Publishing platform ARPHA partners with Altmetric to track online attention to research

With a research output mentioned online every 1.8 seconds, it only makes sense for the science community to grow curious of how they could access the knowledge of this public interest to better and build on their work.

Journal publishing platform ARPHA, developed by academic publisher Pensoft, has partnered with Altmetric to enable authors, readers and other users to track the online shares and discussions relating to each research output in journals published on ARPHA.

Thanks to the integration, a single click in the top menu of an article reveals the Altmetric donut visualisation, which provides an at-a-glance summary of the attention the item has received. The colours of the donut reflect the source of the attention, and the user can click on the image to be taken to the Altmetric details page, which provides a record of all of the mentions. Data is updated in real-time to provide insight into how the item is being received and shared.

To deliver such detailed information, Altmetric follows 2,000 mainstream media outlets in over 30 languages, social networks, public policy documents, post-publication peer-review forums, online reference managers, blogs, and Wikipedia.

As a result, all authors, readers, editors and funders can easily and immediately track the popularity, reception and impact of each of their studies.

“Having built an extensive portfolio of innovations as a technological provider, we are always looking forward to making yet another effort at providing our users with the best-quality experience. The integration of Altmetric data provides us with another opportunity to do exactly this,” says Pensoft’s founder and CEO Prof Lyubomir Penev.

“Furthermore, the science community has long been in need of a more adequate measure of the influence and engagement of individual research outputs, and Altmetric provides this.”

Altmetric’s Founder Euan Adie adds, “We’re excited to see the Altmetric badges being implemented across the ARPHA platform. Helping researchers get credit for their work and demonstrate its reach and influence is a core part of what we do, and this integration provides new opportunities to do so.”

The Altmetric badges and associated details pages are now available for all articles within Pensoft’s journals, as well as the journals using the white-label publishing available from ARPHA.

###

 

Additional information:

About Altmetric:

Altmetric was founded in 2011 and has made it a mission to track and analyze the online activity around scholarly literature. Altmetric tracks what people are saying about research outputs online and works with some of the biggest publishers, funders, and institutions around the world to deliver this data in an accessible and reliable format. Altmetric is supported by Digital Science. Visit http://www.altmetric.com for more information, and follow on Twitter @altmetric.

About ARPHA:

ARPHA is the first end-to-end journal publishing solution that supports the full life cycle of a manuscript, from authoring through submission, peer review, publication and dissemination. With ARPHA, journals and publishers enjoy a complete set of services, which enable tailored, technologically advanced publishing solutions. The platform enables a variety of publishing models through a number of options for branding, production and revenue models to choose from.

American scientists discover the first Antarctic ground beetle

Fossilised forewings from two individuals, discovered on the Beardmore Glacier, revealed the first ground beetle known from the southernmost continent. It is also the second beetle for the Antarctic insect fauna with living descendants. The new species, which for now is also the sole representative of a new genus, is to be commonly known as Ball’s Antarctic Tundra Beetle. Scientists Dr Allan Ashworth, North Dakota State University, and Dr Terry Erwin, Smithsonian Institution, published their findings in the open access journal ZooKeys.10535_image-3

The insect fauna in Antarctica is so poor that today it consists of only three species of flightless midges, with one of them having been probably introduced from the subantarctic island of South Georgia. The absence of biodiversity is considered to be a result of lack of moisture, vegetation and low temperatures.

10535_image-2Following their study, the authors conclude that the beetle must have inhabited the sparsely-vegetated sand and gravel banks of a meltwater-fed stream that was once part of an outwash plain at the head of a fjord in the Transantarctic Mountains. Plants associated with the extinct beetle include southern beech, buttercup, moss mats, and cushion plants, all typical for a tundra ecosystem. The species may or may not have been able to fly.

The closest modern relatives to the extinct species live in South America, the Falkland Islands, South Georgia, Tasmania and Australia. Tracking the ancient lineage of this group of beetles, known as the carabid beetle tribe Trechini, confirms that they were once widely distributed in Gondwana, the supercontinent that used to unite what today we recognise as Antarctica, South America, Africa, Madagascar, Australia, the Arabian Peninsula and the Indian Subcontinent. Ball’s Antarctic Tundra Beetle is also an evidence that even after Gondwana broke apart, the tundra ecosystem persevered in Antarctica for millions of years.

