Moving towards a systems-based Environmental Risk Assessment for wild bees, butterflies, moths and hoverflies: Pensoft joins PollinERA

Pensoft will lead the communication, dissemination and exploitation activities of the Horizon Europe project, which aims to reverse pollinator population declines and reduce impacts of pesticides.

The European Green Deal, the EU biodiversity strategy, the EU zero pollution action plan, and the revised EU pollinators initiative all indicate the need to protect pollinators and address insect and pollinator declines.

Plant protection products (PPP), also known as pesticides, have been identified as one of the primary triggers of pollinator decline. However, significant knowledge gaps and critical procedural limitations to current pesticide risk assessment require attention before meaningful improvements can be realised. The functional group is currently represented by only one species, the honey bee, which does not necessarily share other species’ biological and ecological traits.

Coordinated by The Social-Ecological Systems Simulation (SESS) Centre, Aarhus University and Prof. Christopher J. Topping, PollinERA (Understanding pesticide-Pollinator interactions to support EU Environmental Risk Assessment and policy) aims to move the evaluation of the risk and impacts of pesticides and suggestions for mitigation beyond the current situation of assessing single pesticides in isolation on honey bees to an ecologically consistent assessment of effects on insect pollinators.

This will be achieved through the development of a new systems-based environmental risk assessment (ERA) scheme, tools and protocols for a broad range of toxicological testing, feeding to in silico models (QSARS, toxicokinetic/toxicodynamic, and ALMaSS agent-based population simulations). 

Using a strong stakeholder co-development approach, these models will be combined in a One System framework for risk assessment and policy evaluation including an international long-term monitoring scheme for pollinators and pesticides. 

The One System framework builds on the recent roadmap for action on the ERA of chemicals for insect pollinators, developed within the IPol‐ERA project, funded by the European Food Safety Authority (EFSA). The framework will expand the ERA tools currently used for honey bees to include wild bees, butterflies, moths and hoverflies.

With an overall goal of reversing pollinator population declines and reducing the harmful impacts of pesticides, for the next four years, PollinERA will follow four specific objectives:

  1. Fill ecotoxicological data gaps to enable realistic prediction of the source and routes of exposure and the impact of pesticides on pollinators and their sensitivity to individual pesticides and mixtures.
  2. Develop and test a co-monitoring scheme for pesticides and pollinators across European cropping systems and landscapes, developing risk indicators and exposure information.
  3. Develop models for predicting pesticide toxicological effects on pollinators for chemicals and organisms, improve toxicokinetic/toxicodynamic (TKTD) and population models, and predict environment fate.
  4. Develop a population-level systems-based approach to risk and policy assessment considering multiple stressors and long-term spatiotemporal dynamics at a landscape scale and generate an open database for pollinator/pesticide data and tools.
Between 17 and 18 January 2024, experts from various realms of knowledge – from pollinator ecology, pesticide exposure and toxicological testing, to stakeholder engagement and communications – gathered in Aarhus, Denmark, to officially launch PollinERA. The two-day event seeded fruitful discussions on the project’s specific objectives, mission, methodology, outcomes and expected results.

With more than 20 years of experience in science communication, Pensoft is leading Work Package 6: Communication, Dissemination and Exploitation, that will ensure the effective outreach of PollinERA to its multiple target audiences. Based on the tailor-made communication, dissemination, exploitation and engagement strategies, Pensoft will provide a recognisable visual identity of the project, along with a user-friendly website, social media profiles, promotional materials, newsletters, infographics and videos. Pensoft will also contribute to the stakeholder mapping process and the organisation of various workshops and events.

To support the proactive, open-science transfer of results and scientific achievements, two PollinERA topical collections of articles will be established in Pensoft’s Food and Ecological Systems Modelling Journal (FESMJ) and the Research Ideas and Outcomes (RIO) journal.

PollinERA’s coordinator Prof. Christopher J. Topping (The Social-Ecological Systems Simulation Centre, Aarhus University) gave a warm welcome during the kick-off meeting of the project in Aarhus, Denmark.

In a joint effort to maximise impact and ensure sustainability of results, PollinERA will unfold in close collaboration with the sister Horizon Europe-funded project WildPosh, where Pensoft is also leading the Communication, dissemination and exploitation work package. 

Coordinated by Prof. Denis Michez (University of Mons), WildPosh aims to significantly improve the evaluation of risk to pesticide exposure of wild pollinators, and enhance the sustainable health of pollinators and pollination services in Europe.

Collaboration mechanisms between the PollinERA and the WildPosh projects include joint communication activities and events, joint data management strategy and alignment of activities to solidify the quality of final outputs.

Prof. Denis Michez (University of Mons), the coordinator of PollinERA’s sister-project WildPosh, presented the missions, objectives and methods, as well as the similarities, differences and collaboration potential between the two projects at PollinERA’s kick-off meeting in Aarhus, Denmark.

“It is fantastic that the European Commission puts so much effort into preserving wild pollinators and the countless benefits they bring to our society! The One System framework will hopefully become a fundamental part for the environmental risk assessment of chemicals for insect pollinators. I am really looking forward to implementing this insightful project, in close collaboration with its sister project WildPosh, where Pensoft is leading the dissemination efforts as well.”

says Teodor Metodiev, Principal Investigator for Pensoft at both PollinERA and WildPosh.

