Study on mysterious Amazon porcupine can help its protection

After 22 years of relative obscurity, this research uncovers vital information about its distribution, phylogenetics, and potential conservation threats.

Porcupines of the genus Coendou are arboreal, herbivorous, nocturnal rodents distributed in tropical and subtropical regions of the Americas. Most of what we currently know on them is restricted to species that occur near urban areas, and we still have a lot to learn about these fascinating animals.

Recently, a new study shed light on a very unknown neotropical porcupine species. Roosmalens’ dwarf porcupine (Coendou roosmalenorum) is the smallest porcupine species we know, with blackish monocolored bristles on the tail which confers a blackish color to it, but apart from its appearance, we didn’t know much about it until recently.

A preserved specimen of Coendou roosmalenorum.

“This species was described in 2001 and our paper is the first scientific report after this date, which means nothing was discovered about Roosmalen’s porcupine in a 22-year period,” says Fernando Heberson Menezes, the lead author of a study that was just published in the open-access journal ZooKeys.

“Before our research, we had only a morphological description of the species, with a little information about its distribution and natural history, and nothing about population ecology or conservation threats.”

Using DNA sequencing and exploring data on its occurrences, Fernando and his team were able to uncover new facts about the enigmatic animal.

Thanks to their study, we now know more about its distribution in the Madeira biogeographical province in the Amazon Forest. “With this information, we raised the hypothesis this species is endemic to Madeira Province, which is important for predicting where we can find this species and the possible threats affecting its population or its distribution,” says Fernando.

Distribution of Caaporamys roosmalenorum in Brazilian Amazonia. The new record (locality 1) is the southeastern most record for the species, from Mato Grosso state, Brazil. The darker gray area represents the Madeira Province sensu Morrone et al. (2022).

At the same time, they found Roosmalens’ dwarf porcupine at new locations in the Amazon rainforest, which suggests that its distribution in southern Amazonia is wider than suspected.

Their phylogenetic analysis – the study of the species’ evolutionary history and relationships with other species – confirmed that the species is a member of the subgenus Caaporamys . This is important, the researchers say, because the classification of the genus Coendou had been “historically chaotic” until the last few years.

The information in this study opens up numerous opportunities for further researching this species. “We can think of ways to answer very basic scientific questions such as ‘how does Roosmalen’s porcupine use space?’ or ‘what does it eat?’, some more advanced questions such as ‘how did it evolve?,’ or applied questions such as ‘what are the major threats for its conservation?,’ or ‘how can we use it as a model to know more about the health of the Amazon forest?’, says Fernando in conclusion.

Original source:

Menezes FH, Semedo TBF, Saldanha J, Garbino GST, Fernandes-Ferreira H, Cordeiro-Estrela P, da Costa IR (2023) Phylogenetic relationships, distribution, and conservation of Roosmalens’ dwarf porcupine, Coendou roosmalenorum Voss & da Silva, 2001 (Rodentia, Erethizontidae). ZooKeys 1179: 139-155. https://doi.org/10.3897/zookeys.1179.108766

Follow ZooKeys on Facebook and X.

Learning more about bird diversity: What a museum collection in Romania can tell us

“Due to its historical background and the presence of rare species, it is considered to be one of the most important ornithological collections in Eastern Europe,” researcher Gergely Osváth says

Containing specimens from different locations, sometimes spanning across centuries, museum collections can teach us a lot about how some animals are built and how we can protect them. Properly labeled, preserved specimens can show us how the environment and species distribution has changed over extended time periods. Because in many cases these collections remain largely unexplored, a revision can reveal “treasures” that were hidden in plain sight for decades.

The bird skin collection of the Zoological Museum of Babeș Bolyai University, Cluj-Napoca, Romania. Photos by Gergely Osváth and Zsolt Kovács

A team of ornithologists and scientists from the Zoological Museum of Babeș-Bolyai University, Milvus Group – Bird and Nature Protection Association and the Romanian Ornithological Society, headed by Gergely Osváth, set out to revise the ornithological collection in the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania, checking the species identification of the bird skin specimens to provide an updated catalogue

The collection is unique in the region in many ways: it covers a long time span, it contains a variety of species, belonging to different families and orders, and it is composed of the work of several naturalists and employees of the museum”, Osváth says. “Due to its historical background and the presence of rare species, it is considered to be one of the most important ornithological collections in Eastern Europe.”

First, the researchers examined each bird skin and the data cards documenting the identification, locality, date, sex and catalogue number. Afterwards, they checked the species identification of specimens, determining the sex and age of birds where possible. They also updated the scientific names and taxonomy of birds. In addition, they provide a map representation with new distribution data for bird species, offering valuable information on the status of the avifauna of the Carpathian basin in the 19th and 20th centuries.

Published in the open-access journal ZooKeys, this is the first time that all those specimen data are made public.

The collection includes 925 specimens, belonging to 193 species, that were collected between 1859 and 2021. Perching birds (Passeriformes) were the best represented bird order, with 487 specimens, and 93.6 % of the specimens with known data were collected from Transylvania.