“The conflicting signals both in anatomical attributes and biogeography, and in ecological setting as well, leave open the question of relationships, thus giving us no alternative but to flag the species represented by fossil evidence through erection of new genus status, hence drawing attention to it and the need for further paleontological studies in Antarctica,” speak of their discovery the authors.

The new Ball’s Antarctic Tundra Beetle is scientifically identified as Antarctotrechus balli, where the genus name (Antarctotrechus) refers to its being related to the tribe Trechini, and the species name (balli) honours distinct expert of ground beetles Dr. George E. Ball, who celebrated his 90th birthday on 26th September, 2016.

###

Original source:

Ashworth AC, Erwin TL (2016) Antarctotrechus balli sp. n. (Carabidae, Trechini): the first ground beetle from Antarctica. ZooKeys 635: 109-122. https://doi.org/10.3897/zookeys.635.10535

New open access journal Rethinking Ecology publishes novel ideas under Pensoft’s imprint

Needless to say, it is through sharing new ideas and hypotheses that critical issues such as climate change and biodiversity loss can be addressed. However, few scientists are currently in a position to do so, because publishing bold ideas in peer-reviewed journals is very difficult, especially for those who are not world-renowned scientists in their field. At the same time, scientists sharing novel ideas that have not been published yet, carry the risk of being ‘scooped’. This is probably a scientist’s worst nightmare: seeing someone else publish the idea they have been working on. In this context, many innovative ideas are kept secret and it can take years before they are made available to the scientific community.

This is the niche that the novel open access peer-reviewed journal Rethinking Ecology aims to fill by providing a platform for forward thinking and publication of novel ideas in all aspects of ecology, evolution and environmental science.

Adding to its innovative nature, Rethinking Ecology joins the modern technologically advanced Pensoft journals published on next-generation platform ARPHA (abbreviation standing for Authoring, Reviewing, Publishing, Hosting and Archiving). Not only is the platform to provide fast-track and convenient publishing for the authors, reviewers and editors in Rethinking Ecology, as it takes care of a manuscript through all stages from authoring and reviewing to dissemination and archiving, but it is user-friendly to the readers as well, who enjoy publications in three formats (PDF, XML, HTML) and full of semantic enhancements.

The innovative journal aims to encourage all scientists, regardless of their seniority, publication track record, gender, or country of origin, to publish perspective papers, so that they are put in the open for peers to discuss and build on, while credit is given where credit is due. Publishing these ideas early also draws attention from the scientific community, potential collaborators and potential funders. To further avoid potential bias, Rethinking Ecology implements double-blind peer review, with the journal supporting the notion that it is the content of a manuscript that matters. Moreover, reviewers will not be asked for a formal recommendation. Instead, they will comment and evaluate the work against a set of specific questions. Thus, each paper ends up with a score on Novelty, Feasibility, Scholarship and Literacy, so that only perspective papers with an emphasis on novel hypotheses and bold ideas are accepted for publication.

Another innovative feature applied in the new journal is an Author Contribution Index (ACI), meaning that each publication will include a pie chart pointing to the contribution of each of the authors, estimated in percentage. This is the editors’ answer to the so-called ‘guest authorship’ (i.e. inclusion of authors who did not significantly contribute to the work).

logoIt is no coincidence that Rethinking Ecology has a spiral-shaped unfurling fern leaf as a logo. Called Koru in the language of the indigenous Polynesian people of New Zealand – Māori, it symbolises novelty, new life and new beginning, as well as perpetual movement.

“Each publication in Rethinking Ecology can be seen as the beginning of life for a new idea and its metaphorical unfurling as it reaches out to the scientific community,” explain the journal editors in their very first Editorial at Rethinking Ecology.

“We see Rethinking Ecology as an incubator for novel ideas, and a catalyst for new thinking,” says the journal’s Editor-in-Chief Dr Stephane Boyer, Unitec Institute of Technology, New Zealand.

“In a world where scientific publications are increasingly open source and immediately available, it makes no sense to keep our most innovative ideas hidden from the world for years while we secretly test them,” he elaborates. “Bold ideas and new hypotheses need to be shared, they may or may not turn into world-changing paradigm shifts, but they all have the potential to contribute to new thinking.”