The PollinERA consortium comprises partners from eight European countries that represent a diverse range of scientific disciplines spanning from pollinator ecology, pesticide exposure and toxicological testing, to stakeholder engagement and communications.


Consortium:
  1. Aarhus University
  2. Jagiellonian University
  3. Lund University
  4. University of Bologna
  5. Osnabrück University
  6. Institute of Nature Conservation of the Polish Academy of Sciences
  7. Mario Negri Institute for Pharmacological Research
  8. BeeLife European Beekeeping Coordination
  9. Swedish University of Agricultural Sciences
  10. Pensoft Publishers
  11. Zip Solutions

Stay up to date with the PollinERA project’s progress on X/Twitter (@pollinERA_eu) and LinkedIn (/pollinera-eu).

  

Uncovering the hidden value of urban rivers: Study reveals community perceptions of ecosystem services

The case of the Zamora and Malacatos rivers in Loja, Ecuador

Guest blog post by Natalia Alvarado-Arias, Vinicio Moya-Almeida, Francisco Cabrera-Torres, and Andrea Medina-Enríquez

Urban rivers play a crucial role in providing ecosystem services that contribute to the social well-being and quality of life of urban inhabitants. However, rapid urbanization has led to the progressive degradation of these rivers, affecting their capacity to deliver these services and generating significant socioecological impacts. A groundbreaking study conducted in the Zamora and Malacatos Rivers in Loja, Ecuador, performed a participatory mapping of the non-monetary social values (both positive and negative) and their associated ecosystem services. This research, published in the journal One Ecosystem, aimed to understand community perceptions and preferences in the context of degraded landscapes, using a complementary analysis approach to traditional methods.

Oblique aerial photographs of the research area captured with unmanned aerial vehicles (2021). Left: Malacatos River. Right: Zamora River

The methodology employed in this study involved data collection and analysis using ArcGIS Survey123 Connect (ESRI 2020), a digital survey tool that facilitated easy data collection from participants. Additionally, The Social Values for Ecosystem Services (SolVES 4.0) tool was utilized, integrating participatory survey data and environmental data to assess and map the social values associated with ecosystem services. This combination of technological tools allowed for comprehensive analysis and visual representation of the results.

The study findings revealed that the most relevant social values encompassed learning, aesthetics, therapy, displeasure, deficient and inaccessible infrastructure, and the threat of flooding. Different spatial patterns were identified for each of these social values, with the horizontal distance to green areas emerging as a significant environmental variable contributing to these patterns.

Spatial distribution of positive social values.

These findings enhance our understanding of the social values and preferences associated with ecosystem services in urban river contexts. Furthermore, they provide valuable insights for identifying areas of opportunity and conflict, informing community planning, and enabling effective management of the urban landscape. The significance of this study lies in its novel approach, considering non-monetary social values, and its application in a city in the Global South, where previous research has predominantly focused on the Global North.

The degradation of urban rivers and the resulting socioecological impacts are a growing concern worldwide. Rivers play a vital role in providing natural resources, species habitats, freshwater supply, and flood control, while also satisfying the social, spiritual, and recreational needs of local communities. However, the processes of rapid urbanization have transformed river ecosystems into monofunctional channels and open sewers, negatively impacting the quality of life of residents.

Spatial distribution of negative social values.

This study emphasizes the importance of considering social values and community preferences when assessing and managing urban rivers. By doing so, opportunities and conflicts can be identified, and management strategies can be developed that are socially accepted and supported. Active community participation is crucial in this process as it allows for the addressing of traditional viewpoints and power asymmetries in planning.

The study employed a participatory and community-based approach, utilizing surveys and digital mapping tools such as ArcGIS Survey123 Connect (ESRI 2020) and The Social Values for Ecosystem Services (SolVES 4.0) to collect and analyze data from multiple social actors. This integration of technological tools and participatory methods allowed for a more comprehensive understanding of the social values and ecosystem services associated with urban rivers.

An urban river. Photo by alcides OTA used under a CC BY-NC 2.0 license.

In summary, this groundbreaking study highlights the importance of urban rivers as providers of ecosystem services and their role in the quality of life of urban communities. By understanding and valuing the social and cultural aspects of river ecosystems, effective management strategies can be developed to promote the restoration and conservation of these critical natural resources. Active community participation is essential in achieving sustainable management of urban rivers and ensuring a prosperous future for future generations.

Research article:

Alvarado-Arias N, Moya-Almeida V, Cabrera-Torres F, Medina-Enríquez A (2023) Evaluation and mapping of the positive and negative social values for the urban river ecosystem. One Ecosystem 8: e101122. https://doi.org/10.3897/oneeco.8.e101122

Follow One Ecosystem on social media:

The wealth below the waves of the North-East Atlantic: The first ever environmental-economic accounts for the OSPAR region

A new paper in One Ecosystem, marks the first attempt at compiling accounts aligned with the UN international standard (SEEA EA) at a regional sea scale.

A new paper makes significant achievements in the field of ecosystem accounting for the ocean by presenting the first attempt at compiling accounts aligned with the UN System of Environmental Economic Accounting – Ecosystem Accounting (SEEA EA) at a regional sea scale to reveal the wealth hidden below the waves.

