Study ranks potentially harmful invasive species in Ghana

Scientists ranked the 110 arthropod and 64 pathogenic species posing the greatest potential threat to the country if established.

A CABI-led study has conducted a comprehensive survey of nearly 200 potentially harmful alien plant species that could have a detrimental impact upon agriculture, forestry and biodiversity in Ghana once they enter the country.

Invasive Alien Species (IAS) continue to shape the global landscape through their effects on biological diversity and agricultural productivity. The effects are particularly pronounced in Sub-Saharan Africa, which has seen the arrival of many IAS in recent years. This has been attributed to porous borders, weak cross border biosecurity, and inadequate capacity to limit or stop invasions.

A farmer shows cassava root affected by cassava brown streak virus alongside a healthy root in a country where the disease is present – one of the 64 pathogens assessed by the scientists. Credit: CABI

The research, the findings of which are published in the journal NeoBiota, ranks 110 arthropod and 64 pathogenic species that pose the greatest threat but are not yet officially present in the country. However, they could arrive as ‘stowaways’ in cargo from other countries around the world, the scientists believe.

Dr Marc Kenis, Head Risk Analysis and Invasion Ecology at CABI, led on the horizon scanning exercise supported by colleagues from a range of institutions including Ghana’s Plant Protection and Regulatory Services Directorate (PPRSD).

Among the top arthropods prioritised by Dr Kenis and his team were the pink hibiscus mealybug (Maconellicoccus hirsutus Green) and melon thrips (Thrips palmi Karny) while the top pathogens highlighted include cassava brown streak virus and Maize lethal necrosis disease.

Cassava in Ghana, for example, is a main staple crop and contributes about 22% and 30% to the Agricultural Gross Domestic Product (AGDP) and daily calories intake respectively. The crop, however, can be at risk from cassava brown streak virus which can reduce yields by up to 70%.

Maize lethal necrosis disease, on the other hand for instance, can be a major disruptor of maize crops in Ghana where maize accounts for more than 50% of the country’s total cereal production. The disease can cause losses of between 50-90% depending on the variety of maize and the growing conditions of the year.

The scientists also found other species recorded in Africa that included 19 arthropod and 46 pathogenic species which were already recorded in the neighbouring countries of Burkina Faso, Côte d’Ivoire, and Togo.

Dr Kenis, who is based at CABI’s centre in Switzerland, said, “The ultimate objective of this research was to enable prioritization of actions including pest risk analysis, prevention, surveillance and contingency plans. Prioritisation was carried out using an adapted version of horizon scanning and consensus methods developed for ranking IAS worldwide.

“We have demonstrated that through horizon scanning, a country can identify potential invasive plant pests, both invertebrates and pathogens, and use the information to determine the risk associated with each.

“This will enable the country to invest the limited resources in priority actions such as preventing arrival and establishment of IAS, Pest Risk Analysis (PRA), surveillance and developing contingency plans.

“This study can serve as a model for future projects on plant pests’ prioritisation in Africa and elsewhere. It would be applicable for assessing the risk of invasive plant pests in any country or region, e.g. trade blocks, with minor modifications of the method, particularly in the mini-PRA protocol used to score species.”

The full lists of arthropod and pathogenic species surveyed can be found within the full paper which can be read online.

Mr Prudence Attipoe, Deputy Director Head Plant Quarantine Division, PPRSD, said, “The horizon scanning exercise for Ghana would give the PPRSD an insight into invasive pests which could possibly enter the Nation. The tool is timely and appropriate for conducting PRA for planning, training and future preparedness. The success of this exercise would pre-empt the introduction of these invasive pests into the country in order to protect Ghana’s agriculture, forestry and also cause staff of PPRSD to be more vigilant at the borders for these pests.”

Research paper:

Kenis M, Agboyi LK, Adu-Acheampong R, Ansong M, Arthur S, Attipoe PT, Baba A-SM, Beseh P, Clottey VA, Combey R, Dzomeku I, Eddy-Doh MA, Fening KO, Frimpong-Anin K, Hevi W, Lekete-Lawson E, Nboyine JA, Ohene-Mensah G, Oppong-Mensah B, Nuamah HSA, van der Puije G, Mulema J (2022) Horizon scanning for prioritising invasive alien species with potential to threaten agriculture and biodiversity in Ghana. NeoBiota 71: 129 148. https://doi.org/10.3897/neobiota.71.72577

How to get people interested in invasive species?