“I am pleased to welcome a groundbreaking journal such as Rethinking Ecology to the Pensoft family, which has already built a nice and extensive portfolio of innovations in scholarly publishing,” says Pensoft’s founder and CEO Prof. Lyubomir Penev. “Seeing genuine ideas and hypotheses yet to be tested, and possibly, yet to revolutionise the ecological science is certainly a thing worthy of eager anticipation.”

 

###

 

About ARPHA:

ARPHA is the first end-to-end journal publishing solution that supports the full life cycle of a manuscript, from authoring through submission, peer review, publication and dissemination. With ARPHA, journals and publishers enjoy a complete set of services, which enable tailored, technologically advanced publishing solutions. The platform enables a variety of publishing models through a number of options for branding, production and revenue models to choose from.

Could green façades cool down cities in the future

Predictions for temperature rise and the particular sensitivity of urban ecosystems to heat stress pose a pressure to find the best solution for mitigation and adaptation to climate change. Could green façades be a sustainable and easy to implement strategy to keep our cities cool? A new study in the open access journal One Ecosystem uses the method of Bayesian networks to assess applicability of this nature-based solution, within the context of Berlin’s urban environment.

Urban heat is a recognised challenge for mid-latitude cities possibly aggravated by global climate change. Among the strategies to adapt the urban fabric, façade greening has been identified as an important measure to adjust the building stock and new buildings to adverse climatic impacts. Yet, little is known on factors that influence implementation probabilities for this adaptation measure.

Façade greening could be rather suitable way to establish vegetation in cities despite the development pressure. Not used for other purposes, unlike most of the horizontal green and open spaces in cities, façade greening needs very little space on the ground eliminating pressure and user competition.

In the past years, most German cities have developed climate change adaptation strategies which particularly focus on nature-based measures for urban planning to tackle the impacts of urban heat. In 15 of the 24 German adaptation strategies façade greening is mentioned as a measure to improve microclimatic conditions. But what is the likelihood of implementing and what is the attitude towards this measure?

Analysing attitudes and possibilities in the context of Berlin, a group of scientists found out that experts in Berlin estimate the likelihood of an implementation of façade greening under current conditions at 2% only. A different scenario including financial incentives from a backyard greening program, however, has shown to raise the chances to 14 %. Nonetheless, the factor of “willingness” of involved actors and the right combination of supportive and legislative factors appeared as a crucial pre-condition for the implementation of this measure.

“Our analysis allowed for ranking the influence of each of the factors on the outcome the research and we were surprised to see that in this case the “attitude” of determinant actors is of outmost importance, while financial prerequisites, legal and technical conditions also have an influence on the decision to install green façades but remain lower on the list.” comments the lead author of the study Nora Sprondel, Technische Universität Berlin, Germany.

###

Original Source:

Sprondel N, Donner J, Mahlkow N, Köppel J (2016) Urban climate and heat stress: how likely is the implementation of adaptation measures in mid-latitude cities? The case of façade greening analyzed with Bayesian networks. One Ecosystem 1: e9280. https://doi.org/10.3897/oneeco.1.e9280

A new species of quillwort named for the US state of Mississippi

Stunningly underwhelming, species of the genus Isoetes, commonly known as quillworts, bear amazing similarity to grass plants with which they are often confused. The US state of Mississippi has now given its name to a new species of the enigmatic quillwort group. The study was published in the open access journal PhytoKeys.

The new species, Isoetes mississippiensis, is an unusually large representative of the genus, first discovered in 1996 by Mr. Steve Leonard. For years it was known by the informal name “Big Dog”, a reference to its size.

Further microscopic and cytological study by Rebecca Bray, Lytton Musselman, and Peter Schafran (Old Dominion University, Norfolk, Virginia, USA); and W. Carl Taylor (National Museum of Natural History, Smithsonian Institution, Washington, D.C.) revealed that this is in fact a new species, rather than a strange form of a wide-ranging Midwestern species of Isoetes.

Interestingly, despite considerable field work, only two populations of I. mississippiensis are known from a tributary stream of the Pearl River, suggesting the extreme rarity of this Mississippi endemic, which already puts the new species at risk of extinction from human development.

What is the importance of this discovery and why does this often overlooked group matter? Despite their understated looks, quillworts can have an important role in biodiversity and conservation science, helping us interpret the environment — water quality, phytogeography, and evolution.

image-phytoThe unexpected and unexplored diversity of quillworts in the American South, for example, could be due to the machinations of glaciers, according to scientists. The last glacial epoch pushed northern quillworts south where they could cross with previously isolated species.

