and composition at any site. However, there has been little research on how these variables influence the flora in the marvellous savannas – large open areas characterised by a complex and unique network of natural resources and life forms.

Consequently, a Brazilian research team, led by Dr. Maria Aparecida de Moura Araújo, Universidade Federal de Roraima, investigated the hydro-edaphic conditions in the savanna areas in the northern Brazilian Amazonia. Their study, complete with an openly available and ready for re-use dataset, is published in the open access Biodiversity Data Journal.  

Image 1_Annonaceae_Xylopia aromatica_treeIn the course of the Program for Biodiversity Research, managed by the Brazilian government, the scientists sampled 20 permanent plots in two savanna areas in the state of Roraima, located in the northern of the Brazilian Amazon. As a result, the team reports a total of 128 plant species classified into 34 families from three savanna habitats with different levels of hydro-edaphic restrictions.

Amongst the various factors playing a role in the soil characteristics of the area, are the tectonic events and past climatic fluctuations which have occurred in the most recent period of the Cenozoic era. Paleo, as well as modern fires are likely to be other culprits for the specific conditions.

In conclusion, the authors suggest that the most restrictive savanna habitats – the wet grasslands, represent the home to less structurally complex plants, compared to the well-drained shrubby localities.

“The present study highlights the environmental heterogeneity and the biological importance of Roraima’s savanna regarding the conservation of natural resources from the Amazon,” say the scientists.

Image 2_Convolvulaceae_Merremia aturensis_herb“In addition, it points out the need for greater investment in floristic inventories associated with greater diversification of sites, since this entire ecosystem has been rapidly modified by agribusiness.”

Licensed under a Creative Commons License (CC-BY 4.0) and available in a Darwin Core Archive DwC-A format; the complete dataset is openly available via the Global Biodiversity Information Facility (GBIF).

 

Original source:
Araújo M, Rocha A, Miranda I, Barbosa R (2017) Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia. Biodiversity Data Journal 5: e13829. https://doi.org/10.3897/BDJ.5.e13829

Conservation and nameless earthworms: Assessors in the dark?

Species that live exclusively in a single region are at a particular risk of extinction. However, for them to be protected, thorough assessments of the environmental impacts need to be performed.

There are more than 100 earthworm species living in the soil and dead wood of KwaZulu-Natal Province, South Africa. Most of them live exclusively in small regions in the province, which makes them extremely vulnerable.

To scientists Dr Adrian J. Armstrong, Ezemvelo KZN Wildlife, and Ms Thembeka Nxele, KwaZulu-Natal Museum, the problem is twofold. Firstly, they note that the expression “out of sight, out of mind” is very suitable for the case of the endemic earthworms in South Africa. Secondly, they point out that the lack of common names for these species is a stumbling block that hinders their inclusion in conservation assessments.

As a result, the researchers try to rectify this situation by assigning standardised English names to the endemic earthworms in KwaZulu-Natal. Their article is published in the open access journal African Invertebrates.

Scientific names are often intractable to non-specialists, and the lack of common names leaves environmental assessors in the dark when they need to figure out which earthworms may occur at a development site. In the meantime, it has been found that about 50% of the native vegetation in KwaZulu-Natal has already been removed as a result of infrastructure construction and the figure is rising.

“The indigenous earthworms generally don’t survive in developed areas,” say the authors.

For instance, the informal use of an English name (green giant wrinkled earthworm) for the species Microchaetus papillatus, has facilitated the inclusion of this species in environmental impact assessments in KwaZulu-Natal.

While the green giant wrinkled earthworm does occur in a relatively large and rapidly developing area in KwaZulu-Natal, other species live in smaller areas that have been urbanised even more.

The extinction of these earthworms is not only undesirable from the point of view of biodiversity advocates – the role of this group of soil organisms is impossible to replace fully with non-native earthworms. For example, some of the large indigenous earthworms (more than 1 m in length) burrow much deeper than the non-native species, thereby enriching and aerating the soil at greater depth.

The authors are hopeful that by giving the indigenous earthworms in KwaZulu-Natal common names, the threatened and endemic species will be conserved through inclusion in environmental impact assessments. Furthermore, they believe that earthworms could draw attention to the areas where they occur whenever a choice for new protected areas is to be made.