While blacklists are an effective tool for preventing and managing new biological invasions, they don’t always raise public awareness of invasive alien species, a new study published in the open-access journal NeoBiota found. Important policy-making initiatives do not necessarily raise public awareness about biological invasions, and efforts should be more focused on supporting policy-making with well-planned communication campaigns, the research concludes.

Catchy news and viral videos work best to attract public attention to invasive alien species

Blacklists are one of the most common policy measures to limit biological invasions. They identify small groups of highly impactful invasive alien species: species introduced outside their native range that threaten biodiversity. By doing so, they inform key decision-makers, who then impose limitations or bans on their trade and introduction, or set requirements about specific actions to manage already established populations.

While they have been found to be effective at preventing and managing new biological invasions, we don’t know if blacklists actually raise public awareness of invasive alien species. In principle, they could do so, as they might attain a certain echo in the media and provide the general public with notorious examples of invasive alien species.

Coypu. Photo by Aurelio Perrone

In 2016, the European Union published the List of Invasive Alien Species of Union concern, which contains species that are banned from import, trade, and release in Europe. It had a certain echo in the media, and having come at a time where Internet searches are so pervasive that they can be used to measure public attention,  the Union List made a good case study for exploring blacklist impact on public awareness.

A research study, coordinated by Jacopo Cerri from the University of Primorska, Slovenia, and Sandro Bertolino from the University of Turin, Italy, explored if the publication of the Union List increased visits of the  Italian Wikipedia pages about invasive alien mammals, many of which were included in the list. Wikipedia is the largest online encyclopedia and a major source of information for motivated Internet users who go beyond search engines such as Google. As a comparison, the researchers used visits to Wikipedia pages about native mammals in Italy, and adopted a causal impact analysis to quantify differences.

The study found no effect of the publication of the Union lists over visits to Italian Wikipedia pages of invasive alien mammals, compared to pages about native mammals. After 2016, there were single peaks of visits to pages of some of the species, probably caused by viral videos and news about large-scale control initiatives or mass escapes from captivity. In one instance, peaks in visits aligned with news about the coypu – at the time, several national media outlets ran stories addressing the concerns of public administrations regarding the rodent’s impact on the stability of river banks. Similarly, a peak observed between late 2018 and February 2019 was likely caused by news about the release of 4,000 minks from a fur factory in Northern Italy, which attracted considerable attention in the national and regional media.

These attention peaks, however, did not last in time and don’t reflect a systematic change in public awareness about invasive alien species.

“Overall, our findings indicate that blacklists, despite having the potential to raise public awareness towards biological invasions, might fail to do so in practice,” the researchers conclude.

“Agencies who want to achieve this goal should rather develop tailored communication campaigns, or leverage on sensational news published in the media.”
 

Research article:

Cerri J, Carnevali L, Monaco A, Genovesi P, Bertolino S (2022) Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy. NeoBiota 71: 113-128. https://doi.org/10.3897/neobiota.71.69422

Unwelcome guests: International tourism and travel can be a pathway for introducing invasive species

International tourism can facilitate the dispersal of exotic species. A new analysis of data from tourism accommodations and exotic organism detections in New Zealand, published in NeoBiota, shows that levels of detection significantly correlated to international and domestic tourist movement, even with population levels taken into account. There was no detectable difference between the risk from international and domestic tourists, indicating that tourism as an activity correlates with the introduction and spread of exotic species.

Tourists, albeit unwittingly, may help such unwanted organisms spread further and conquer new lands – they can carry them over in their luggage or on their clothes and shoes. In 2011, a study from New Zealand found that, for every gram of soil on the footwear of aircraft passengers arriving from abroad, there were 2.5 plant seeds, 41 roundworms, 0.004 insects and mites, and many microorganisms, such as fungi that could cause plant diseases. Moreover, these organisms were alive, and some of them were known to be biosecurity threats. Importantly, tourism can introduce risk in two directions, namely from the arrival of international travellers and also the return of residents from international travel.

An important question, then, is to what degree they play a role in the spread of exotic organisms. A study, carried out by Dr Andrew Robinson of the Centre of Excellence for Biosecurity Risk Analysis at the University of Melbourne and Mark McNeill of AgResearch New Zealand, looks to answer that question.

To do so, the researchers compared data on the interceptions of exotic organisms in New Zealand against accommodation data for international and domestic tourists, factoring for the country’s population distribution. The study, recently published in the open-access journal NeoBiota, covered the period between 2011 and 2017, and the exotic organisms that were detected included insects, spiders, mites, snails, plants, and roundworms. 