“Understanding the diversity of quillworts and their genetic makeup allows making hypotheses as to the movement of these plants and, by extension, to other plants in the same flora,” comments one of the co-authors Dr. Musselman. “We do not know how old this species is but we do know that it has been able to survive in its present habitat despite extensive perturbation of hydrology and natural vegetation.”

“When one southern Senator was told about an endangered quillwort in his state, he made a public statement questioning why anyone would be interested in this “grass”,” shares Musselman. “Despite their ecological importance, quillworts are largely ignored due to their understated appearance. No one knows how many quillworts have been extirpated without being described, and what those could tell us about the past and future of their environment.”

###

Original source:

Schafran PW, Leonard SW, Bray RD, Taylor WC, Musselman LJ (2016) Isoetes mississippiensis: A new quillwort from Mississippi, USA. PhytoKeys 74: 97-106. https://doi.org/10.3897/phytokeys.74.10380

Foreign beetle species recorded for the first time in Canada thanks to citizen science

With social networks abound, it is no wonder that there is an online space where almost anyone can upload a photo and report a sighting of an insect. Identified or not, such public records can turn out to be especially useful — as in the case of an Old World beetle species — which appears to have recently entered Canada, and was recently discovered with the help of the BugGuide online portal and its large citizen scientist community.

Having identified the non-native rove beetle species Ocypus nitens in Ontario, Canada, based on a single specimen, author Dr Adam Brunke, affiliated with the Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, sought additional data to confirm his discovery.

Eventually, he found them in the citizen-generated North American digital insect collection BugGuide, created and curated by an online community of naturalists, insect enthusiasts and entomologists. After he verified as many as 26 digital photographs to be records of the same species, he concluded that the rove beetle has expanded its distribution to two new locations — Ontario, its first in Canada, and the state of Vermont, USA. His study is published in the open access Biodiversity Data Journal.

The species O. nitens is a fairly large rove beetle measuring between 12 and 20 mm in length and visibly distinguished by the characteristic form of the head and relatively short forewings. Furthermore, the insect is quite easy to spot because it prefers living around humans, often being spotted in woodlots and backyards.

As a result of the hundreds of years of Transatlantic trade, many species have been transported accidentally among various produce to subsequently adapt and establish on the other side of the ocean. While the rove beetle species O. nitens was first reported from the Americas in 1944, it was not until the turn of the new millennium that it escaped the small area in New England, USA, which had so far been its only habitat on the continent. Then, its distributional range began to rapidly expand. It is unlikely that the presence of this rove beetle, especially in Ontario, has long remained undetected, because of thorough and multiple sampling initiatives undertaken by professionals and students in the past.

The effect of the newly recorded species on the native rove beetles is still unknown. On the other hand, there are observations that several related beetles have experienced a drop in their populations in comparison to the records from the beginning of the century.

“Citizen-generated distributional data continues to be a valuable ally in the detection of adventive insects and the study of their distributional dynamics,” concludes the author.

###

Original source:

Brunke A (2016) First detection of the adventive large rove beetle Ocypus nitens (Schrank) in Canada and an update of its Nearctic distribution using data generated by the public. Biodiversity Data Journal 4: e11012. https://doi.org/10.3897/BDJ.4.e11012

Ottawa confirmed as the biodiversity hotspot for a subfamily of wasps in North America

What usually comes to mind when speaking about biodiversity hotspots are tropical regions, pristine areas and magnificent forests. Meanwhile, it is quite rare that a city in a temperate zone is considered significant in terms of biodiversity, much less mentioned as a hotspot. Yet, the city of Ottawa together with its surroundings, despite having population surpassing 1 million people, is now confirmed to be the locality in North America with the most recorded species of braconid wasps in the subfamily Microgastrinae, a group of parasitic insects that attack caterpillars and play an important role in the natural biocontrol of agriculture and forestry pests.

A study published in ZooKeys reports 158 species within 21 different genera of Microgastrinae for Ottawa. “To put this into perspective,” says Dr. Jose Fernandez-Triana, affiliated with the Canadian National Collection of Insects and lead author of the paper, “if Ottawa (a relatively small area of less than 7,800 km2) would be considered as a country itself, its species total would rank 17th among all countries in the world.”

image-3-sathon-cinctiformisThere are close to 200 species of microgastrine wasps known from Canada and around 350 – from North America. Thus, the fauna in Ottawa equals to three quarters of the total recorded for the entire country, and almost half of all species in the Nearctic region. In fact, the diversity in the Canadian capital represents by far the highest number of species ever recorded for a locality in North America, a consequence of the city being a transition from an eastern deciduous forest biome to a boreal biome, with small areas of unusual habitats like dunes, alvars, floodplains and bogs.

