Tiny cave snail with muffin-top waistline rolls out of the dark in Laos

A new species of tiny cave snail that glistens in the light and has a muffin-top-like bulge, was discovered by Marina Ferrand of the French Club Etude et Exploration des Gouffres et Carrières (EEGC), during the Phouhin Namno caving expedition in Tham Houey Yè cave in Laos in March 2019. The new species, named Laoennea renouardi was described in the open-access, peer-reviewed journal Subterranean Biology.

Tham Houey Yè cave (Vientiane Province, Laos), inhabited by the newly discovered “muffin-topped” snail species Laoennea renouardi.
Photo by Jean-Francois Fabriol.

A new species of tiny cave snail that glistens in the light and has a muffin-top-like bulge, was discovered by Marina Ferrand of the French Club Etude et Exploration des Gouffres et Carrières (EEGC), during the Phouhin Namno caving expedition in Tham Houey Yè cave in Laos in March 2019. The new species, Laoennea renouardi, is 1.80 mm tall and is named after the French caver, Louis Renouard, who explored and mapped the only two caves in Laos known to harbor this group of tiny snails. Only two species of Laoennea snail are known so far, L. carychioides and now, L. renouardi

Caver and scientist, Dr. Adrienne Jochum, affiliated with the Natural History Museum Bern and University of Bern (Switzerland), as well as the Senckenberg Research Institute and Natural History Museum (Frankfurt, Germany) described the new species and its cave habitat together with co-authors: Estée Bochud, Natural History Museum Bern; Quentin Wackenheim, Laboratoire de Géographie Physique (Meudon, France) and Laboratoire Trajectoires (Nanterre, France); Marina Ferrand, EEGC; and Dr. Adrien Favre, Senckenberg Research Institute and Natural History Museum, in the open-access, peer-reviewed journal Subterranean Biology.

The new transparent “muffin-topped” snail, Laoennea renouardi.
Photo by Estée Bochud.

“The discovery and description of biodiversity before it disappears is a major priority for biologists worldwide. The caves in Laos are still largely underexplored and the snails known from them remain few in number,”

points out Dr. Jochum. 

The fact that two species of tiny cave snails of the same group were found in two caves located in two independent karstic networks 3.4 km apart, caused the authors to question evolutionary processes in these underground hotspots of biodiversity. The authors hypothesise that the two caves might have been connected during the Quaternary, around 100–200 thousand years ago. In time, the river Yè might have formed a barrier, thus disconnecting the cave systems and separating the populations. As a result, the snails evolved into two different species.

A new species of tiny cave snail that glistens in the light and has a muffin-top-like bulge, was discovered by Marina Ferrand of the French Club Etude et Exploration des Gouffres et Carrie?res (EEGC), during the Phouhin Namno caving expedition in Tham Houey Yè cave in Laos in March 2019. The new species, Laoennea renouardi, is 1.80 mm tall and is named after the French caver, Louis Renouard, who explored and mapped the only two caves in Laos known to harbor this group of tiny snails. Only two species of Laoennea snail are known so far, L. carychioides and now, L. renouardi.

Caver and scientist, Dr. Adrienne Jochum, affiliated with the Natural History Museum BernUniversity of Bern (Switzerland), as well as the Senckenberg Research Institute and Natural History Museum (Frankfurt, Germany) described the new species and its cave habitat together with co-authors: Estée Bochud, Natural History Museum Bern; Quentin Wackenheim, Laboratoire de Géographie Physique (Meudon, France) and Laboratoire Trajectoires (Nanterre, France); Marina Ferrand, EEGC; and Dr. Adrien Favre, Senckenberg Research Institute and Natural History Museum, in the open-access, peer-reviewed journal Subterranean Biology.

Map of the two caves on opposite sides of the River Yè, Vientiane Province, Laos.
Image by Louis Renouard.

The fact that two species of tiny cave snails of the same group were found in two caves located in two independent karstic networks 3.4 km apart, caused the authors to question evolutionary processes in these underground hotspots of biodiversity. The authors hypothesise that the two caves might have been connected during the Quaternary, around 100-200 thousand years ago. In time, the river Yè might have formed a barrier, thus disconnecting the cave systems and separating the populations. As a result, the snails evolved into two different species.

***

Original Source:

Jochum A, Bochud E, Favre A, Ferrand M, Wackenheim Q (2020) A new species of Laoennea microsnail (Stylommatophora, Diapheridae) from a cave in Laos. Subterranean Biology 36: 1-9.
https://doi.org/10.3897/subtbiol.36.58977

Dwarfs under dinosaur legs: 99-million-year-old millipede discovered in Burmese amber

A 3D reconstruction of the fossil allowed for the description of an entirely new suborder


The newly described millipede (Burmanopetalum inexpectatum) rendered using 3D X-ray microscopy. Image by Leif Moritz.

Even though we are led to believe that during the Cretaceous the Earth used to be an exclusive home for fearsome giants, including carnivorous velociraptors and arthropods larger than a modern adult human, it turns out that there was still room for harmless minute invertebrates measuring only several millimetres.

Such is the case of a tiny millipede of only 8.2 mm in length, recently found in 99-million-year-old amber in Myanmar. Using the latest research technologies, the scientists concluded that not only were they handling the first fossil millipede of the order (Callipodida) and also the smallest amongst its contemporary relatives, but that its morphology was so unusual that it drastically deviated from its contemporary relatives.

As a result, Prof. Pavel Stoev of the National Museum of Natural History (Bulgaria) together with his colleagues Dr. Thomas Wesener and Leif Moritz of the Zoological Research Museum Alexander Koenig (Germany) had to revise the current millipede classification and introduce a new suborder. To put it in perspective, there have only been a handful of millipede suborders erected in the last 50 years. The findings are published in the open-access journal ZooKeys.