Ecosystem Accounting offers a robust framework for quantifying and valuing ecosystem extent, condition, and services, enabling the identification of ecological degradation and the evaluation of economic activities’ risks and dependencies on the environment. The OSPAR Convention, committed to safeguarding the Marine Environment of the North-East Atlantic, has embraced the accounting for natural capital and ecosystem services, with the SEEA EA providing the international standard.

A map of the OSPAR Maritime Area, denoting sub-regions I to V, as defined by the OSPAR convention. Ecosystem Accounting was performed by seafloor type (A3 – A6), according to EUNIS classifications.

This research paves the way for a comprehensive understanding of the OSPAR region’s natural capital and ecosystem services. The study entailed the identification of open-access data, the production of accounts for selected ecosystems, valuation of their services and asset value, and the revelation of crucial challenges and invaluable lessons.

The ecosystem services included in the analyses were fish provisioning, carbon sequestration, and outdoor recreation across OSPAR contracting parties’ coastal and marine environments. This exercise shed light on the need to overcome challenges including the lack of fitting data at the regional level and the imperative for spatially explicit linkages and harmonization to expand ecosystem accounting. It also offers valuable recommendations, including a shift towards ecosystem-type-based data collection, harmonization of data among countries, and the establishment of systematic data collection practices to facilitate data sharing and standardization.

The Ecosystem Accounts framework followed. The figure illustrates the set of accounts forming the accounting system, in which the accounts are strongly interconnected and provide a comprehensive and consistent view of the ecosystems.

It is key to emphasize that this work represents an initial step towards progressing ecosystem accounting practices not only in the OSPAR region but can serve as overall guidance for other regions in first steps regional ecosystem accounting, and it shows that, even with limited data and incomplete time-series, accounts can be compiled.

As the world faces unprecedented environmental challenges, understanding and measuring our marine ecosystems and how they change are of paramount importance. This research sets the stage for transformative actions towards sustainable development and underscores the critical need for further advancements in regional ecosystem accounting.

Research article:

Alarcon Blazquez MG, van der Veeren R, Gacutan J, James PAS (2023) Compiling preliminary SEEA Ecosystem Accounts for the OSPAR regional sea: experimental findings and lessons learned. One Ecosystem 8: e108030. https://doi.org/10.3897/oneeco.8.e108030

Follow One Ecosystem on social media:

One Ecosystem selected for inclusion in the Web of Science

“Not only does it mean that content is persistent in merit and quality, but that innovative research outputs are already appreciated within academia,” says Editor-in-Chief Prof Dr Benjamin Burkhard

Seven years after its official launch in May 2016, the One Ecosystem journal has successfully completed the rigorous quality and integrity assessment at Web of Science.

Scientific papers published in One Ecosystem from 2021 onwards will be indexed at the Emerging Sources Citation Index (ESCI) and the Journal Citation Reports (JCR), revealed the Indexing team at ARPHA Platform.

The news means that One Ecosystem might see its very first Journal Impact Factor (JIF) as early as 2024, following the latest revision of the metric’s policies Clarivate announced last July. According to the update, all journals from the Web of Science Core Collection are now featured in the Journal Citation Reports, and thereby eligible for a JIF.

“Giving all quality journals a Journal Impact Factor will provide full transparency to articles and citations that have contributed to impact, and therefore will help them demonstrate their value to the research community. This decision is aligned to our position that publications in all quality journals, not just highly cited journals, should be eligible for inclusion in research assessment exercises,” said back then Dr Nandita Quaderi, Editor-in-Chief and Editorial Vice President at Web of Science.

“We are happy to learn that Web of Science has recognised the value and integrity of One Ecosystem in the scholarly landscape. Not only does it mean that the scientific content One Ecosystem has been publishing over the years is persistent in merit and quality, but that innovative research outputs are already widely accepted and appreciated within academia.

After all, one of the reasons why we launched One Ecosystem and why it has grown to be particularly distinguished in the field of ecology and sustainability is that it provides a scholarly publication venue for traditional research papers, as well as ‘unconventional’ scientific contributions,”

comments Prof Dr Benjamin Burkhard, Executive Director at the Institute of Physical Geography & Landscape EcologyLeibniz University Hannover (Germany) and founding Editor-in-Chief of One Ecosystem.

“These ‘unconventional’ research outputs – like software descriptions, ecosystem inventories, ecosystem service mappings and monitoring schema – do not normally see the light of day, let alone the formal publication and efficient visibility. We believe that these outputs can be very useful to researchers, as well as practitioners and public bodies in charge of, for example, setting up indicator frameworks for environmental reporting,”

says Prof Davide Geneletti, Department of Civil, Environmental and Mechanical Engineering of University of Trento, Italy, and Deputy Editor-in-Chief of One Ecosystem.

“In fact, last year, we also launched a new article type: the Ecosystem Accounting table, which follows the standards set by the the System of Environmental-Economic Accounting Ecosystem Accounting (SEEA EA). This publication type provides scientists and statisticians with a platform to publish newly compiled accounting tables,” 

adds Dr Joachim Maes, Policy analyst at the Directorate-General for Regional and Urban Policy of the European Commission and Deputy Editor-in-Chief of One Ecosystem.