Based on the analysis of almost 2,000 specimens, collected between 1894 and 2010, and housed in the Canadian National Collection of Insects, the paper also reports two new species for North America and two additional species records for Canada and Ontario, as well as dozens of new additions to the regional fauna. Seasonal distribution showed several peaks of activity, in spring, summer, and early fall.

The study highlights the incredible diversity of parasitoid wasps and how much remains to be discovered, even in temperate areas and/or city environments. “It is possible that southern localities in North America are eventually found to be more diverse than Ottawa,” notes Dr. Fernandez-Triana. “But for that to happen one would need to find an area that has a variety of habitats and has also been thoroughly sampled over the years, with thousands of specimens available for study.”

“In the meantime,” jokes the scientist, “the citizens of the Canadian capital will have the bragging rights in North America, at least for microgastrine wasp diversity.”image-2-dolichogenidea-cacoeciae

###

Original source:

Fernandez-Triana J, Boudreault C, Buffam J, Mclean R (2016) A biodiversity hotspot for Microgastrinae (Hymenoptera, Braconidae) in North America: annotated species checklist for Ottawa, Canada. ZooKeys 633: 1-93. https://doi.org/10.3897/zookeys.633.10480

Disentangling the myth of the singing bushmaster viper with the help of tree frogs

Reaching over 3.5 m in length, the bushmaster (belonging in the Lachesis genus) is the largest viper in the western hemisphere. Legend spread among both colonists and natives from the Amazon region and Central America has it that it sings. Finding these numerous unrelated reports quite puzzling, since it is well known that snakes cannot sing, scientists took to finally disentangle the myth.photo-2

When the researchers recently conducted fieldwork in Amazonian Ecuador and Peru, they revealed it was not the snake singing. The ‘song’ was indeed the call of large tree frogs that live in hollow trunks in the forest.

While local guides in both countries attributed the songs to the bushmaster, the amphibians were almost completely unknown. To their surprise, instead of finding a snake, the field teams found two species of frogs of the genus Tepuihyla. The results are published in the open access journal ZooKeys in a collaborative effort by scientists from Catholic University of Ecuador, the Peruvian Institute of Research of the Amazon, Ecuadorian Museum of Natural Sciences, and Colorado State University, USA.

One of the tree frogs is a new species, Tepuihyla shushupe. The word shushupe is used by native people to refer to the bushmaster. The calls are highly unusual for frogs because they are a loud chuckle resembling the song of a bird. It is still unknown why locals associate the calls of the two species with the bushmaster.

###

photo-3Original source:

Ron SR, Venegas PJ, Ortega-Andrade HM, Gagliardi-Urrutia G, Salerno P (2016) Systematics of Ecnomiohyla tuberculosa with the description of a new species and comments on the taxonomy of Trachycephalus typhonius (Anura, Hylidae). ZooKeys 630: 115-154. https://doi.org/10.3897/zookeys.630.9298

Two new lizards with ‘heroic past’ discovered in the Chilean Andes

Two new species of lizards have been discovered in the Andean highlands of Southern Chile. Collected from areas of heroic past, both small reptiles were named after courageous tribal chiefs who have once fought against colonial Spaniards in the Arauco war. The study, conducted by a team of Chilean scientists, is published in the open access journal ZooKeys.

Jaime Troncoso-Palacios from Universidad de Chile and his team found both new species near a lake in a pre-Andean zone among deciduous vegetation. Following the examination of the collected specimens and further analysis of their mitochondrial DNA, performed by Dr. Alvaro A. Elorza from Universidad Andres Bello, Chile, the scientists concluded that they belong to species unknown to science.

One of the species, called Liolaemus janequeoae, or, Janequeo`s Lizard, is distinct for being smaller than its relatives, measuring a maximum of roughly 7 centimeters at length, as well as having no pattern on its back. Both features are quite striking for the group of lizards it belongs to. The only contrasting coloration for the species are several white scales appearing on the upper side in males. Otherwise, the species are predominantly light brown with pearly whitish down side of the body.