Robinson and McNeill found a significant relationship between levels of incursion detection and tourism accommodation records: the number of nights spent in hotels significantly correlated to the detection of exotic pests for that period. Importantly, the study found no significant difference between the effect of international and domestic tourism, proving that even travel within the country can facilitate the spread of exotic species. A significant positive correlation was also found between the detection of exotic organisms and population numbers across different regions. 

“The core take-home message is that within-country tourism movements are significantly correlated to the detection of exotic pests,” the researchers explained. That is, tourists and returning residents bring bugs in, and both are implicated at spreading them once they are in the country. They suggest that biosecurity authorities should continue allocating resources to the management of invasive species and pests that get carried around by tourists and their activities. 

However, they also point to the biosecurity risk posed by other possible pathways for of exotic organisms, such as sea freight. A comparison between the different ways of introduction and dispersal would provide a better understanding of relative risk, they conclude.

Research article:

Robinson AP, McNeill MR (2022) Biosecurity and post-arrival pathways in New Zealand: relating alien organism detections to tourism indicators. NeoBiota 71: 51-69. https://doi.org/10.3897/neobiota.71.64618

NeoBiota invites risk analysis studies in a new Special Issue on advancements in the screening of freshwater and terrestrial non-native species

The “Recent advancements in the risk screening of freshwater and terrestrial non-native species” Special Issue in the open-access, peer-reviewed scholarly journal NeoBiota is now open for submissions. The deadline for submission is 30 April 2022, with the issue scheduled for publication in August 2022.

The “Recent advancements in the risk screening of freshwater and terrestrial non-native species” Special Issue in the open-access, peer-reviewed scholarly journal NeoBiota is now open for submissions.

The issue is managed by the international team of guest editors of Dr Daniela Giannetto (Mugla Sitki Kocman University, Turkey), Prof. Marina Piria (University of Zagreb, Croatia), Prof. Ali Serhan Tarkan (Mugla Sitki Kocman University, Turkey) and Dr Grzegorz Zięba (University of Lodz, Poland).

Update: The deadline for submission has been extended to 30 April 2022, with the issue expected to be published in August 2022. 

The new special issue is expected to collate prominent contributors from the field of invasive ecology, thereby addressing existing gaps in the knowledge about both freshwater and terrestrial non-native species and their management.

The editors note that despite the current efforts and measures to monitor and tackle the spread of non-native species, and especially those posing imminent threat to local biodiversity and ecosystems, further expansion of such populations has increasingly been recorded in recent years. Of special concern are developing countries, where legislation for controlling non-native species is still lacking.

A major problem is that – as of today – we are still missing on risk screening studies needed to provide evidence for the invasiveness potential of many non-native species across several taxonomic groups, which would then be used to support specific conservation efforts. Unfortunately, this is particularly true for species inhabiting the world’s biodiversity hotspots, point out the editors.

Risk-based identification of non-native species is an essential process to inform policy and actions for conservation and management of biodiversity. Previously published papers on risk screening of aquatic non-native species, and especially those using the most widely-employed ‘-ISK’ decision-support toolkits, have attracted mounting interest from the wider scientific community.

***

Visit NeoBiota’s journal website at: https://neobiota.pensoft.net/ 

Follow NeoBiota on Twitter and Facebook.

New methods needed to boost success of Classical Biological Control to fight insect pests

The success of Classical Biological Control in the Western Paleartic ecozone is rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases

A CABI-led study has revealed that the success of Classical Biological Control (CBC) in Europe, North Africa and the Middle East is only rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases.

The research – published in the journal NeoBiota – suggests that the overall success of biological control introductions of insect predators and parasitoids against herbivorous insects in the Western Paleartic ecozone is comparable to the success of CBC worldwide. However, over 100 years of CBC in this region, has resulted in no overall rise in success in the fight against insect pests – including those of crops such as citrus, olive, potato, mulberry and various other fruits.

An illustration of a case of biological control of the Comstock mealybug Pseudococcus comstocki with the parasitoid wasp Allotropa burrelli. Image by Lukas Seehausen

Lead author Dr Lukas Seehausen, together with colleagues from CABI Switzerland, the University of Lisbon and the University of Bordeaux, argue that a focus on life-history traits of the biological control agent to increase the chances of successful CBC is not fully justified and should be complemented with the consideration of traits regarding the pest and its host plant, as well as other aspects of CBC, such as climate and management – including ways in which CBC agents are released.