***

Previously, One Ecosystem has been accepted for indexing at over 60 major academic databases, including ScopusDOAJCabell’s DirectoryCABI and ERIH PLUS. In June 2022, the journal received a Scopus CiteScore reading 7.0, which placed it in Q1 in five categories: Earth and Planetary Sciences; Ecology; Nature and Landscape Conservation; Agricultural and Biological Sciences (miscellaneous); Ecology, Evolution, Behavior and Systematics.

***

You can follow One Ecosystem on Twitter and Facebook.

Mapping our ecosystems: Pensoft joined the Horizon Europe project MAMBO

With expertise in science communication, dissemination and exploitation, Pensoft is involved in this project set to develop new technologies for monitoring species and their habitats across Europe

With expertise in science communication, dissemination and exploitation, Pensoft became part of this project dedicated to new technologies for species and habitat monitoring across Europe

Background 

The European Union puts a great value in monitoring the health of ecosystems, as comprehensive mapping can aid policy makers’ work in adopting appropriate legislation for nature conservation. It allows for understanding the impact of human activities and making informed decisions for effective management of nature’s resources. This is particularly important for the EU, as it has set ambitious goals to halt biodiversity loss and restore degraded ecosystems by 2030, as outlined in the EU Biodiversity Strategy for 2030

Effective biodiversity monitoring can help the EU track progress towards these goals, assess the effectiveness of conservation policies and initiatives, and identify emerging threats to biodiversity. 

Despite this awareness, efforts to monitor animals and plants remain spatially and temporally fragmented. This lack of integration regarding data and methods creates a gap in biodiversity monitoring, which can negatively impact policy-making. Today, modern technologies such as drones, artificial intelligence algorithms, or remote sensing are still not widely used in biodiversity monitoring. 

MAMBO project (Modern Approaches to the Monitoring of BiOdiversity) recognises this need and aims to develop, test, and implement enabling tools for monitoring conservation status and ecological requirements of species and habitats. Having started in late 2022, the project is set to run for four years until September 2026.

Pensoft – with its proven expertise in communicating scientific results – is committed to amplifying the impact of MAMBO. Pensoft supports the project through tailored approaches to communication, dissemination and exploitation so as to reach the most appropriate target audience and achieve maximum visibility of the project.

Deep-dive into the project

In order to enrich the biodiversity monitoring landscape, MAMBO will implement a multi-disciplinary approach by utilising the technical expertise in the fields of computer science, remote sensing, and social science expertise on human-technology interactions, environmental economy, and citizen science. This will be combined with knowledge on species, ecology, and conservation biology. 

More specifically, the project will develop, evaluate and integrate image and sound recognition-based AI solutions for EU biodiversity monitoring from species to habitats as well as promote the standardised calculation and automated retrieval of habitat data using deep learning and remote sensing.

“Classification algorithms have matured to an extent where it is possible to identify organisms automatically from digital data, such as images or sound,”

comments project coordinator Prof. Toke T. Høye, Aarhus University

“Technical breakthroughs in the realm of high spatial resolution remote sensing set the future of ecological monitoring and can greatly enrich traditional approaches to biodiversity monitoring.” 

In order to achieve its goals, the project will test existing tools in combination with MAMBO-developed new technologies at the project’s demonstration sites geographically spread across Europe. This will contribute to an integrated European biodiversity monitoring system with potential for dynamic adaptations.

Pensoft is part of MAMBO’s Work Package 7 (WP7): “Science-policy interface and dissemination”, led by Helmholtz Centre for Environmental Research (UFZ). The work package is dedicated to providing a distinct identity of the project and its services through branding, visualisation and elaborated dissemination and communication strategy.

Within WP7, Pensoft will also be taking care after the launch of an open-science collection of research outputs in the scholarly journal Research Ideas and Outcomes (RIO). 

Amongst the tasks of the partners in WP7 is also the development of different pathways for integrating new technologies and innovations into the EU Pollinators Monitoring Scheme (EU PoMS; SPRING). 


Full list of partners
  1. Aarhus University (AU)
  2. Naturalis Biodiversity Centre (Naturalis)
  3. Helmholtz Centre for Environmental Research (UFZ)
  4. National Institute for Research in Digital Science and Technology (INRIA)
  5. University of Amsterdam (UvA)
  6. The French Agricultural Research Centre for International Development (CIRAD)
  7. Pensoft Publishers (Pensoft)
  8. Ecostack Innovations Limited (EcoINN)
  9. University of Reading (UREAD)
  10. UK Centre For Ecology & Hydrology (UKCEH) 

You can find more about the project on the MAMBO website: mambo-project.eu. Stay up to date with the project’s progress on Twitter (@MAMBO_EU) and Linkedin (/MAMBO Project).

Redefining nature-based decision-making: Pensoft joins EU project SELINA

“Ecosystem services is one of the topics that Pensoft has been involved in for over 10 years,” points out COO Prof Pavel Stoev.

Ambitious goals have been set by the European Union, in order to tackle the biodiversity conservation challenges over the coming decade. No less ambitious are the goals of the Horizon Europe project SELINA, which is one of the current major initiatives looking in the same direction. 

SELINA (Science for Evidence-based and Sustainable Decisions about Natural Capital) is a transdisciplinary project aimed at promoting the conservation of biodiversity, enhancing ecosystem conditions, and supporting the sustainable use of the environment through evidence-based decision-making.