By far, the most interesting specimens were the rare ones, such as specimens of Cinereous Vulture (Aegypius monachus), Eastern Imperial Eagle (Aquila heliaca), Lesser Kestrel (Falco naumanni), all collected between 1903 and 1907 from Transylvania.

With updated information on the taxonomy and morphology of birds in Transylvania, the researchers hope this new catalogue can serve as a basis for valuable ornithological studies.

Research article:

Osváth G, Papp E, Benkő Z, Kovács Z (2022) The ornithological collection of the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania – Part 1: the catalogue of bird skin specimens. ZooKeys 1102: 83-106. https://doi.org/10.3897/zookeys.1102.79102

Under Extinction Pressure: Rare Australian bee found after 100 years

A widespread field search for a rare Australian native bee (Pharohylaeus lactiferus) that had not been recorded for almost a century found the species has been there all along – but is probably under increasing pressure to survive. Prior to this study, only six individuals had been found, with the last published record of this Australian endemic bee species, from 1923 in Queensland.

Male Pharohylaeus lactiferus bee. Photo by James Dorey.

A widespread field search for a rare Australian native bee (Pharohylaeus lactiferus) that had not been recorded for almost a century found the species has been there all along – but is probably under increasing pressure to survive. Prior to this study, only six individuals had been found, with the last published record of this Australian endemic bee species, from 1923 in Queensland.

“This is concerning because it is the only Australian species in the Pharohylaeus genus and nothing was known of its biology,”

Flinders University researcher and biological sciences PhD candidate James Dorey says in the new scientific paper in the peer-reviewed, open-access Journal of Hymenoptera Research.

The ‘hunt’ began after bee experts Olivia Davies and Dr Tobias Smith raised the possibility of the species’ extinction based on the lack of any recent sightings. The ‘rediscovery’ followed an extensive sampling of 225 general and 20 targeted sampling sites across New South Wales and Queensland.

Along with extra bee and vegetation recordings from the Atlas of Living Australia, which lists 500 bee species in New South Wales and 657 in Queensland, the Flinders researchers sought to assess the latest levels of true diversity, warning that habitat loss and fragmentation of Australia’s rainforests, along with wildfires and climate change, are likely to put extinction pressure on this and other invertebrate species.  

“Three populations of P. lactiferous were found by sampling bees visiting their favoured plant species along much of the Australian east coast, suggesting population isolation,”

Mr Dorey reports.

Highly fragmented habitat and potential host specialisation might explain the rarity of P. lactiferus.

Additionally, the scientists remind of previous findings that Australia has already cleared more than 40% of its forests and woodlands since European colonisation, leaving much of the remainder fragmented and degraded.

“My geographical analyses used to explore habitat destruction in the Wet Tropics and Central Mackay Coast bioregions indicate susceptibility of Queensland rainforests and P. lactiferus populations to bushfires, particularly in the context of a fragmented landscape,”

Mr Dorey says.

The study also warns the species is even more vulnerable as they appear to favour specific floral specimens and were only found near tropical or sub-tropical rainforest – a single vegetation type.

“Collections indicate possible floral and habitat specialisation with specimens only visiting firewheel trees (Stenocarpus sinuatu), and Illawarra flame trees (Brachychiton acerifolius), to the exclusion of other available floral resources.”

Known populations of P. lactiferus remain rare and susceptible to habitat destruction (e.g. caused by changed land use or events such as fires), the paper concludes.

“Future research should aim to increase our understanding of the biology, ecology and population genetics of P. lactiferus.”

Female Pharohylaeus lactiferus bee. Photo by James Dorey.

“If we are to understand and protect these wonderful Australian species, we really need to increase biomonitoring and conservation efforts, along with funding for the museum curation and digitisation of their collections and other initiatives,”  

Mr Dorey says.

Research paper:

Dorey JB (2021) Missing for almost 100 years: the rare and potentially threatened bee, Pharohylaeus lactiferus (Hymenoptera, Colletidae). Journal of Hymenoptera Research 81: 165-180. https://doi.org/10.3897/jhr.81.59365

***

Follow Journal of Hymenoptera Research on Twitter and Facebook.

3D avatars for three new rare ant species from Africa including the Obama ant

Three new, rare ant species recently discovered in Africa were named after important figures for the African biodiversity conservation – the former United States president Barack Obama, the Nigerian writer and environmental activist Ken Saro-Wiwa, and the world-renowned biologist Edward O. Wilson.

The scientists from the Okinawa Institute of Science and Technology Graduate University (OIST), who had their discovery published in the open access journal ZooKeys, used a new, revolutionary method to compile scans of the ants and create 3D avatars allowing for a unique and detailed visualisation of the insects’ insides.

https://skfb.ly/6sPvr

Curiously, the Obama ant, Zasphinctus obamai, was collected from the Kakamega Forest National Park, Kenya, located near Barack Obama’s ancestral family village. The 44th President of the United States of America is famous for his numerous initiatives towards the conservation of fragile natural habitats around the globe.