For example, if a CBC agent is released repeatedly against the same pest in different years and countries, the chances of successful establishment and control of the target increase. This is an indication for the importance of release strategies for the success of CBC programmes.

Dr Seehausen said, “What makes our study different from others is that we studied factors that may impact the outcome of CBC not independently of each other but using a holistic analysis, which reveals their relative importance within the complexity of CBC programmes.

“The results from this study should be understood as a first step to give the incentive for a holistic, rather than an independent consideration of factors affecting the success of CBC.”

By filtering data from the BIOCAT catalogue, the scientists found that 780 introductions of insects for biological control were undertaken in the Greater Western Palearctic ecozone between 1890 and 2010. This constituted 416 agent-target combinations.

The results showed that eight countries were responsible for more than two thirds (70.5%) of all introductions: Israel (16.3%), Italy (14.0%), Former USSR (10.1%), France (7.3%), Greece (7.1%), Spain (6.0%), Egypt (5.3%), and Cyprus (4.4%). Within these countries, the percentage of complete target control was very variable.

Overall, the study showed that while the success of agent establishment was 32%, the successful impact of single agents on their target was 18% and the success of complete control was 11%.

However, the success rates of agent establishment and target control were higher in CBC projects targeting pests of woody plants than pests of other types of plants.

A reason for this, the scientists say, might be that being perennial, trees provide a more stable and predictable environment when compared to herbaceous plants such as annual plants or crops.

In carrying out the research, Dr Seehausen and the team added 15 new explanatory variables including consideration of the biological control agent feeding strategy, host range and life-stage killed by the biological control agent.

Dr Seehausen explains, “We found that only a few CBC agent-related factors significantly influenced the success of CBC – suggesting that the reoccurring focus on agent-related traits is not justified.

“Our attention should be redirected to include lower trophic levels and other aspects of CBC – such as abiotic factors including climate and management.”

The scientists conclude by stressing that analysis of the entire BIOCAT catalogue, or an updated version including more factors, should lead to further insights and help to develop decision support tools to increase the success of CBC at all levels.

Original source:

Seehausen ML, Afonso C, Jactel H, Kenis M (2021) Classical biological control against insect pests in Europe, North Africa, and the Middle East: What influences its success? NeoBiota 65: 169-191. https://doi.org/10.3897/neobiota.65.66276

Roadside invader: the higher the traffic, the easier the invasive common ragweed disperses

Common ragweed is an annual plant native to parts of the United States and southern Canada. It’s an invasive species that has spread to Europe. An important agricultural weed, this plant is particularly well-adapted to living at roadsides, and there are several theories why.

Its rapid expansion in Europe can’t be explained by its natural dispersal rate, which is limited to distances of around 1 meter. Rather, there are other factors in play, human-mediated, that support its invasion success – along roads, for example, it spreads mainly thanks to agricultural machineries, soil movements, roadside maintenance and road traffic.

Common ragweed. Photo: Uwe Starfinger

Studying common ragweed’s distribution patterns is important, because its allergenic pollen affects human health, mainly in southeast Central Europe, Italy and France. Finding out where it thrives, and why, can help with the management and control of its populations.

This is why scientists Andreas Lemke, Sascha Buchholz, Ingo Kowarik and Moritz von der Lippe of the Technical University of Berlin and Uwe Starfinger of the Julius Kühn Institute set out to explore the drivers of roadside invasions by common ragweed. Mapping 300 km of roadsides in a known ragweed hotspot in Germany’s state of Brandenburg, they recorded plant densities at roadsides along different types of road corridors and subject to different intensities of traffic over a period of five years. They then explored the effect of traffic density and habitat type, and their interactions, on the dynamics of these populations. Their research is published in the open-access, peer-reviewed journal NeoBiota.

Surprisingly, high-traffic road cells displayed a consistently high population growth rate even in shaded and less disturbed road sections – meaning that shading alone would not be enough to control ragweed invasions in these sections.  Population growth proceeded even on roadsides with less suitable habitat conditions – but only along high-traffic roads, and declined with reduced traffic intensity. This indicates that seed dispersal by vehicles and by road maintenance can compensate, at least partly, for less favorable habitat conditions. Disturbed low-traffic road cells showed constantly high population growth, highlighting the importance of disturbance events in road corridors as a driver for common ragweed invasions.

These findings have practical implications for habitat and population management of ragweed invasions along road networks. Reducing the established roadside populations and their seed bank in critical parts of the road network, introducing an adjusted mowing regime and establishing a dense vegetation layer can locally weaken, suppress or eradicate roadside ragweed populations.