As an experienced science communicator and open-science publisher, Pensoft will be leading the project’s communication and dissemination activities.

“Ecosystem services is one of the topics that Pensoft has been involved in for more than 10 years, so it was only natural for us to continue our work as a communicator of scientific information in the ambitious SELINA project as well,”

says Prof Pavel Stoev, COO at Pensoft.

“We have already collaborated with many of the partners within the earlier EC Horizon 2020 project ESMERALDA, which concluded with the launch of a pan-European network of scientific institutions engaged with biodiversity conservation and ecosystem services.

In addition, Pensoft has been strongly connected to the community through the scholarly journal One Ecosystem, which is supported by Ecosystem Services Partnership, and offers an opportunity for scientists in the field to publish their results in a new and innovative way.”

he adds.

The project

SELINA was launched in July 2022 and will run for 5 years. Having received EUR 13 million in funding, the project is seen as an unprecedented opportunity for smart, cost-effective, and nature-based solutions to historic societal challenges such as climate change, biodiversity loss, and food security. 

One of the project’s main objectives is to identify biodiversity, ecosystem condition, and ecosystem service factors that can be successfully integrated into decision-making processes in both the public and private sectors. 

To achieve this objective, SELINA will develop, test, and integrate new and existing knowledge, including methodological approaches to improve biodiversity, ecosystem condition, and ecosystem service information uptake by decision-makers. 

In addition, the project will utilise EU-wide workshops and multi-disciplinary Communities of Practice involving a wide range of stakeholders, including scientists, policymakers, business leaders, and civil society organisations. 

The project will also organise Demonstration Projects on biodiversity, ecosystem condition, and ecosystem service integration in decision-making and co-create a Compendium of Guidance that will allow stakeholders to make full use of the project’s results and fit-for-purpose recommendations with real-world applications in policy-making and business decisions. 

International consortium

SELINA project brings together experts from 50 partnering organisations across all European Union member states, Norway, Switzerland, Israel, and the United Kingdom.

The project comprises a Pan-European and transdisciplinary network of professionals from the academic and non-academic sectors with various (inter)disciplinary backgrounds – including ecologists, economists, social scientists – who have agreed to work collaboratively to support transformative change based on evidence-based decision-making related to the management of natural resources.

Find out more about the project on the SELINA website: project-selina.eu/.

Stay up to date with the project’s progress on Twitter, Facebook, Linkedin and YouTube.

Flooded cities: A flood-regulating ecosystem services assessment for heavy rainfalls in urban areas

Scientists from Germany developed a framework with indicator suggestions to quantify and compare flood-regulating ecosystem services supply and demand.

Extreme weather events – like heavy rainfall – are a major environmental risk. Only recently after the Ecosystem Services Partnership (ESP) 2022 Europe Conference on Crete (Greece) some conference attendees were able to directly experience the effects of heavy rainfall, when air traffic was stopped in Heraklion for many hours, streets were flooded, properties damaged, and even people died.

Heavy rainfall can occur anywhere and are usually highly localized. Cities are particularly vulnerable to pluvial flooding because of the high degree of surface sealing, the high population density and the high potential of socio-economic damage in urban areas. In this light, ecosystems are important natural flood-regulating elements that can relieve grey infrastructure such as sewer systems. They can buffer rain events and prevent flooding as their functions turn into a flood-regulating ecosystem service (ES) to protect society.

So far, flood-regulating ES supply and demand for heavy rainfall in urban areas have rarely been studied. Therefore, scientists from the Climate Service Center Germany and the Leibniz University Hannover (Germany) developed a framework with indicator suggestions to quantify and compare flood-regulating ES supply and demand. Interception by canopies and infiltration in the soil serve as essential indicators for urban flood-regulating ES supply. The indicators can be quantified based on the outputs of a hydrological model that has explicitly been developed for this study. The model is based on single, individual landscape elements. It considers vegetation-hydrological interaction, and 2D surface water routing. Social-economic indicators and the surface flooding indicate the related ES demand.

A flooded neighbourhood. Photo by U.S. Geological Survey

In their study, published in the journal One Ecosystem, they assessed the flood-regulating ES of an urban district in the City of Rostock (Germany) for a one-hour heavy rainfall event. They found the highest mean ES supply on greened areas of forests, woodlands and green areas, resulting in a supply surplus. Whereas, sealed areas (paved surface where water cannot infiltrate into the soil), such as settlements, urban dense areas, traffic areas and industry, showed an unmet demand resulting from both low supply and relatively high actual demand. The results indicated that vegetation plays an important part in flood regulation, if the soils are saturated or sealed and, thus, should be considered in urban flood-regulating ES assessments.

Budget of the flood-regulating ecosystem services supply and demand resulting in unmet demand and supply surplus.

Analysing the supply and demand for flood-regulating ES is particularly important for urban planning in order to identify ES supply-demand mismatches. Based on this information, adaptation measures such as Nature-based Solutions can be planned and their possible ES contributions can be quantified. Since heavy precipitation events are projected to become more frequent and intense in the future, the future functionality of current flood-regulating ES and the benefits of adaptation measures under changing climate conditions need to be assessed. This provides information about changing ES supply and the development of ES demand.

