Genetic analysis calls for the protection of 2 highly endangered Portuguese fish species

The two endangered fish species, Squalius aradensis and S. torgalensis, most generally belong to the Cyprinidae, or the carp family. This is the largest fish, and vertebrate family, formed of freshwater fish with a diversity of more than 2,400 species. The family also has an important economic value as a food source. More specifically, the two species studied are members of the subfamily Leuciscinae, formed of small freshwater fish commonly known as minnows. A new genetic study of the two endangered fish was recently published in the open access journal Comparative Cytogenetics.

S. aradensis and S. torgalensis are sister-species endemic to Portugal. These fish were listed as critically endangered in 2005 due to the rapid loss and destruction of their natural habitat, formed of local rivers and intermittent streams. Although the two species have adjacent distributions, they live in relative habitat isolation, which is believed to have enforced the differentiation process.

In their study of these endangered species, the team of scientists lead by Prof. Collares-Pereira, Universidade de Lisboa, have provided a comparative genetic analysis of DNA features in both species that confirm their common ancestry, but also the evolutionary divergence, believed to have been potentiated by the semi-arid conditions they are adapted to with drastic changes in hydrological regimes, namely drought events. Such events, by creating isolates and bottlenecks, might have strengthened the fixation of genome mutations.

The authors address the current worrying status of the two fish species as highly endangered and draw attention towards the need of conservation of such two narrow-ranged and confined species. Specific measures regarding habitat protection and rehabilitation, which also include exotic species control, have to be actively implemented to preserve the genome integrity of the two highly vulnerable species.

###

 

Original Source:

Nabais C, Rampin M, Collares-Pereira MJ (2013) Comparative cytogenetics of two endangered leuciscine fish, Squalius aradensis and S. torgalensis (Teleostei, Cyprinidae), from the Iberian Peninsula. Comparative Cytogenetics 7(1): 33–42. doi: 10.3897/CompCytogen.v7i1.4672

Peru surprises with 2 new amazing species of woodlizards

Two new woodlizard species have been uncovered from poorly explored areas of the Peruvian jungles. The males have beautiful body colouration with a distinctive green pattern before a dark brown and black background. It is assumed that the two species share the same territory, with only a slight difference in altitude ranges, which makes their biological divergence intriguing from an evolutionary point of view. The study was published in the open access journal Zookeys.

Being traditionally regarded as a group with a low species diversity, recent fieldwork on Enyalioides has increased the species richness considerably with three of the ten known species described in last 5 years. The new members of this still poorly known group of animals have been discovered during expeditions on both sides of the Andes‘ slopes, parts of Ecuador and Peru. This success rate suggests that more of these lizards might be awaiting discovery in other unexplored areas of the region.

The two newly described lizards were found in Cordillera Azul National Park, the 3rd biggest national park in Peru protecting the largest mountain rainforest in the country. The area includes some of the least explored forests in Peru. The basins of the rivers Pisqui and Pauya in the National park are remarkable with their great diversity of reptiles and amphibians.

One of the new species, Enyalioides azulae, is known only from a single locality in the mountain rainforest of the Río Huallaga basin in northeastern Peru. It was named after the Spanish word "azul" (blue) referring to the Cordillera Azul National Park where this species was discovered. The second newly described lizard, Enyalioides binzayedi, can be seen in the same river basin and is named after the sponsor of the field survey Sheikh Mohamed bin Zayed Al Nahyan, Crown Prince of Abu Dhabi and Deputy Supreme Commander of the UAE, who created the Mohamed bin Zayed Species Conservation Fund (MBZSCF).

"Thanks to these discoveries, Peru becomes the country holding the greatest diversity of woodlizards. Cordillera Azul National Park is a genuine treasure for Peru and it must be treated as a precious future source of biodiversity exploration and preservation!", says the lead author Dr Pablo Venegas from Centro de ornitología y Biodiversidad (CORBIDI) in Lima, Perú.

 

###

Original Source:

Venegas PJ, Torres-Carvajal O, Duran V, de Queiroz K (2013) Two sympatric new species of woodlizards (Hoplocercinae, Enyalioides) from Cordillera Azul National Park in northeastern Peru. ZooKeys 277: 69, doi: 10.3897/zookeys.277.3594

Can a tropical water flea invade European lakes?