In the local Lonko tribe’s history, Janequeo was a prominent chief, who lost her partner during the Arauco war, after he was caught and tortured to death by the colonial Spaniards. She is said to have had a leading role in the Battle of Fort Puchunqui. Coincidentally, the new species was discovered where the war once took place, in the Araucanía Region.

The second new species, called Liolaemus leftrarui, or Leftraru`s Lizard, was collected from the same locality, hence it also received a heroic name honoured in the Arauco war. It is called after the most prominent Mapuche tribal chief. According to the stories, he was taken by the Kingdom of Chile’s Governor at the age of 11 to become his servant. There, however, he learned the military strategy of the Spanish, managed to escape and joined his people in the war. Later, not only did he kill his former master, but also won the most remarkable victories over the Spaniards.figure2-blog

The Leftraru`s Lizard is a large species of about 8 centimeters in length, characterised with absent precloacal pores, a common feature for its lizard group, save few. On the upper side of its body there are also unusual light blue dots. Overall, its colour is brown splashed with dark brown spots. Apart from the blue scattered scales on the back, there is also a bit of green on its head, limbs and tail. At the rear it becomes yellowish.

In conclusion, the authors note that the lizard fauna of Chile has been mistakenly assumed to be quite scarce up until recently. Yet, their latest discovery, along with several other new species, described in recent years, could be a clear sign that, “some populations under study could be described as new species in the future”.

###

Original source:

Troncoso-Palacios J, Diaz HA, Puas GI, Riveros-Riffo E, Elorza AA (2016) Two new Liolaemus lizards from the Andean highlands of Southern Chile (Squamata, Iguania, Liolaemidae). ZooKeys 632: 121-146. https://doi.org/10.3897/zookeys.632.9528

 

The Caucasus as an ‘island’ in the ‘sea’ of steppes: New insights in mosquito evolution

From a geographical point of view, the Caucasus is far from an island or even a peninsula, being a relatively big mountainous region appearing as a fence at the border of Europe and Asia, situated between the Black and the Caspian seas. However, a study into the chromosome structure of mosquito larvae of the species Glyptotendipes salinus, living by a saltwater lake in the foothills of the Caucasus, suggests that the region could be imagined as an “island” in the “sea” of steppes.

Scientists Dr Mukhamed Karmokov, Tembotov Institute of Ecology of Mountain territories, Russian Academy of Science, and Dr Azamat Akkizov, Institute of Biomedical Problems, RAS, and Center of Medico-Ecological Researches, have their paper, where they describe the Caucasian population of the species, published in the open access journal Comparative Cytogenetics.

Earlier, it has been known that in the Tambukan Lake, located at the foothills of the Caucasus Mountains, lives at least one of the representatives of the genus Glyptotendipes, more precisely, the species G. salinus. Actually, the process of studying the fauna of the genus in the Caucasus region has just began and many questions have remained unclear.

During their research, the authors collected a sufficient amount of larvae of G. salinus that made it possible to study the chromosome structure, rearrangements and peculiarities of the Caucasian population of the species. In addition, the authors tried to understand how the population relates to the previously studied ones, living in the Altai region of Russia and Kazakhstan.

Researchers found interesting, some of them even striking, peculiarities in the chromosome structure and morphology of the larvae from Caucasus. Namely, they found four new chromosome rearrangements, likely unique for the Caucasus. Also, some of the chromosome characters were most similar to the mosquitoes from Altai, while others — to the population in Kazakhstan. The most curious difference of the Caucasian larvae in comparison to data from earlier studies was that they were twice as short.

In conclusion, the authors note that from the obtained data it could be deduced that that the Caucasian population had undergone a significant divergence, or even that it represents a subspecies.

Also, it turns out that the Caucasus itself is a relatively isolated and complex region in terms of microevolution. “The Caucasus, in some sense, can be imagined as a relatively isolated territory, a special place, where evolution has made some unexpected twists,” they say.

###

Original source:

Karmokov MKh, Akkizov AY (2016) Karyotype characteristics, larval morphology and chromosomal polymorphism peculiarities of Glyptotendipes salinus Michailova, 1983 (Diptera, Chironomidae) from Tambukan Lake, Central Caucasus. Comparative Cytogenetics 10(4): 571-585. https://doi.org/10.3897/compcytogen.v10i4.9400