Research article:

Wübbelmann T, Bouwer LM, Förster K, Bender S, Burkhard B (2022) Urban ecosystems and heavy rainfall – A Flood Regulating Ecosystem Service modelling approach for extreme events on the local scale. One Ecosystem 7. https://doi.org/10.3897/oneeco.7.e87458

Follow One Ecosystem on Facebook and Twitter.

Novel research seeks to solve environmental challenges in BioRisk’s latest issue

The special issue features 35 studies presented at the International Seminar of Ecology 2021

Guest blog post by Prof. Stephka Chankova, PhD

The new special issue of BioRisk compiles materials presented at the International Seminar of Ecology – 2021. The multidisciplinary nature of modern ecology was demonstrated by the main topics of the Seminar: biodiversity and conservation biology, biotic and abiotic impact on the living nature, ecological risk and bioremediation, ecosystem research and services, landscape ecology, and ecological agriculture.

Research teams from various universities, institutes, organizations, and departments, both from Bulgaria and abroad, took part in the Seminar. Foreign participants included: Environmental Toxicology Research Unit (Egypt), Pesticide Chemistry Department, National Research Centre (Giza, Egypt); National Institute for Agrarian and Veterinary Research (Oeiras, Portugal), Centre for Ecology, Evolution and Environmental Changes (Lisbon, Portugal); Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences (Moscow, Russia).

Biorisk’s latest issue: Current trends of ecology

Some of the reports presented joint research of Bulgarian scientists and scientists from Germany, the Czech Republic, Lithuania, Romania, Slovenia, Spain, and the USA. After assessment by independent reviewers, the articles published in the journal cover the topics presented and discussed at the Seminar. 

A set of reports were focused on the anthropogenic and environmental impacts on the biota. Soil properties were shown as a factor that can modulate the effect of heavy metals, present in chronically contaminated soils. Different ap­proaches to overcome environmental pollution were presented and discussed: zeolites as detoxifying tools, microalgae for the treatment of contaminated water bodies, and a newly developed bio-fertilizer, based on activated sludge combined with a bacte­rial strain with detoxifying and plant growth-promoting properties. The clear need for the enlargement of existing monitoring program by including more bioindicators and markers was pointed out.

It was shown that, by using various markers for the evaluation of environmentally induced stress response at different levels (microbiological, molecular, biochemical), it is possible to gain insights of the organisms’ protection and the mechanisms involved in resistance formation. The contribution of increased DNA repair capacity and AOS to the development of environmental tolerance or adaptation was also shown.

Important results for understanding the processes of photoprotection in either cyanobacteria or algae, and higher plants were obtained by in vitro reconstitution of complexes of stress HliA protein with pigments. The crucial role of the cellular physiological state, as a critical factor in determining the resistance to environmental stress with Q cells was demonstrated.

Several papers were focused on the action of bioactive substances of plants origin. The bioactivity was shown to depend strongly on chemical composition. Origanum vulgare hirtum essential oil was promoted as a promising candidate for the purposes of “green” technologies. Analyzing secondary metabolites of plants, it was shown that their productivity in vitro is a dynamic process closely related to the plant growth and development, and is in close relation with the interactions of the plant with the environment.

Origanum vulgare hirtum. Photo by cultivar413 under a CC-BY 2.0 license

The influence of the agricultural system type on essential oil production and antioxidant activity of industrially-cultivated Rosa damascena in the Rose valley (Bulgaria) was reported, comparing organic vs conventional farming. The rose extracts from organic farming were shown to accumulate more phenolic compounds, corresponding to the higher antioxidant potential of organic roses.

A comparative study, based on official data from the statistics office of the EU and the Member countries, concerning viral infection levels in intensive and organic poultry farming, demonstrated that free-range production had a higher incidence of viral diseases with a high zoonotical potential.

Pollinators of Lavandula angustifolia, as an important factor for optimal production of lavender essential oil, were analyzed. It was concluded that, although lavender growers tend to place beehives in the fields for optimal essential oil production, it was crucial to preserve wild pollinators, as well.

Lavandula angustifolia inflorescence excluded from pollinators.

New data reported that essential oils and alkaloid-rich plant extracts had the strongest acetylcholinesterase inhibitory activity and could be proposed for further testing for insect control.

It was reported that the vegetation diversity of Bulgaria had still not been fully investigated. Grasslands, broad-leaved forests, and wetlands are the best investigated habitats, while data concerning ruderal, shrubland, fringe, and chasmophytic vegetation in Bulgaria are scarce.

Other important topics were reported and discussed in this session: the possibility of pest control using pteromalids as natural enemies of pests in various crops; the main reasons responsible for the population decrease of bumblebees – habitat destruction, loss of floral resources, emerging diseases, and increased use of pesticides (particularly neonicotinoids); the strong impact of temperature and wind on the distribution of zooplankton complexes in Mandra Reservoir, in Southeastern Bulgaria; an alternative approach for the ex-situ conservation of Stachys thracica based on in vitro shoot culture and its subsequent adaptation under ex vitro conditions.