Ken Saro-Wiwa, who also has his name perpetualised in the new ant species Zasphinctus sarowiwai, was a Nigerian writer and environmental activist who, after campaigning against irresponsible oil development, was executed in 1995.

“By naming a species from threatened rainforest habitats after him, we want to acknowledge his environmental legacy and draw attention to the often-problematic conservation situation in most Afrotropical rainforests,” explain the biologists in their paper.

The third new species, Zasphinctus wilsoni, bares the name of the biologist Edward O. Wilson, whose foundation has contributed greatly to the resurrection of the Gorongosa National Park in Mozambique.

The 3D avatars were created with the help of X-ray microtomography, or micro-CT, which is a technology similar to the one used in hospitals for CT scans, but relying on much higher resolution. The three-dimensional reconstructions made it possible for the scientists to look into details as tiny as the ants’ mouthparts and even their legs and hairs. Moreover, this method does not require damaging the rare specimens.

“We saw things that nobody ever looked at,” says Dr. Hita Garcia, first author on the study and a member of the Biodiversity and Biocomplexity Unit at OIST.

While closely related ants had already been known as predators of other ant species, the scientists needed to study the data provided by the scans to confirm that the new species are top predators as well.

“Normally when you describe a new species, you don’t know much about its biology,” further explains Dr. Hita Garcia, “but with the 3D reconstructions researchers can discover details right away.”

To the biologists, these reconstructions hint at a future of virtual taxonomy with the potential to alleviate issues of time, money, and specimen damage.

Furthermore, the 3D models also allow for the data to be easily accessible from anywhere. To show this, the scientists have uploaded the reconstructions to the open access Dryad Digital Repository.

“If someone wants to see the Obama ant, they can download it, look at it, and 3D print it,” Dr. Hita Garcia points out.

“Since these ants are from very threatened habitats in Africa, we wanted to pick names that draw attention to the environment, and not just the ants,” he concludes.  “The rainforests in equatorial Africa, as well as the savannah in Mozambique, needs to be protected before the habitats and animals living within them are destroyed.”

 

###

Find the original public announcement available via the OIST’s website: https://www.oist.jp/news-center/news/2017/8/29/say-hello-3d-obama-ant

###

Reference:

Hita Garcia F, Fischer G, Liu C, Audisio TL, Economo EP (2017) Next-generation morphological character discovery and evaluation: an X-ray micro-CT enhanced revision of the ant genus Zasphinctus Wheeler (Hymenoptera, Formicidae, Dorylinae) in the Afrotropics. ZooKeys 693: 33-93. https://doi.org/10.3897/zookeys.693.13012

In the belly of the Devil: New rare ant species found in the stomach of a poison frog

While new ant species are usually discovered in surveys involving researchers searching through leaf litter, it turns out that sifting through the stomach contents of insect-eating frogs might prove no less effective, especially when it comes to rare species. Such is the case of a new species of rarely collected long-toothed ant, discovered in the belly of a Little Devil poison frog in Ecuador.

The international team of Drs Christian Rabeling and Jeffrey Sosa-Calvo, both affiliated with University of Rochester, USA, Lauren A. O’Connell, Harvard University, USA, Luis A. Coloma, Fundación Otonga and Universidad Regional Amazónica Ikiam, Ecuador, and Fernando Fernández, Universidad Nacional de Colombia, have their study published in the open access journal ZooKeys.

The new ant species, named Lenomyrmex hoelldobleri after renowned myrmecologist Bert Hölldobler on the occasion of his 80th birthday, was described based on a single individual – a female worker, recovered from a Little Devil poison frog. It is the seventh known species in this rarely collected Neotropical genus.  

Similarly to its relatives within the group, this ant amazes with its slender and elongate mouthpart, yet it is larger than all of them. The remarkable jaws speak of specialised predatory habits, however, so far, nothing is known about these ants’ feeding behavior.in-full-face

The amphibian, whose diet majorly consists of ants, was collected from the Ecuadorian region Choco, which, unfortunately, despite being one of the most biologically diverse areas in the world with exceptionally high levels of endemism, is also one of Earth’s most threatened areas.

In conclusion, the authors point out that “studying vertebrate stomach contents is not only a way of studying the trophic ecology” (meaning the feeding relationships between organisms), “but also an interesting source of cryptic and new arthropod species, including ants.”

Furthermore, the scientists note that nowadays there is no need to kill a frog, in order to study its stomach. “Stomach flushing methods have been developed and successfully applied in numerous studies, which avoids killing individuals.”

 

Original source:

Rabeling C, Sosa-Calvo J, O’Connell LA, Coloma LA, Fernández F (2016) Lenomyrmex hoelldobleri: a new ant species discovered in the stomach of the dendrobatid poison frog, Oophaga sylvatica (Funkhouser). ZooKeys 618: 79-95. doi: 10.3897/zookeys.618.9692