To analyse the species and confirm its novelty, the scientists used 3D X-ray microscopy to ‘slice’ through the Cretaceous specimen and look into tiny details of its anatomy, which would normally not be preserved in fossils. The identification of the millipede also presents the first clue about the age of the order Callipodida, suggesting that this millipede group evolved at least some 100 million years ago. A 3D model of the animal is also available in the research article.

Curiously, the studied arthropod was far from the only one discovered in this particular amber deposit. On the contrary, it was found amongst as many as 529 millipede specimens, yet it was the sole representative of its order. This is why the scientists named it Burmanopetalum inexpectatum, where “inexpectatum” means “unexpected” in Latin, while the generic epithet (Burmanopetalum) refers to the country of discovery (Myanmar, formerly Burma).

Lead author Prof. Pavel Stoev says:

We were so lucky to find this specimen so well preserved in amber! With the next-generation micro-computer tomography (micro-CT) and the associated image rendering and processing software, we are now able to reconstruct the whole animal and observe the tiniest morphological traits which are rarely preserved in fossils. This makes us confident that we have successfully compared its morphology with those of the extant millipedes. It came as a great surprise to us that this animal cannot be placed in the current millipede classification. Even though their general appearance have remained unchanged in the last 100 million years, as our planet underwent dramatic changes several times in this period, some morphological traits in Callipodida lineage have evolved significantly.


The newly described millipede seen in amber. Image by Leif Moritz.

Co-author Dr. Thomas Wesener adds:

“We are grateful to Patrick Müller, who let us study his private collection of animals found in Burmese amber and dated from the Age of Dinosaurs. His is the largest European and the third largest in the world collection of the kind. We had the opportunity to examine over 400 amber stones that contain millipedes. Many of them are now deposited at the Museum Koenig in Bonn, so that scientists from all over the world can study them. Additionally, in our paper, we provide a high-resolution computer-tomography images of the newly described millipede. They are made public through MorphBank, which means anyone can now freely access and re-use our data without even leaving the desk.”

Leading expert in the study of fossil arthropods Dr. Greg Edgecombe (Natural History Museum, London) comments:

“The entire Mesozoic Era – a span of 185 million years – has until now only been sampled for a dozen species of millipedes, but new findings from Burmese amber are rapidly changing the picture. In the past few years, nearly all of the 16 living orders of millipedes have been identified in this 99-million-year-old amber. The beautiful anatomical data presented by Stoev et al. show that Callipodida now join the club.”

###

Original source:

Stoev P, Moritz L, Wesener T (2019) Dwarfs under dinosaur legs: a new millipede of the order Callipodida (Diplopoda) from Cretaceous amber of Burma. ZooKeys 841: 79-96. https://doi.org/10.3897/zookeys.841.34991

Life in marine driftwood: The case of driftwood specialist talitrids

Driftwood in the sea – either floating or stranded on beaches – is a common feature particularly in temperate regions. Large quantities of driftwood, termed driftwood depositories, may collect at the mouth of small streams associated with marshes and have been present for some 120 millennia – since the origin of flowering plants.

Once marine driftwood begins to decay, it undergoes a specific succession. Firstly, it is colonized by salt tolerant, wood degrading fungi and bacteria, along with a few invertebrates able to digest wood by producing native wood degrading enzymes. The latter include gribbles (isopods) and chelurid amphipods.

Driftwood hoppers (talitrids), as well as isopods, chilopods, insect larvae, some ants and termites, comprize the secondary colonizers. They are all characterized by their inability to utilize driftwood directly. Instead, they rely on symbiotic microflora for digestive purposes.

Within all talitrids, the driftwood hoppers count as few as seven species, most likely because they are extremely difficult to locate and, therefore, discover and describe. Apart from living in tiny burrows, they measure between 13 and <6 mm, which makes the latter the smallest known talitrid.

Having reviewed the driftwood specialized talitrids, Dr. David Wildish of the St. Andrews Biological Station, Canada, concludes that all seven known species demonstrate dwarfism based on slow metabolism and growth. Their sexual development begins earlier compared to faster growing related species. All of them are also characterized with reduced eye size and absence of dorsal pigment patterns.

In his review article published in the open access journal Zoosystematics and Evolution, the scientist confirms that dwarfism in driftwood hoppers has evolved due to poor diet, in turn resulting in slowed metabolism and growth. A further adaptive challenge is the empty gribble burrow size occupied by talitrids (burrow diameter between 0.6 to 5 mm) with the smaller ones being more widespread. Larger talitrids can only complete their life cycle in the larger burrows.

“The size gradient in gribble burrow diameter provides a satisfactory explanation for serial dwarfism within the driftwood talitrids and is why each species becomes successively smaller,” explains the researcher.

Responsibility for first establishing the driftwood talitrid ecological grouping was made during graduate studies by David Wildish, London University, U.K., and Laura Pavesi, University of Rome, Italy. The two criteria for inclusion of a talitrid in the driftwood grouping was: behavioral fidelity to the occupied driftwood and that the food source was solely rotting driftwood (see references).

The larger talitrid family are small/medium in body length (< 30 mm) crustaceans with more than 400 species described in the world list. Ecological groupings within the family include marine/estuarine supralittoral wrack generalists, sand-burrowing, marsh-living and driftwood specialists. A few freshwater and many terrestrial species are also known.

###

Original source:

Wildish DJ (2017) Evolutionary ecology of driftwood talitrids: a review. Zoosystematics and Evolution 93(2): 353-361. https://doi.org/10.3897/zse.93.12582