Experiments predict that populations of native European species may be substantially suppressed by the invader

Daphnia is a genus of small, planktonic crustaceans, commonly called ‘water fleas’ because of their jumpy swimming style and their size (between 0.2 and 5 mm). They live in various aquatic environments, ranging from acidic swamps to freshwater lakes, ponds, streams and rivers. Species of the genus Daphnia play a key role in freshwater food webs: they consume algae and are themselves an important food item for small fish.

Daphnia lumholtzi is a small subtropical and tropical representative, known as an invader in North America. It has never been found in Europe in the wild. Laboratory experiments were conducted by scientists from Ludwig-Maximilians-Universität München; University of Bayreuth; and Technische Universität, München, to assess the possibilities of a potential invasion in Europe. The study was published in the open access journal NeoBiota.

The experiments suggest that D. lumholtzi can invade European lakes and can cause substantial declines in the populations of native water flea species, e.g. Daphnia hyalina and D. cucullata. It was also shown that absence of predatory fish may ease establishment in European lakes. Surprisingly, the invasive plankter proved to be a strong competitor even at temperatures as low as 15°C, despite its tropical origin.

"We still do not know whether D. lumholtzi will invade European lakes, but our experiments did not identify any obstacles. In contrast to some studies suggesting that it might be filling an empty niche in North America, the results of our experiments indicate that it may suppress the population growth or even outcompete some native European Daphnia" says the lead author Meike J. Wittmann.

###

Original Source:

Meike J. Wittmann, Wilfried Gabriel, Eva-Maria Harz, Christian Laforsch, Jonathan M. Jeschke, Can Daphnia lumholtzi invade European lakes? NeoBiota: 16: 39, doi: 10.3897/neobiota.16.3615

Kill Bill character inspires the name of a new parasitoid wasp species

1 of 3 recently discovered wasp species was named after Beatrix Kiddo, referring to the deadly parasitoid practices of the animal

Parasitoid wasps of the family Braconidae are known for their deadly reproductive habits. Most of the representatives of this group have their eggs developing in other insects and their larvae, eventually killing the respective host, or in some cases immobilizing it or causing its sterility. Three new species of the parasitoid wasp genus Cystomastacoides, recently described in the Journal of Hymenoptera Research, reflect this fatal behavior.

Two of the new species were discovered in Papua New Guinea, while the third one comes from Thailand. The Thai species, Cystomastacoides kiddo, was named after the character Beatrix Kiddo in Quentin Tarantino’s ‘Kill Bill’ films. The deadly biology of the wasp inspired this reference to the protagonist played by Uma Thurman, where she embodies a deadly assassin and a master of the Tiger/Crane style of kung fu. She is a master of the "Five Point Palm Exploding Heart Technique", a method of killing a person by quickly striking five pressure points around the heart with the fingertips. After the victim takes five steps, the heart explodes and the person falls dead.

The macabre in the name of one of the new species from Papua New Guinea references back to another strand of contemporary pop culture: Cystomastacoides nicolepeelerae is named after Nicole Peeler, the favourite novelist of Donald Quicke, the lead author of this article. Peeler’s writing deals with murder mystery, dark powers, the subconscious and the supernatural. The name of the third species, Cystomastacoides asotaphaga, also from Papua New Guinea, lacks the popular culture element but still brings up the deadly survival techniques of the wasps described. In translation, it means feeding on Asota, described genus of moths whose caterpillar is eaten from the inside by the wasp’s larva and thus eventually killed.

Asota plana is the first host record for the genus to which the new species belong. It is a widespread moth species known to feed on multiple fig tree (Ficus) species. With three new species from Papua New Guinea and Thailand, this paper also extends the known range of the genus considerably. Previously, Cystomastacoides had been known only from a single species, Cystomastacoides coxalis, which was found only in mainland China (Yunnan).

 

###

Original Source:

Quicke DLJ, Smith MA, Hrcek J, Butcher BA (2013) Cystomastacoides van Achterberg (Braconidae, Rogadinae): first host record and descriptions of three new species from Thailand and Papua New Guinea. Journal of Hymenoptera Research 31: 65, doi: 10.3897/JHR.31.3385

9 new wasp species of the genus Paramblynotus described from Africa and Madagascar

A newly published article "Revision of the Afrotropical Mayrellinae (Cynipoidea, Liopteridae), with the first record ofParamblynotus from Madagascar" by Dr. Simon van Noort, from Natural History Department, Iziko South African Museum, and Dr. Matthew L. Buffington from the Systematic Entomology Lab, USDA offers the description of 9 remarkable new species of wasps. Mayrellinids are extremely rare wasps, which are under-represented in museum collections. Most species are known from single specimens. The study was published in the open access Journal of Hymenoptera Research.

The Mayrellinae subfamily includes two genera, Kiefferiella and Paramblynotus, with only the latter genus occurring in the Afrotropical region. The representatives of the genus are very small species that look superficially like cynipids, or gall wasps. Little is known about their biology. They are assumed to be parasitoid of wood-boring beetle larvae, although there is no confirmed host record to date.

The genus Paramblynotus is also recorded from Madagascar for the first time, with representatives of two species groups being present on the island. The P. seyrigi group, is erected in this study to accommodate a single, but highly distinctive new species, likely to be endemic to the island. The specimens were unearthed by the authors from a 1930s collection by André Seyrig, held in the Natural History Museum in Paris.

"Discovering the field box full of unusual wasps was reminiscent of excitement around opening presents as a child. In fact most new samples of wasps collected in the region evoke such a response when first sorted under a microscope." explains Dr van Noort. "There is a huge diversity of undiscovered species in Africa and Madagascar and every new sample contains species unknown to science. Seyrig was a prolific collector of wasps. It was a privilege to be able to work on some of his specimens that had not been examined by specialist taxonomists since they were collected in the 1930’s."

 

###

 

The spectacular diversity of African and Madagascan wasps can be viewed at http://www.waspweb.org.

Original source:

van Noort S, Buffington ML (2013) Revision of the Afrotropical Mayrellinae (Cynipoidea: Liopteridae), with the first record of Paramblynotus from Madagascar. Journal of Hymenoptera Research 31: 1–64, doi: 10.3897/JHR.31.4072

Suggestions for a middle ground between unlogged forest and intensively managed lands

A new forum paper suggests bridging two important fields of ecological research

It is increasingly recognized that protected areas alone are not sufficient for successful biodiversity conservation, and that management of production areas (e.g. forestry and agricultural land) plays a crucial role in that respect. Retention forestry and agroforestry are two land management systems aiming to reconcile the production of human goods with biodiversity conservation.

The retention forestry model is, as the name suggests, based on retaining some of the local forest structures when harvesting trees in an attempt to preserve local biodiversity. Agroforestry addresses this need through the intentional management of shade trees alongside agricultural crops. Despite the technical differences, both systems provide an intermediary between unlogged forest and intensively managed land. A paper recently published in the open access journalNature Conservation, draws an important parallel between the two systems.

From a conservation point of view, both retention forestry and agroforestry are expected to provide a variety of ecological benefits, such as the maintenance and restoration of ecosystem heterogeneity. They also provide habitat for tree-dependent species outside the forest as well as increased connectivity for forest species within landscapes. Moreover, both systems minimize some of the off-site impacts of management. In spite of some inherent differences between the two systems, the large number of similarities suggests that both would benefit from a bridging of scientific and practical experiences.

The author team, led by Dr. Roberge from the Department of Wildlife, Fish and Environmental Studies at the Swedish University of Agricultural Sciences (SLU), calls for studies addressing cost-effectiveness of different retention and agroforestry systems in relation to biodiversity conservation, argues for a stronger focus on the two systems’ effects on species of special conservation concern, and encourages increased collaboration between researchers and practitioners across the two fields.

 

###

Original Source:

Roberge J-M, Mönkkönen M, Toivanen T, Kotiaho JS (2013) Retention forestry and biodiversity conservation: a parallel with agroforestry. Nature Conservation 4: 29, doi: 10.3897/natureconservation.4.5116

 

Tiny minotaurs and mini-Casanovas: Ancient pigmy moths reveal secrets of their diversity

 

Researchers Robert Hoare (Landcare Research, New Zealand) and Erik van Nieukerken (Naturalis Biodiversity Center, Netherlands) have named new moths after the Minotaur of Greek mythology and the legendary Italian philanderer Giacomo Casanova in a study of the evolution of southern pigmy moths. The study was published in the open access journal ZooKeys.

The tiny moths, with wingspans of 3 to 8 millimetres, belong to a very old group (the family Nepticulidae), which dates back more than 110 million years to the time of the dinosaurs. Australian pigmy moths are particularly diverse and unusual, and one group (genus Pectinivalva, ‘ancient pigmy moths’) has until now only been reported from that continent, where over 140 species are known.Each species of pigmy moth is associated with one or a few related species of plant on which they lay their eggs. Caterpillars make a mine inside the leaf, the shape of the mine often being characteristic of the species that made it.

By reconstructing the evolution of the ancient pigmy moths, Hoare and van Nieukerken have shown that the original host of the group was probably a rainforest plant of the myrtle family (Myrtaceae). As Australia dried out from about 15 million years ago, the rainforest was greatly reduced in extent, and the myrtle family came to dominate the vegetation of the arid interior, with the now familiar eucalyptus trees becoming especially diverse and abundant. The ancient pigmy moths in their turn transferred to the newly dominant host-plants, and now most known species of Pectinivalva feed on Eucalyptus and its close relatives, with just a few still attached to rainforest myrtles. Probably, the rainforests of Indonesia, New Guinea and New Caledonia will be found to be home to further undiscovered members of the genus Pectinivalva; a new species (P. xenadelpha) from Borneo is the first non-Australian member of the genus known.

What of those new names? The males of many species of ancient pigmy moths display special scales for close-range scent dispersal during courtship of the female. These can be on the front legs, on the wings or on the body of the moth, and may form moustache-like tufts or groups like overlapping shells, best seen under high magnification. Some species have a strange pocket-like structure on the hind wing with scent scales surrounding it in a palisade. In one group of metallic-coloured species, the males are particularly well equipped for courtship with a variety of sex-specific modifications. This group has been named as a subgenus Casanovula after Giacomo Casanova (1725-1798), the Italian adventurer famous for his many romantic entanglements. The male of the most spectacular species not only has two different kinds of shell-like scent scales on the body, but huge flattened and expanded antennae, whose function is unknown, but which are also presumed to be attractive to females. This species has been named Pectinivalva (Casanovula) minotaurus, after the bull-headed Cretan beast of Greek mythology.

 

###

The research collaboration was aided by funding from the Naturalis Temminck Fellowship programme, taken up by Robert Hoare in 2009.

What do American bullfrogs eat when they’re away from home? Practically everything!

American bullfrogs are native to eastern North America but have been transported by people to many other parts of the globe, and other parts of North America, where they have readily established populations and become an invasive alien menace to native ecosystems. In the largest study of its kind to date, the stomach contents of over 5,000 invasive alien American bullfrogs from 60 lakes and ponds on southern Vancouver Island were examined to identify the native and exotic animals that they had preyed upon. The study was published in the open access journal NeoBiota.

Over 15 classes of animals were reported from a total of 18,814 identifiable prey remains, including terrestrial and aquatic insects, spiders, crayfish, fish, frogs, salamanders, newts, snakes, lizards, turtles, birds, and small mammals. The study examined the stomach contents of adults and juveniles of all size-classes, but excluded tadpoles. These results show that bullfrogs will attack and consume virtually any organism that is within reach and can be swallowed, including their own species.

Previous studies on bullfrog diet have examined relatively small numbers of stomachs from a comparatively small number of lakes and ponds. Our results reinforce the general consensus that there is good reason for concern about the ecological harm that uncontrolled populations of American bullfrogs might have, or are having, on populations of native species.

For decades, bullfrogs have been transported and released around the world by prospective frog-farmers, pet owners, game managers, recreational fishermen, biological supply houses; and even by entrants in frog jumping contests. They adapt readily to a variety of habitats from the tropics to temperate zones and once established, their numbers grow fast with each adult female producing about 20,000 or more eggs per year. For these reasons, American bullfrogs are internationally recognized as one of the 100 worst invasive alien species in the world.