###

Original source:

Armstrong AJ, Nxele TC (2017) English names of the megadrile earthworms (Oligochaeta) of KwaZulu-Natal. African Invertebrates 58(2): 11-20. https://doi.org/10.3897/AfrInvertebr.58.13226

Gehry’s Biodiversity Museum – favorite attraction for the butterflies and moths in Panama

Ahead of Gehry’s Biodiversity Museum‘s opening in October 2014, PhD candidate Patricia Esther Corro Chang, Universidad de Panama, studied the butterflies and moths which had been attracted by the bright colours of the walls and which were visiting the grounds of the tourist site.

The resulting checklist, published in the open access journal Biodiversity Data Journal, aims to both evaluate the biodiversity and encourage the preservation and development of the Amador Causeway (Calzada de Amador) and the four Causeway Islands. The name of the islands derives from their being linked to each other and the mainland via a causeway made of rocks excavated during the construction of the Panama Canal.

The researcher reports a total of six butterfly and eight moth families, identified from the 326 specimens collected over the course of 10 months from the botanical garden of the museum and adjacent areas. They represent a total of 52 genera and 60 species.

IMG_0096Interestingly, the eye-catching bright colours of the walls of the museum seem to play an important role for the insect fauna of the area. Not only are numerous butterflies and moths being attracted to the site, but they also express curious behaviour. On various occasions, for example, a species of skipper butterfly was seen to show a clear preference for yellowish surfaces. In their turn, a number of butterfly predators, such as jumping spiders, are also frequenting the walls.

The article in the journal provides knowledge of the butterfly and moth fauna at the mainly vegetated study area, located on a narrow strip of water distant from the city of Panama.

###

Original source:

Corro-Chang P (2017) Behavioural notes and attraction on Lepidoptera around the Gehry’s Biodiversity Museum (Causeway, Calzada de Amador, Panamá, República de Panamá). Biodiversity Data Journal 5: e11410. https://doi.org/10.3897/BDJ.5.e11410

Robust rattan palm assessed as Endangered, new Species Conservation Profile shows

An African rattan palm species has recently been assessed as Endangered, according to the IUCN Red List criteria. Although looking pretty robust at height of up to 40 m, the palm is restricted to scattered patches of land across an area of 40 km². It grows in reserves and conservation areas in Ghana and a single forest patch in Côte d’Ivoire. Its Species Conservation Profile is published in the open access Biodiversity Data Journal by an international research team, led by Thomas Couvreur, Institut de Recherche pour le Développement (IRD), France, in collaboration with the University of Yaoundé, Cameroon, Royal Botanic Gardens, Kew, UK, and the Conservatoire et jardin botaniques, Geneva, Switzerland.

oo_106255The rattan palm is confined to moist evergreen forests with high rainfall, located at 100 to 200 meters above sea level. The species is poorly known, yet it is likely very rare judging from the limited amount of forest habitat remaining across its range. Furthermore, the known populations are isolated from each other by large distances, which makes them particularly vulnerable.

Even though there are gaps of knowledge concerning the rattan palm species, the research team conclude that it is most likely currently declining, due to habitat loss, fragmentation and over-harvesting. Often mistaken for a sister species, commonly used in trade, the stems of the endangered species are largely used in furniture production. When longitudinally split into ribbons, the canes are also used as ropes for thatching, for making baskets and sieves, and to make traps.

“As with most African rattan species, there is inadequate information on the international trade, but it is likely to be negligible,” explain the scientists.

“Conservation measures are urgently needed to protect the habitat of this species and to control the unsustainable harvest of the stems. A promising solution might be sustainable cultivation of rattans to avoid the exploitation of wild populations,” suggests Ariane Cosiaux (IRD), the lead author of the study currently based in Cameroon.

With their present paper, the authors make use of a specialised novel publication type feature, called Species Conservation Profile, created by Biodiversity Data Journal, to provide scholarly credit and citation for the IUCN Red List species page, as well as pinpoint the population trends and the reasons behind them.