Original source:Lemke A, Buchholz S, Kowarik I, Starfinger U, von der Lippe M (2021) Interaction of traffic intensity and habitat features shape invasion dynamics of an invasive alien species (Ambrosia artemisiifolia) in a regional road network. NeoBiota 64: 55-175. https://doi.org/10.3897/neobiota.64.58775

Australia’s wish list of exotic pets

In a new study, published in the peer-reviewed open-access scholarly journal Neobiota, scientists estimated the desire of Australians to own non-native and/or illegal alien pets and the major trends in this practice. In addition, the team suggests ways to improve biosecurity awareness in the country.

Juvenile green iguanas for sale at Repticon Trading Convention 2018 in Palm Springs, Florida
Photo by Adam Toomes

Unsustainable trade of species is a major pathway for the introduction of invasive alien species at distant localities and at higher frequencies. It is also a major driver of over-exploitation of wild native populations. In a new study, published in the peer-reviewed open-access scholarly journal Neobiota, scientists estimated the desire of Australians to own non-native and/or illegal alien pets and the major trends in this practice. In addition, the team suggests ways to improve biosecurity awareness in the country.

Over the last two decades, Australia has been experiencing an increased amount of non-native incursions from species prominent in the international pet trade, such as rose-ringed parakeets, corn snakes and red-eared sliders. On many occasions, these animals are smuggled into the country only to escape or be released in the wild.

In general, the Australian regulations on international pet trade are highly stringent, in order to minimise biosecurity and conservation risks. Some highly-desirable species represent an ongoing conservation threat and biosecurity risk via the pet-release invasion pathway. However, lack of consistent surveillance of alien pets held, legally or otherwise, in Australia remains the main challenge. While there are species which are not allowed to be imported, they are legal for domestic trade within the country. Pet keepers have the capacity to legally or illegally acquire desired pets if they are not accessible through importation, and the number of such traders is unquantified.

Since keeping most of the alien pets in Australia is either illegal or not properly regulated, it is really difficult to quantify and assess the public demand for alien wildlife.

A juvenile ball python for sale at Repticon Trading Convention 2018 in Palm Springs, Florida
Photo by Adam Toomes

“We obtained records of anonymous public enquiries to the Australian Commonwealth Department of Agriculture, Water and the Environment relating to the legality of importation of various alien taxa. We aimed to investigate whether species desired in Australia were biased towards being threatened by extinction, as indicated by broader research on pet demand or towards being invasive species elsewhere, which would indicate trade-related biosecurity risks”,

shares the lead author Mr. Adam Toomes from the University of Adelaide.

According to the research team’s analysis, pets desired by Australians are significantly biased towards threatened species, invasive species and species prominent in the U.S. pet trade.

“This novel finding is of great concern for biosecurity agencies because it suggests that a filtering process is occurring where illegally smuggled animals may already be “pre-selected” to have the characteristics that are correlated with invasive species,”

warns Mr. Adam Toomes.

However, the bias towards species already traded within the U.S. suggests that there is potential to use this as a means of predicting future Australian desire, as well as the acquisition of pets driven by desire. Future research from the Invasion Science & Wildlife Ecology Group at The University of Adelaide will investigate whether Australian seizures of illegal pets can be predicted using U.S. trade data.

###

Original source:

Toomes A, Stringham OC, Mitchell L, Ross JV, Cassey P (2020) Australia’s wish list of exotic pets: biosecurity and conservation implications of desired alien and illegal pet species. NeoBiota 60: 43-59. https://doi.org/10.3897/neobiota.60.51431

###

Follow Neobiota journal on Twitter and Facebook.

What is the Asian hornet invasion going to cost Europe?

Since its accidental introduction in 2003 in France, the yellow-legged Asian hornet Vespa velutina nigrithorax is rapidly spreading through Europe. In a new paper, published in the open-access journal Neobiota, French scientists try to estimate the costs of the invasion regarding the potential damage to apiculture and pollination services.

Since its accidental introduction in 2003 in France, the yellow-legged Asian hornet (Vespa velutina nigrithorax) is rapidly spreading through Europe. Both experts and citizen scientists keep on identifying the new invader spreading all over the Old Continent in the last decades. 

In a recent study, French scientists led by Prof. Franck Courchamp at the Université Paris-Saclay and the CNRS, tried to evaluate the first estimated control costs for this invasion. Supported by the INVACOST project, their findings are published in the open-access journal Neobiota.

