Deep black as midnight: striking new moray eel discovered in Central Indo-Pacific river mouths, named after god of the underworld

This new moray eel is named after the underworld god Hades for its distinctive habitat, unique behaviors, and most notably, its deep, dark coloration.

The Hades’ snake moray (Uropterygius hades), a dark brown, slender snake moray eel, has chosen the road less traveled, thriving in dim and muddy river mouths, unlike most of its marine moray eel relatives. It is widely distributed across the Central Indo-Pacific, and has been found in southern Japan, Taiwan, the Philippines, southern Java, and Fiji. This new moray eel was named after Hades, the god of the underworld, due to its unique habitat, burrowing behavior, high sensitivity to light, and most notably, its deep, dark coloration.

Live photo of Uropterygius hades. Image credit: Dr Wen-Chien Huang

Scientists Dr Wen-Chien Huang, Dr Rodulf Anthony Balisco, Dr Te-Yu Liao, National Sun Yat-sen University, Taiwan, Western Philippines University, the Philippines, and Dr Yusuke Hibino, Kitakyushu Museum of Natural History and Human History, Japan, describe this new species in a paper published in the open-access journal ZooKeys. They named it after Hades, the underworld god, to emphasize its imposing appearance and its habitat in dim, turbid environments. This idea was inspired by Dr. Wen-Chien Huang, who was influenced by Ralph Fiennes’ portrayal of Hades in the movie Clash of the Titans.

Live photo of Uropterygius hades. Image credit: Dr Wen-Chien Huang

There are approximately 230 species of moray eels worldwide, with most inhabiting marine environments. Only one species has been confirmed to spend the majority of its life in freshwater. Some marine species, like the slender giant moray (Strophidon sathete), can tolerate and occasionally enter lower-salinity environments such as river mouths. However, moray eels specifically adapted to estuarine habitats are exceedingly rare.

The discovery of Hades’ snake moray was actually accidental, when the three researchers from National Sun Yat-sen University investigated the cave of the Puerto Princesa Subterranean River, aiming to survey the aquatic fauna and targeting a cave eel species, the bean-eyed snake moray (Uropterygius cyamommatus). This eel, with its highly reduced eye size, is considered an ideal example for studying the evolutionary processes that allow eels to adapt to cave environments. However, the researchers did not find any bean-eyed snake morays in the cave; instead, they collected a slender moray with a conspicuous, uniformly deep dark color.

Fresh specimen of Uropterygius hades. Credit: Dr Wen-Chien Huang

When kept in an aquatic tank, the Hades’ snake moray exhibits tail-first burrowing behavior, which is rarely seen in moray eels. Additionally, it is highly sensitive to light, consistently attempting to hide when exposed to it. Its small eyes—thought to be an adaptation to low-light environments—and its reduced number of head sensory pores—believed to help avoid clogging by the substrate—suggest that this species might be an excellent burrower, relying primarily on chemoreception rather than vision to detect prey or avoid predators.

Original source:

Huang W-C, Hibino Y, Balisco RA, Liao T-Y (2024) Description of a new uniformly brown estuarine moray eel (Anguilliformes, Muraenidae) from the Central Indo-Pacific Ocean. In: Ho H-C, Russell B, Hibino Y, Lee M-Y (Eds) Biodiversity and taxonomy of fishes in Taiwan and adjacent waters. ZooKeys 1220: 15-34. https://doi.org/10.3897/zookeys.1220.129685

Uncovering the hidden value of urban rivers: Study reveals community perceptions of ecosystem services

The case of the Zamora and Malacatos rivers in Loja, Ecuador

Guest blog post by Natalia Alvarado-Arias, Vinicio Moya-Almeida, Francisco Cabrera-Torres, and Andrea Medina-Enríquez

Urban rivers play a crucial role in providing ecosystem services that contribute to the social well-being and quality of life of urban inhabitants. However, rapid urbanization has led to the progressive degradation of these rivers, affecting their capacity to deliver these services and generating significant socioecological impacts. A groundbreaking study conducted in the Zamora and Malacatos Rivers in Loja, Ecuador, performed a participatory mapping of the non-monetary social values (both positive and negative) and their associated ecosystem services. This research, published in the journal One Ecosystem, aimed to understand community perceptions and preferences in the context of degraded landscapes, using a complementary analysis approach to traditional methods.

Oblique aerial photographs of the research area captured with unmanned aerial vehicles (2021). Left: Malacatos River. Right: Zamora River

The methodology employed in this study involved data collection and analysis using ArcGIS Survey123 Connect (ESRI 2020), a digital survey tool that facilitated easy data collection from participants. Additionally, The Social Values for Ecosystem Services (SolVES 4.0) tool was utilized, integrating participatory survey data and environmental data to assess and map the social values associated with ecosystem services. This combination of technological tools allowed for comprehensive analysis and visual representation of the results.

The study findings revealed that the most relevant social values encompassed learning, aesthetics, therapy, displeasure, deficient and inaccessible infrastructure, and the threat of flooding. Different spatial patterns were identified for each of these social values, with the horizontal distance to green areas emerging as a significant environmental variable contributing to these patterns.

Spatial distribution of positive social values.

These findings enhance our understanding of the social values and preferences associated with ecosystem services in urban river contexts. Furthermore, they provide valuable insights for identifying areas of opportunity and conflict, informing community planning, and enabling effective management of the urban landscape. The significance of this study lies in its novel approach, considering non-monetary social values, and its application in a city in the Global South, where previous research has predominantly focused on the Global North.

The degradation of urban rivers and the resulting socioecological impacts are a growing concern worldwide. Rivers play a vital role in providing natural resources, species habitats, freshwater supply, and flood control, while also satisfying the social, spiritual, and recreational needs of local communities. However, the processes of rapid urbanization have transformed river ecosystems into monofunctional channels and open sewers, negatively impacting the quality of life of residents.

Spatial distribution of negative social values.

This study emphasizes the importance of considering social values and community preferences when assessing and managing urban rivers. By doing so, opportunities and conflicts can be identified, and management strategies can be developed that are socially accepted and supported. Active community participation is crucial in this process as it allows for the addressing of traditional viewpoints and power asymmetries in planning.

The study employed a participatory and community-based approach, utilizing surveys and digital mapping tools such as ArcGIS Survey123 Connect (ESRI 2020) and The Social Values for Ecosystem Services (SolVES 4.0) to collect and analyze data from multiple social actors. This integration of technological tools and participatory methods allowed for a more comprehensive understanding of the social values and ecosystem services associated with urban rivers.

An urban river. Photo by alcides OTA used under a CC BY-NC 2.0 license.

In summary, this groundbreaking study highlights the importance of urban rivers as providers of ecosystem services and their role in the quality of life of urban communities. By understanding and valuing the social and cultural aspects of river ecosystems, effective management strategies can be developed to promote the restoration and conservation of these critical natural resources. Active community participation is essential in achieving sustainable management of urban rivers and ensuring a prosperous future for future generations.

Research article:

Alvarado-Arias N, Moya-Almeida V, Cabrera-Torres F, Medina-Enríquez A (2023) Evaluation and mapping of the positive and negative social values for the urban river ecosystem. One Ecosystem 8: e101122. https://doi.org/10.3897/oneeco.8.e101122

Follow One Ecosystem on social media: