Last week, on Friday, 6 October 2023, a research article entitled “One new genus and four new species of Liocranidae Simon, 1897 (Arachnida, Araneae) from China and Vietnam” by Chang Chu, Shuqiang Li, Yanbin Yao, Zhiyuan Yao was published. This is the 100th paper published in ZooKeys co-authored by Shuqiang Li, a leading spider specialist from the Chinese Academy of Sciences in Beijing, China. Shuqiang’s first ZooKeys paper was published on December 18, 2012. Until last Friday, Shuqiang has published 51 new genera and 677 new species in 100 ZooKeys papers.
Shuqiang started his scientific career as a spider taxonomist, with his first paper on the Linyphiidae of China published in 1987, followed by a series of revisions of known Chinese and Asia spider species. To date, he has documented more than 2,000 new species.
He is also a proficient professor in the University of Chinese Academy of Sciences and has mentored more than 30 PhD students from China, Vietnam, and Italy, and another three M.Sc. students from Kenya and Malaysia. Most of his former Chinese PhD students have since become full professors. Shuqiang has been the Secretary of the Asian Society of Arachnology since 2012 and President of the Arachnology Society of China since 2018.
Many people see spiders as ugly due to their multiple legs, hairy bodies, and sometimes venomous fangs, but this appearance serves a purpose in their survival and adaptation to their environment. “Spiders are lovely animals”, Shuqiang said to us. He focuses mostly on fine spider structures. For example, he used spider copulatory organs (male palp and female epigyne) to study species taxonomy. “Interspecies mating is not easy due to difference in copulatory organs,” he says. He and his team members are also focusing on the origin of spider organs.
Guest blog post by Dr Alireza Zamani (@Arachno_AZ)
In the latest issue (1174th) of the scientific open-access journal ZooKeys, you can find our paper describing a new species of tarantula (family Theraphosidae) found in northwestern Iran.
This species belongs to Chaetopelma, a relatively small genus, distributed in Crete, Sudan, and the Middle East, and one of the only two tarantula genera inhabiting the Mediterranean region.
Our discovery is significant for several reasons. Firstly, it marks the first record of this genus in Iran and the third known species of tarantulas in this country. Additionally, it extends the known range of Chaetopelma spiders by almost 350 km eastwards.
We named this species Chaetopelma persianum, paying homage to its occurrence in Iran, which has historically been known as Persia. As a potential common name, we suggest “Persian Gold Tarantula”, where we are also making a reference to the “woolly, golden hairs’’ on its carapace.
For the purpose of our study, we only had one specimen: a female with a leg span of almost 9 cm, available. Yet, its distinct characteristics allowed us to confidently differentiate it from other known Chaetopelma species.
This tarantula is an obligate burrower and inhabits high elevations in well-vegetated mountainous regions of the northern Zagros Mountains. The holotype specimen was collected from a self-made ground burrow on sloped rocky ground, amidst sparse low vegetation and grasses.
It all started with local nature enthusiast Mehdi Gavahyan, who photographed a wandering male and sent me the photo. When I figured it was most likely an undescribed species, I asked him to team up with Amir Hossein Aghaei, a nature enthusiast and a friend of mine, and send me specimens of these spiders for further examination. Unfortunately, they only managed to collect that one female. However, it turned out to be enough for us to describe the Persian Gold Tarantula!
Additionally, thanks to local citizen scientists and naturalists, we later also got hold of photos of another two males of the same genus, taken very close to the type locality of the new species: one in Sardasht in West Azerbaijan Province of Iran, and the other in the surroundings of Sulaymaniyah in Iraq. While it is highly probable that both these males belong to Ch. persianum, this cannot be confirmed until further examination of collected material from both sexes is conducted.
Burrow of Persian Gold Tarantulas in West Azerbaijan Province, Iran. The arrow in the photo on the right indicates the location of the burrow. Photos by Amir Hossein Aghaei.
During our research, we also noted that one species of Chaetopelma described from Cameroon is misclassified and should be transferred to another genus. However, this transfer is pending until the type material undergoes examination.
Looking ahead, we believe that more comprehensive investigations employing integrative methods would greatly benefit the taxonomy of Chaetopelma.