###

Original source:

Cosiaux A, Gardiner L, Ouattara D, Stauffer F, Sonké B, Couvreur T (2017) An endangered West African rattan palm: Eremospatha dransfieldii. Biodiversity Data Journal 5: e11176. https://doi.org/10.3897/BDJ.5.e11176

Twenty-five frogs added to the amphibian fauna of Mount Oku, Cameroon

 

While amphibians all over the world are undergoing a continuous decline, their status in certain regions, such as Central Africa, remains unknown due to incomplete information. New paper, published by two scientists in the open access journal ZooKeys, addresses the knowledge gap by providing an updated list of already 50 amphibian species living on Mount Oku, Cameroon.

Scientists Dr Thomas M. Doherty-Bone, Royal Zoological Society of Scotland, and Dr Václav Gvoždík, affiliated with both the Czech Academy of Sciences and the National Museum in Prague, have spent more than 10 years studying the Cameroonian mountain. As a result of their thorough surveys, literature review, and re-examination of museum specimens, there are now 50 species known from the locality, which doubles previous numbers. In their newly published checklist the researchers have listed 49 species of frogs and toads, as well as one caecilian species – a limbless, snake-like amphibian.

However, the number of threatened species seems to increase quite proportionally. Many of the newly recorded frogs, for instance, appear to be extremely endangered, yet they have not been assessed by the International Union for Conservation of Nature (IUCN). Therefore, the authors have used the IUCN criteria to propose conservation assessments for them. If the suggested statuses are approved, together with the updated declines of previously abundant in the area species, the proportion of the threatened would rise to nearly half (48%) of the Mount Oku’s entire amphibian fauna. Meanwhile, it is 42% of amphibians at risk of extinction globally.

In their study, the scientists also review the research and conservation undertaken at the mountain so far, including the work they have initiated themselves. Although Mount Oku’s forest turned out to be the best managed among the rest in the region, threats such as forest loss, encroachment and degradation are still largely present and increasing. Additional threats, including use of agrochemicals, climate change and diseases, have also been identified. However, conservation actions for the amphibians of Mount Oku are on the rise, considering both the population and the ecosystem-level perspectives.

“Our paper provides a foundation for continuously improving amphibian conservation at Mount Oku, as well as other mountains in Cameroon,” conclude the authors.   

 

Original source:

Doherty-Bone TM, Gvoždík V (2017) The Amphibians of Mount Oku, Cameroon: an updated species inventory and conservation review. ZooKeys 643: 19-139. https://doi.org/10.3897/zookeys.643.9422

Efficiency of insect biodiversity monitoring via Malaise trap samples and DNA barcoding

The massive decline of over 75% insect biomass reported from Germany between 1989 and 2013 by expert citizen scientists proves the urgent need for new methods and standards for fast and wide-scale biodiversity assessments. If we cannot understand species composition, as well as their diversity patterns and reasons behind them, we will fail not only to predict changes, but also to take timely and adequate measures before species go extinct.

An international team of scientists belonging to the largest and connected DNA barcoding initiatives (iBOL, GBOL, BFB), evaluated the use of DNA barcode analysis applied to large samples collected with Malaise traps as a method to rapidly assess the arthropod fauna at two sites in Germany between May and September.

One Malaise trap (tent-like structure designed to catch flying insects by attracting them to its walls and then funneling them into a collecting bottle) was set in Germany’s largest terrestrial protected natural reserve Nationalpark Bayerischer Wald in Bavaria. Located in southeast Germany, from a habitat perspective, the park is basically a natural forest. The second trap was set up in western Germany adjacent to the Middle River Rhine Valley, located some 485 kilometers away from the first location. Here, the vegetation is eradicated annually due to St. Martin’s fires, which occur every November. Their findings are published in the open access Biodiversity Data Journal.

DNA barcoding enables the identification of a collected specimen by comparing its BIN (Barcode Index Number) against the BOLD database. In contrast to evaluation using traditional morphological approaches, this method takes significantly less experience, time and effort, so that science can easily save up on decades of professional work.

However, having analyzed DNA barcodes for 37,274 specimens equal to 5,301 different BINs (i.e., species hypotheses), the entomologists managed to assign unambiguous species names to 35% of the BINs, which pointed to the biggest problem with DNA barcoding for large-scale insect inventories today, namely insufficient coverage of DNA barcodes for Diptera (flies and gnats) and Hymenoptera (bees and wasps) and allied groups. As the coverage of the reference database for butterflies and beetles is good, the authors showcase how efficient the workflow for the semi-automated identification of large sample sizes to species and genus level could be.