Bombus hortorum/subterraneus collecting nectar in 1991, and B B. wurflenii/lapidarius worker robbing nectar of Gentiana asclepiadea in 2017

New information was presented concerning pre-monitoring geochemical research of river sediments in the area of Ada Tepe gold mining site (Eastern Rhodopes). The obtained results illustrate that the explored landscapes have been influenced by natural geochemical anomalies, as well as, impacted by human activity. The forests habitat diversity of Breznik Municipality was revealed, following the EUNIS Classification and initial data from the Ministry of Environment and Water and the Forestry Management Plans. It was shown that, in addition to the dominant species Quercus dalechampii, Quercus frainetto, Fagus sylvatica, Carpinus betulus, some artificial plantations with Pinus nigra and Pinus sylvestris were also present, as well as non-native species, such as Robinia pseudoacacia and Quercus rubra.

Models for Predicting Solution Properties and Solid-Liquid Equilibrium in Cesium Binary and Mixed Systems were created. The results are of great importance for the development of strategies and programs for nuclear waste geochemical storage. In conclusion, many results in different areas of ecology were presented in the Seminar, followed by interesting discussions. A lot of questions were answered, however many others remained open. A good platform for further discussion will be the next International Seminar of Ecology – 2022, entitled Actual Problems of Ecology.

One Ecosystem calls for papers that report ecosystem accounts

To help implement ecosystem accounts, the One Ecosystem journal provides a platform for scientists and statisticians to publish newly compiled accounting tables.

In March 2021, the UN Statistical Commission adopted the System of Environmental-Economic Accounting Ecosystem Accounting (SEEA EA).

SEEA EA is a spatially-based, integrated statistical framework for organising biophysical information about ecosystems, measuring ecosystem services, tracking changes in ecosystem extent and condition, valuing ecosystem services and assets and linking this information to measures of economic and human activity. 

To help implement ecosystem accounts, the One Ecosystem journal provides a platform for scientists and statisticians to publish newly compiled accounting tables. 

The “Ecosystem Accounts” permanent collection welcomes articles that describe and report ecosystem accounting tables, compiled following the standards set by the SEEA EA. The current version of the framework is fully described in United Nations et al. (2021). System of Environmental-Economic Accounting—Ecosystem Accounting (SEEA EA), available as a white cover publication, pre-edited text subject to official editing at: https://seea.un.org/ecosystem-accounting.

This collection does not accept research papers on ecosystem accounting that solely report new developments on accounting methods, such as new models for ecosystem services, new indicators for ecosystem condition or new techniques for monetary valuation of ecosystems. 

The inclusion of a compiled ecosystem accounting table is mandatory for this collection. Otherwise, papers will be diverted to the regular issue of One Ecosystem. In such cases, the authors may also choose to submit their contributions to another topical collection. 

Detailed instructions for authors

Submitting authors need to select One Ecosystem as a journal and “Ecosystem Accounting table” as an article template in ARPHA Writing Tool

Submissions to this collection shall respect the following requirements:

Introduction:

  • The introduction makes clear reference to the type (or types) of account(s) submitted, the accounting area, and the accounting period. The introduction should contain a clear reference to the SEEA EA. 
  • The following accounting tables can be published with data referring to a specific accounting area and for a given accounting period:
  • Ecosystem extent account – physical terms: Total extent of area of one or more ecosystem types 
  • Ecosystem condition account – physical terms: (Aggregated) data on selected ecosystem characteristics and optionally the distance from a reference condition.
  • Ecosystem services flow account – physical terms: Physical supply of final ecosystem services by ecosystem assets and the use of those services by economic units.
  • Ecosystem services flow account – monetary terms: The monetary estimate of final ecosystem services by ecosystem assets and the use of those services by economic units.
  • Monetary ecosystem asset account – monetary terms: Stocks and changes in stocks (additions and reductions) of ecosystem assets in monetary terms.

Data and methods

  • This section describes which typologies or classifications have been used to classify ecosystems, ecosystem condition indicators, ecosystem services, or economic sectors. Preference should be given to different typologies proposed by SEEA EA, but deviations or other typologies are acceptable as well. 
  • The section provides a list of all ecosystem types, variables, indicators, or economic sectors used in the accounting tables and it provides references to the data sources used to quantify them. 
  • Optionally, papers justify the use of variables and indicators making reference to specific selection criteria. 
  • For ecosystem service accounts, this section describes or refers to the methods used to quantify ecosystem services.
  • For monetary accounts, this section describes or refers to the methods used to assign monetary values to ecosystem services.
  • The use of supplementary materials is recommended in case the description of data and methods is too long. In that case, this section contains a summary of the data and methods. 

Accounting tables and results

  • This section presents the accounting table(s). Ideally, this section presents the most aggregated version of the accounting table(s), while detailed versions with a high number of rows and columns can be easily published as a spreadsheet in the supplement section of the paper.
  • Stylised versions of accounting tables are available in the SEEA EA guidelines. A stylized example for each ecosystem accounting table is available in MS Excel. It is highly recommended to follow these examples to the maximum possible extent. 
  • Graphs or maps that illustrate the accounting tables or that provide key results used to compile the accounting table can be published as well in this section. 

Discussion 

In this section, authors are invited to add at least one of the following topics:

  • A short interpretation of the results: are the reported data comparable to other published data on ecosystem extent, condition or services or do they deviate substantially. 
  • Critique or comments on the SEEA EA framework. Identify issues with application of the framework. Highlight areas for improvement or further research.
  • Demonstration of how the accounts have been or can be used to support policy and decision making or implementation. Particular cases of interest are (however, not restricted to) agricultural, forestry, fishery and biodiversity policies, biodiversity and ecosystem monitoring and reporting, ecosystem restoration projects, demonstrating values of ecosystems, or environmental impact assessments.