For example, Ch. olivaceum, a species with seven junior synonyms and one of the broadest ranges within the entire family, covering an area of approximately 1,493,978 km2, might potentially have cryptic species within its range. Moreover, the disjunct distribution of Ch. olivaceum in Turkey, where it occurs both in the southern regions and as far north as Istanbul, raises the possibility of distinct species status for the latter population, which is geographically isolated from the rest of the recorded occurrences. Integrative studies incorporating molecular data could offer insights into this.
Additionally, further collection efforts in lesser-sampled or completely unexplored regions, such as Saudi Arabia, Syria, Iraq, eastern Turkey and western Iran, could lead to the discovery of additional Chaetopelma species or records. These findings would be instrumental in gaining a more comprehensive understanding of the taxonomy and distribution of this genus.
The Colombian Pacific region, nestled within the heart of the Chocó Biogeographic Region, has unveiled some of its remarkable biological wonders. Recognized as one of the world’s most enigmatic biodiversity hotspots, this area has remained largely unexplored, particularly when it comes to spider diversity. A groundbreaking biological expedition, conducted at the Jardín Botánico del Pacífico (JBP) in Bahía Solano, has revealed some taxonomic novelties that are set to redefine our understanding of this captivating ecosystem. The area not only serves as a tourist attraction but also plays a pivotal role in the conservation of the tropical rainforests and mangroves in the region.
Led by a team of dedicated researchers, the study focused on Mygalomorphae spiders, aiming to shed light on their intricate world. This enigmatic spider group includes tarantulas, trapdoor spiders, funnel-web spiders, millimeter-sized spiders with little use of the silk, and bald-legged spiders with the ability to attach substrate to their bodies. They are predatory, mostly terrestrial, and very often have restricted geographic distributions and high levels of endemism.
In this first-of-its-kind exploration of the Colombian Pacific rainforest, the team discovered and documented four remarkable spider species. One of them is Ummidia solana, an exceptional trapdoor spider. Additionally, the researchers identified three species of tarantulas: Euthycaelus cunampia, Neischnocolus mecana, and Melloina pacifica.
“These taxonomic breakthroughs represent the first recorded instances of their respective genera in the region, expanding their geographical distribution. Each species was meticulously illustrated, described, and scientifically discussed, offering valuable insights into their morphological characteristics, taxonomy, and biogeography. The results of this study serve as a significant contribution to our understanding of the region’s biological diversity, known for its exceptional species richness and endemism,” say the researchers.
Let us delve deeper into the newfound species. Ummidia solana, derived from the municipality of Bahía Solano, captures the essence of the stunning Colombian Pacific coast, with its mesmerizing landscapes and abundant vegetation. This discovery also marks the first record of the Ummidia genus within the Chocó Biogeographic Region.
Melloina pacifica, named after the Colombian Pacific region it inhabits, represents the first described species of the Melloina genus in Colombia. While Melloina is known to thrive in diverse ecosystems, including caves, this specific record expands the genus’ known distribution, previously documented solely in Venezuela and Panama.
Euthycaelus cunampia pays tribute to Don José and Don Antonio, members of the Emberá indigenous community from Mecaná, Chocó. Their transition from hunting traditions to becoming touristic and academic guides for the JBP inspired the species name. Notably, this discovery marks the first published record of the Euthycaelus genus and the subfamily Schismatothelinae outside the Andean Region and Eastern Cordillera for Colombia.
Lastly, Neischnocolus mecana, named after a township in Bahía Solano, underscores the commitment of the Jardín Botánico del Pacífico community to conserve the region’s rich biodiversity. This is the fourth described species of the Neischnocolus genus in Colombia and represents its first record in the Chocó biogeographic region and the Colombian Pacific. Notably, this description expands the known geographic range of the genus.
“This groundbreaking study serves as a testament to the potential existence of undiscovered species and the need for comprehensive taxonomic research,” the scientists say in conclusion.
Research article
Echeverri M, Gómez Torres S, Pinel N, Perafán C (2023) Four new species of mygalomorph spiders (Araneae, Halonoproctidae and Theraphosidae) from the Colombian Pacific region (Bahía Solano, Chocó). ZooKeys 1166: 49–90. https://doi.org/10.3897/zookeys.1166.101069
A new genus of tarantula was discovered inside a bamboo culm from Mae Tho, Tak province, in Thailand. This is the first genus of tarantula that shows the surprising specialization of living in bamboo stalks. The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a wildlife YouTuber from Thailand, who collaborated with arachnologists Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote. The new genus and species are described in the journal ZooKeys.