In conclusion, the scientists note that DNA barcoding approaches applied to large-scale samplings collected with Malaise traps could help in providing crucial knowledge of the insect biodiversity and its dynamics. They also invite their fellow entomologists to take part and help filling the gaps in the reference library. The authors also welcome taxonomic experts to make use of the unidentified specimens they collected in the study, but also point out that taxonomic decisions based on BIN membership need to be made within a comparative context, “ideally including morphological data and also additional, independent genetic markers”. Otherwise, the grounds for the decision have to be clearly indicated.

The study is conducted as part of the collaborative Global Malaise Trap Program (GMTP), which involves more than 30 international partners. The aim is to provide an overview of arthropod diversity by coupling the large-scale deployment of Malaise traps with the use of specimen-based DNA barcoding to assess species diversity.

Sequence analyses were partially defrayed by funding from the government of Canada through Genome Canada and the Ontario Genomics Institute in support of the International Barcode of Life project. The German Barcode of Life project (GBOL) is generously supported by a grant from the German Federal Ministry of Education and Research (FKZ 01LI1101 and 01LI1501) and the Barcoding Fauna Bavarica project (BFB) was supported by a 10-year grant from the Bavarian Ministry of Education, Culture, Research and Art.

 

 

Original source:

Geiger M, Moriniere J, Hausmann A, Haszprunar G, Wägele W, Hebert P, Rulik B (2016) Testing the Global Malaise Trap Program – How well does the current barcode reference library identify flying insects in Germany? Biodiversity Data Journal 4: e10671. https://doi.org/10.3897/BDJ.4.e10671

People can simultaneously give a hand to endangered apes and stay at safe distance

Primates claim the highest proportion of endangered species among all mammals, according to the IUCN Red List. Yet, the substantial conservation interference from humans, which is already in place, could itself lead to even greater losses.

Plenty of studies have proven that while researchers and ecotourists raise vital for ape conservation knowledge and funds, it is actually human presence that compromises primates’ well-being due to extremely similar genetics and, thereby, easily transmittable diseases, ranging from common cold to human tuberculosis and Ebola fever.

In a paper published in the open access journal BioRisk, Rhiannon Schultz, Miami University, seeks the golden mean between giving ape species a hand and keeping safe distance. To showcase the impact human have on primates, the scientist makes example of the Mountain gorilla, an endangered species living in the montane forests of the Democratic Republic of Congo, Uganda and Rwanda.

Simply being in close proximity to primates, humans can easily transmit a wide range of diseases to the animals, including intestinal parasites, hepatitis, tuberculosis, Typhoid fever, Cholera, and Ebola fever. The transmission can occur as easily as having the two species breathing the same air, or the people leaving a banana peel behind.

Furthermore, threats to the gorilla species are also posed by the humans destroying the primates’ habitats. The result is overlapping populations, where a disease is much easier to transmit among the small gorilla populations. For example, normally an ill individual would be put under a ‘natural quarantine’, which is impossible when the habitat has already been reduced.

In the meantime, banning people, both tourists and scientists, from gorilla habitat is not an option, since knowledge about the populations’ dynamics is essential for the conservation of all primate species. On the other hand, ecotourism is what raises a great part of the resources need for conservation work. Income from gorilla trekking is enough to support the Ugandan Wildlife Authority, while also contributing a significant part to the country’s national budget.

The key, Rhiannon Schultz concludes, is to, firstly, promote understanding of the risk for interspecies disease transmission as a conservation threat, and then, improve on current protocols and regulations.

“It may be difficult to ask tourists to wear masks while visiting animals in the wild, and it may be expensive to maintain a veterinary program for wild populations and to improve healthcare systems for local people, but making these improvements could be the key to preventing disease transmission to not only Mountain gorillas but also to other apes,” sums up the scientist.

###

Original source:

Schultz R (2016) Killer Conservation: the implications of disease on gorilla conservation.BioRisk 11: 1-11. doi: 10.3897/biorisk.11.9941