***

Visit One Ecosystem’s website and the collection’s webpage

Follow One Ecosystem on Twitter and Facebook.

An invasive plant may cost a Caribbean island 576,704 dollars per year

Guest blog post by Wendy Jesse

Coralita overgrowing vegetation. Photo from https://www.wur.nl/en/show/invasive-plants-in-caribbean-netherlands.htm

A recent study in One Ecosystem has estimated the severe loss of ecosystem service value as a result of the widespread invasion by the plant species Coralita (Antigonon leptopus) on the Caribbean island of St. Eustatius. The results illustrate the drastic impact that a single invader can have on the economy of a small island and inform policy makers about priority areas for invasive species management.

See for full article: Huisman, S., Jesse, W., Ellers, J., & van Beukering, P. (2021). Mapping the economic loss of ecosystem services caused by the invasive plant species Antigonon leptopus on the Dutch Caribbean Island of St. Eustatius. One Ecosystem6, e72881. https://doi.org/10.3897/oneeco.6.e72881

The invader: Coralita

Coralita is a fast-growing, climbing vine with beautiful pink or white flowers. Originally from Mexico, it was introduced as a popular garden plant to many Caribbean islands and around the world. Its fast-growing nature means that it can outcompete most native species for terrain, quickly becoming the dominant species and reducing overall diversity (Jesse et al. 2020, Nature Today 2020, Eppinga et al. 2021a). This is especially the case on St. Eustatius, where published ground surveys indicate that the plant already appears on 33 percent of the island.

Losses of ecosystem services

Coralita overgrowing cars. Photo by Rotem Zilber

We estimated the total terrestrial ecosystem service (ES) value on St. Eustatius to be $2.7 million per year by mapping five important terrestrial ecosystem services: Tourism, Carbon sequestration, Non-use (i.e., intrinsic biodiversity) value, Local recreational value, and Archeological value. Subsequently, we calculated Coralita-induced loss of ecosystem services under two realistic distributional scenarios of Coralita cover on the island: 3% of island dominantly covered (based on Haber et al. 2021, Nature Today 2021) and 36% dominant cover (if entire range would reach dominant coverage), causing an annual ES value loss of $39,804 and $576,704 respectively. The highest ES value (17,584 $/ha/year) as well as the most severe losses (3% scenario: 184 $/ha/year; 36% scenario: 1,257 $/ha/year) were located on the dormant Quill volcano; a highly biodiverse location with popular hiking trails for locals and tourists alike.

Consequences for policy makers and practitioners

Coralita blocking water a drainage channel. Photo by Wendy Jesse.

There is an urgent need for studies such as this one that help to bridge the gap between academia and policy planning, as these translate abstract numbers into intuitive information. Instead of invasive species being just a biological term, direct impacts on people’s value systems and sources of income immediately strike a chord. I experience this on a daily basis, because in addition to being a coauthor on this paper, I currently work as a policy employee in nature protection and management.

Coralita overgrowing archeological heritage on St. Eustatius. Photo from St. Eustatius Center for Archeological Research (SECAR)

This study helps to prioritize locations for invasive species prevention, management, eradication, and restoration. It is imperative that invasive species do not reach locations of high ecosystem service value. Management of isolated satellite patches of Coralita close to locations of high ES value will likely be most effective in halting the plant’s invasive spread (Eppinga et al. 2021b). Setting up a targeted monitoring and rapid response strategy, as well as legislation for biosecurity measures to prevent other invasive species from entering the island, would likely help to reduce impacts on the important ecosystem services on St. Eustatius.

References

Academic literature:

Eppinga, M. B., Haber, E. A., Sweeney, L., Santos, M. J., Rietkerk, M., & Wassen, M. J. (2021a). Antigonon leptopus invasion is associated with plant community disassembly in a Caribbean island ecosystem. Biological Invasions, 1-19.

Eppinga M, Baudena M, Haber E, Rietkerk M, Wassen M, Santos M (2021b) Spatially explicit removal strategies increase the efficiency of invasive plant species control.

Ecological Applications 31 (3): 1‑13. https://doi.org/10.1002/eap.2257Haber E, Santos M, Leitão P, Schwieder M, Ketner P, Ernst J, Rietkerk M, Wassen M, Eppinga M (2021) High spatial resolution mapping identifies habitat characteristics of the invasive vine Antigonon leptopuson St. Eustatius (Lesser Antilles). Biotropica 53 (3): 941‑953. https://doi.org/10.1111/btp.12939

Jesse, W. A., Molleman, J., Franken, O., Lammers, M., Berg, M. P., Behm, J. E., … & Ellers, J. (2020). Disentangling the effects of plant species invasion and urban development on arthropod community composition. Global change biology26(6), 3294-3306.

Blog posts on Nature Today website:

van Maanen, G. Molleman, J., Jesse, W.A.M. (2020) Drastic effects of coralita on the biodiversity of insects and spiders. Nature Today. naturetoday.com/intl/en/nature-reports/message/?msg=26339

Dutch Caribbean Nature Alliance (2021) Using satellite imagery to map St. Eustatius’ coralita invasion. Nature Today. naturetoday.com/intl/en/nature-reports/message/?msg=28317