Since its invasion to France in 2004 when it was accidentally introduced from China, the Asian hornet has been spreading rapidly, colonising most of France at an approximate rate of 60-80 km per year, and also invading other European countries: Spain in 2010, Portugal and Belgium in 2011, Italy in 2012, Germany in 2014 and the UK in 2016. In the recent paper, published in the open-access journal Evolutionary Systematics, Dr. Martin Hussemann from CeNaK, University of Hamburg has recorded the northernmost capture of the Asian hornet in Hamburg in September 2019.

These data show that the Asian hornet is spreading all around Europe faster and faster with every year, even in climatically less favourable regions. The rapid invasion of the species is not necessarily caused by human-mediated dispersal, the species can rapidly spread on its own, but nevertheless, it is not uncommon.

Within its native and invasive range, V. velutina nigrithorax actively preys on honeybees, thus, causing harm to apiculture. Due to its active praying on wild insects, the Asian hornet also has a negative impact on ecosystems in general and contributes to the global decline of pollination services and honey production. Furthermore, by nesting in urban areas, the Asian hornet, which is well known for its aggressive behaviour, is a potential threat to human activities.

Currently, the control of the invasion is mainly undertaken by nest destruction and bait trapping, but none of these methods is sufficient enough to achieve complete eradication.

To proceed with the further control of the invasion, there is the need to evaluate economic costs. Those costs are divided into 3 main categories: (1) prevention of the invasion, (2) fighting the invasion and (3) damage caused by the invasion.

The cost of fighting the invasion of the Asian hornet is the cost of nest destruction. To identify those costs, the research team has studied information about the companies providing the services in the nest destruction, extrapolated the cost of nest destruction spatially and modelled the potential distribution of the invasive.


Estimated yearly cost of nest destruction if climatically suitable areas are fully invaded. Grey bars represent countries invasion hasn’t reached yet.
Credit: Prof. Franck Courchamp
License: CC-BY 4.0

As the calculations show, at the moment, the estimated yearly costs for eradication would be €11.9M for France, €9.0M for Italy and €8.6M for the United Kingdom.

“In 2006, only two years after the hornet was first observed in France, three departments were already invaded and the cost of nest destruction was estimated at €408k. Since then, the estimated yearly costs have been increasing by ~€450k each year, as the hornet keeps spreading and invades new departments. Overall, we estimated €23M as the cost of nest destruction between 2006 and 2015. If this temporal trend can be extrapolated for the next few years (i.e. if the hornet keeps spreading at a similar rate), we expect the yearly cost of nest destruction to reach an estimated value of €11.9M (given all suitable areas are invaded) in just 12 years,”

shares Prof. Franck Courchamp.

In Japan and South Korea, where the species has already been observed, the total yearly cost of nest destruction is estimated at €19.5M and €11.9M respectively.

So far, nests eradication is the most effective way to fight the invasion, though, it is not sufficient enough. As a result, so far, only 30-40% of the detected nests are destroyed each year in France. Moreover, rather than the result of a controlled strategy, those destroyed nests are only the ones that have been determined of particular potential harm to human or beekeeping activities. The researchers point out that this is not enough.


Estimated yearly cost of nest destruction in France since the start of the invasion given the yearly invasive range.
Credit: Prof. Franck Courchamp
License: CC-BY 4.0

In conclusion, the scientists call for more active measures and research, related to the invasion of V. velutina nigrithorax. Provided that other countries, including the USA, Australia, Turkey and Argentina appear to be climatically suitable for the species, they are also in danger (e.g., €26.9M for the USA).

The current study presents only the first estimates of the economic costs resulting from the Asian hornet, but definitely more actions need to be taken in order to handle harmful invasive species – one of the greatest threats to biodiversity and ecosystem functioning.

Consensus climate suitability of the yellow-legged hornet predicted from species distribution modelling.
Credit: Prof. Franck Courchamp
License: CC-BY 4.0

***

Original source:

Barbet-Massin M, Salles J-M, Courchamp F (2020) The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota 55: 11-25. https://doi.org/10.3897/neobiota.55.38550

Experiment suggests the best ways to tackle invasive Oregon grape in Belgian coastal dunes

The Belgian coastal dunes, a protected habitat of high conservation value, are getting severely impacted by one of its worst enemies amongst invasive species: the Oregon grape. To help mitigate the detrimental effect of this North American shrub invader, Belgian scientists carried out an experiment to assess the effectiveness of different management methods.