###

Original source

Jancowski, K, Orchard, SA (2013) Stomach contents from invasive American bullfrogs Rana catesbeiana (= Lithobates catesbeianus) on southern Vancouver Island, British Columbia, Canada. NeoBiota 16: 17, doi: 10.3897/neobiota.16.3806

New beautifully colored long-horned beetle from Yunnan, China

The beetle family Cerambycidae, also known as long-horned beetles or longicorns, is characterized by emblematic extremely long antennae, which are usually longer than the total body length of the animal. The family is rather rich in diversity with more than 20 000 species known, distributed worldwide. Some representatives of these bizarre-shaped beetles, are also known as serious pests with their wood-feeding larvae causing extensive damage to living trees or untreated lumber. The beetles from this family are mainly associated with leaf litter habitats, where the specimens in this study were also collected.

The newly discovered species, Schwarzerium yunnanum, represents a remarkably engaging representative of the family with a blue-greenish beautifully colored body, and distinctive blue legs. A new subgenus, Rugosochroma, is also erected as a result of this recent discovery. The specimens examined were found in the Yunnan Province of China, where the name of the new species is derived from The study was published in the open access journal Zookeys.

Alongside the new species, seven known ones have been recorded from China for the first time. Among these are the very rare Aphrodisium tricoloripes, known only from China, Myanmar and Vietnam, as well as Chloridolum semipunctatum, so far exclusively found in Northern Laos.

All the species described, including the new one, belong to the subfamily Cerambycinae, which includes 750 genera in total. Within the long-horned beetle family, this remarkable biodiversity can be only rivaled by a single other subfamily Lamiinae, more commonly known as flat-faced longhorns.

###

 Original Source:

Vives E, Lin M-Y (2013) One new and seven newly recorded Callichromatini species from China (Coleoptera, Cerambycidae, Cerambycinae). ZooKeys 275: 67–75, doi: 10.3897/zookeys.275.4576

A European invader outcompetes Canadian plants even outside its usual temperature range

Dog-strangling vine (Vincetoxicum rossicum) is an exotic plant originating from the Ukraine and southeastern Russia that is becoming increasingly invasive in southern Ontario, Canada. It has been found growing successfully in both disturbed and undisturbed areas, in open fields, forest edges and understories, parks, road edges and railway embankments. The invasive plant effectively competes for light by forming large and dense stands that climb over other plants. A study published in the open access, peer-reviewed journal NeoBiota explores the effects of V. rossicum invasion in Canada.

Apart from displacing local plant species, among the ecological effects of a possible V. rossicum invasion are endangered populations of local soil organisms and pollinator species. Another concern is the dog strangling vine’s good adaptability to and possible invasion of the alvar environment in the region, which for the Ontario is a rare kind of habitat supporting a number of important habitat-specific species. V. rossicum is also believed to be allelopathic, which means that in its roots, it produces chemicals that are toxic to other plants and exuded in the surrounding soil.

Along with photoperiod and moisture, temperature is considered a key environmental cue for flowering. Temperature majorly affects the reproduction of the dog-strangling vine. Generally, reproduction takes longer to occur under cooler growing conditions. A slight reduction from the current growing temperature conditions of the dog-strangling vine is sufficient to produce a significant delay in budding, flowering, and the formation of seedpods. Therefore, V. rossicum may be limited in its capacity to spread into northern climates simply because it may not be able to complete its life-cycle. To test this possibility the authors grew V. rossicum under simulated temperature conditions of northern and southern Ontario. In addition, they forcedV. rossicum to compete with Solidago canadensis, which is highly abundant across Ontario.

Laura Sanderson and Pedro Antunes from the Invasive Species Research Institute, Canada, found that "in spite of a delay in growth under cooler conditions, V. rossicumproduced just as many seeds as it did under temperature regimes typical of its current distribution range". They also found that competition with S. canadensis resulted in reductions in the fitness and total biomass of V. rossicum. However, the relative reductions in total biomass were greater for the competing native species, regardless of climatic temperature regime.

"Phenotypic plasticity may enable V. rossicum to spread into northern Ontario", conclude the authors.

 

###

Original Source:

Laura A. Sanderson, Pedro M. Antunes (2013) The exotic invasive plant Vincetoxicum rossicum is a strong competitor even outside its current realized climatic temperature range. NeoBiota 16: 1, doi: 10.3897/neobiota.16.4012

 



 


[ Back to EurekAlert! ][ Print | E-mail | Share Share ] [ Close Window ]