The Belgian coastal dunes, a protected habitat of high conservation value, are getting severely impacted by one of its worst enemies amongst invasive species: the Oregon grape. To help mitigate the detrimental effect of this North American shrub invader, Belgian scientists carried out an experiment to assess the effectiveness of different management methods.

The Atlantic coastal dunes form a dynamic and diverse ecosystem, home to a large number of native species, many of which are regionally threatened. Embryonic dunesshifting white dunes, moss dunes, dune grasslands, and dune slacks are considered high conservation value sites, according to the interpretation manual of European habitats. However, the dunes are highly affected by external influences, and one of the most important threats to their biodiversity are invasive non-native plant species. These plants often colonised the dunes as garden escapes or spread from garden waste dumps or public plantings. Oregon grape is one of the worst invaders amongst them.

Oregon grape growing on sand dune (Belgium).
Photo by Tim Adriaens.

In their study, published in the open-access journal NeoBiota, the scientists, led by Tim Adriaens and Sam Provoost of the Research Institute for Nature and Forest (INBO), focus on the management of the current populations of Oregon grape (Berberis aquifolium) in the Belgian coastal dunes, where the species has already managed to invade half of the 46 nature reserves and is starting to replace native vegetation. Such a negative effect on the biodiversity of the area requires practical management advice. Due to the high level of infestation of the dunes, the researchers recommend prompt eradication as the most appropriate management strategy. So far, however, it has been unclear which method would show the best effectiveness.

“Invasive shrub species exert an additional pressure on Belgian dune ecosystems, which are already highly fragmented by urbanisation. Oregon grape is one of the worst and should be tackled urgently before it gets out of control,” says Tim Adriaens.

Having compared four previously suggested treatments: manual uprooting, foliar herbicide application, stem cutting followed by herbicide and salt application, the scientists reported herbicide leaf treatment to be the most effective method. Manual removal by digging and treating stems with glyphosate showed medium effectiveness. Treating stems with a saturated salt solution appeared rather cosmetic. However, it’s not that easy to choose which method would be the best to work with, since with herbicide use there are non-target effects on the environment, economy, and society to be considered.

Dune restoration by mechanical removal of dense Oregon grape infestation (left) and leaf treatment of Oregon grape clone with a hand sprayer (right).
Photo by Tim Adriaens.

“Individual clones are best treated with herbicide, large surface areas provide opportunities for landscape-scale ecological restoration, combining invasive shrub removal with sand dune creation,” further explains Tim Adriaens.

In Belgium, Oregon grape was first recorded in the wild in 1906 and naturalised in the period 1920-1950. It has been spreading rapidly since the 1990s. This expansion might be linked to cultivated hybrids and global warming, with the latter leading to a lengthened growing season, suggest the scientists. The species likes calcareous soils. Along the Belgian coast, Oregon grape has mainly invaded grey dunes, scrub and woodland.

Thanks to its numerous blue berries, which are easily dispersed over long distances by songbirds, the plant can appear everywhere within the dunes sites, also in places hardly accessible to managers. With the help of a highly branched root system, the plants attach themselves firmly in the sand, which makes manual pulling of mature plants hardly possible and labor-intensive.

“Dune managers and scientists across Europe should unite to draft alert lists and prioritise established alien species for management,” Tim says in conclusion.

In conclusion, the scientists highlight the importance of an EU-wide collaboration between scientific communities. Invasive species are not bothered by administrative borders and exchanging experiences on impact and management options is crucial to maintain dune ecosystems in good conservation status.

Coastal dunes in Belgium provide unique habitat to many Red listed species.
Photo by Tim Adriaens.

###

Original source

Adriaens T, Verschelde P, Cartuyvels E, D’hondt B, Vercruysse E, van Gompel W, Dewulf E, Provoost S (2019) A preliminary field trial to compare control techniques for invasive Berberis aquifolium in Belgian coastal dunes. NeoBiota 53: 41-60. https://doi.org/10.3897/neobiota.53.38183

Invasive parrots have varying impacts on European biodiversity, citizens and economy

The monk parakeet (Myiopsitta monachus), also known as the Quaker parrot, is another South American species, known from the temperate to subtropical regions of Argentina and neighboring countries.
Photo by ParrotNet.

Non-native parrots can cause substantial agricultural damage and threaten native biodiversity, although impacts vary strongly depending on where these parrots have been introduced. Brought to Europe as pets, escaped or released parrots have established numerous wild populations across Europe. Tens of thousands of ring-necked and monk parakeets make up the bulk of Europe’s parrots, but several more species are gaining a foothold too.

A pan-European team of researchers, conservationists, wildlife managers and policy-makers worked together under the umbrella of ParrotNet, an EU COST Action, and have reviewed the available evidence on parrot damage, concluding that measures to prevent parrots from invading new areas are paramount for limiting future harm. Their findings are published in the open-access journal NeoBiota.

The ring-necked parakeet (Psittacula krameri), also known as the rose-ringed parakeet, originates in Africa and South Asia.
Photo by ParrotNet.

Introduced parrots can damage the environment, but severe impacts remain rare and localised. So far, most reports of damage are linked to the widespread and locally abundant ring-necked and monk parakeets. Studies show that in their native ranges, both species can and regularly do inflict large crop losses, but in Europe, expectations of comparable widespread and severe damage to agriculture have so far failed to materialise.

In Europe, competition with native species presents a more serious problem, especially for ring-necked parakeets as they can compete with native species for food and breeding sites. Meanwhile, in the Americas, monk parakeets are notorious for the damage their stick nests cause to power infrastructures by catching fire, yet very little evidence for such problems exist in Europe.

Reported impacts for other parakeet species in Europe are virtually nonexistent, probably because these species have been introduced more recently and currently exist as relatively small and localised populations.

Dr Diederik Strubbe of the Terrestrial Ecology UnitGhent University (Belgium) elaborates:

“It was already well known that introduced parakeets can cause damage. There is the oft-cited example of a vineyard in Surrey (UK) where ring-necked parakeets caused a loss of thousands of bottles of wine. In Seville (Spain), the same parakeet species is threatening an endangered native bat population by evicting them from their roosting tree cavities. Our review of all reported impacts however shows that such severe damage is not the norm. In most cases, parakeets introduced to Europe only do limited damage and, for example, about half of the studies focusing on competition between introduced parakeets and native species explicitly report no evidence of impact.”

The study also highlights that differences in the type of damage, and the way they are reported and summarised influences the outcomes of invasive species impact assessments.

The generalised threat level that invasive species pose is often based on their worst known impacts, whilst the capabilities of a species to do damage often requires specific circumstances. While this is relevant information for identifying those invaders that can potentially have major impacts, it is not necessarily representative of the impacts the species is likely to have when introduced to a new area. Similarly, including damage reports from the native range or from other invaded ranges typically results in higher threat level estimates compared to what actually has been observed in Europe.

What can be done to mitigate parakeet impacts?

The Alexandrine parakeet (Psittacula eupatria), also known as the Alexandrine parrot, occupies a natural range that extends from Afghanistan to Vietnam, including all of India, Sri Lanka and the Andaman Islands.
Photo by ParrotNet.

Based on the results of the study, the ParrotNet members also published a ‘policy brief’, summarising and discussing the implications of their findings for policy makers and wildlife managers. Their recommendations include stricter regulation aimed at preventing parakeet introductions, rapid response when emerging populations are detected and better dissemination of information to the public about the impact parakeets can have. For example, using bird feeders that parakeets cannot access may help reduce the abundance of these birds in cities.

Prof. Jim Groombridge of the Durrell Institute of Conservation and Ecology (DICE)School of Anthropology and ConservationUniversity of Kent (UK) comments:

“What should be done to minimise damage by invasive parakeets is ultimately up to policy-makers. But as scientists, we stress that our work again highlights that the best way to combat invasive species is to prevent their introduction and spread. Parakeet populations have already been successfully removed, for example, from islands such as the Seychelles, demonstrating that it is possible to stop them when prompt and decisive action is taken by governments. For the already established and large parakeet populations that can be found across parts of Europe, there is no ‘silver bullet’ solution to the problems they may locally pose. More applied research is needed to find cost-effective and acceptable methods to reduce parakeet impacts in those areas where they do cause damage”.

The nanday parakeet (Aratinga nenday), also known as the black-hooded parakeet, is a species native to South America.
Photo by ParrotNet.

###

Original source:

White RL, Strubbe D, Dallimer M, Davies ZG, Davis AJS, Edelaar P, Groombridge J, Jackson HA, Menchetti M, Mori E, Nikolov BP, Pârâu LG, Pečnikar ZF, Pett TJ, Reino L, Tollington S, Turbé A, Shwartz A (2019) Assessing the ecological and societal impacts of alien parrots in Europe using a transparent and inclusive evidence-mapping scheme. NeoBiota 48: 45-69. https://doi.org/10.3897/neobiota.48.34222

###

The ParrotNet Policy Brief can be downloaded from: https://www.kent.ac.uk/parrotnet/policybrief/.