Bamboo is important to some animals as it can serve as a source of nutrition, shelter, and habitat. Inside a bamboo culm, we discovered a new genus of tarantula, which was collected from Mae Tho, Mueang Tak district, Tak province, in Thailand.
The discovered genus has not been previously studied by scientists; this is the first case of a genus of tarantula that shows the surprising specialization of living in bamboo stalks.
We named the new tarantula genus Taksinus in honor of the Thai king Taksin the Great. The name was chosen in recognition of Taksin the Great’s old name, Phraya Tak – governor of Tak province, which is where the new genus was discovered. After the Second Fall of Ayutthaya in 1767, Taksin the Great was the only king of the Thonburi Kingdom to become a key leader of Siam, prior to the establishment of Thailand.
The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a nationally known wildlife YouTuber in Thailand with 2.45 million subscribers, who collaborated with Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote, the arachnologists who studied and described the new genus.
Zongtum Sippawat, or JoCho Sippawat (left), with Wuttikrai Khaikaew, Kaweesak Keeratikiat, Narin Chomphuphuang and Chaowalit Songsangchote. Photo by Narin Chomphuphuang
In general, tarantulas from Southeast Asia can be either terrestrial or arboreal. Arboreal tarantulas spend time on different types of trees, but until now, researchers had not previously identified a tarantula found only on a specific tree type.
“These animals are truly remarkable; they are the first known tarantulas ever with a bamboo-based ecology,” Narin said.
Finding the new tarantula. Video by JoCho Sippawat
The tarantulas were discovered inside mature culms of Asian bamboo stalks (Gigantochloa sp.), with nest entrances ranging in size from 2–3 cm to a large fissure, within a silk-lined tubular burrow, either in the branch stub or in the middle of the bamboo culms. All the tarantulas found living in the culms had built silken retreat tubes that covered the stem cavity.
The tarantulas cannot bore into bamboo stems; therefore, they depend on the assistance of other animals. Bamboo is preyed upon by a variety of animals, including the bamboo borer beetle, bamboo worm, bamboo-nesting carpenter bee, and small mammals such as rodents. Furthermore, bamboo cracking is primarily caused by rapid changes in moisture content induced by the atmosphere, uneven drying, or drenching followed by rapid drying or by human activities.
Taksinus bambus tarantula in its habitat. Photo by JoCho Sippawat
Taksinus is classified as a new genus within the Ornithoctoninae subfamily of Southeast Asian tarantulas. The discovery comes 104 years after Chamberlin defined the previous genus in this subfamily, Melognathus, in 1917.
What makes Taksinus distinct from all other Asian arboreal genera is the relatively short embolus of the male pedipalps, which is used to transport sperm to the female seminal receptacles during mating. In addition to morphology, its habitat type and distribution are also different from those of related species. While Asian arboreal tarantulas have been reported in Indonesia (Sangihe Island and Sulawesi), Malaysia, Singapore, Sumatra, and Borneo, Taksinus was discovered in northern Thailand, which is a new geographical location for those spiders.
Looking at an entrance hole of a bamboo culm tarantula. Photo by Narin Chomphuphuang
“We examined all of the trees in the area where the species was discovered. This species is unique because it is associated with bamboo, and we have never observed this tarantula species in any other plant. Bamboo is important to this tarantula, not only in terms of lifestyle but also because it can only be found in high hill forests in the northern part of Thailand, at an elevation of about 1,000 m. It is not an exaggeration to say that they are now Thailand’s rarest tarantulas,” says Narin.
The tarantula Taksinus bambus in its habitat. Photo by JoCho Sippawat
Few people realize how much of Thailand’s wildlife remains undocumented. Thai forests now cover only 31.64% of the country’s total land area. We are primarily on a mission to research and save the biodiversity and wildlife within these forests from extinction, especially species-specific microhabitats.
Research article:
Songsangchote C, Sippawat Z, Khaikaew W, Chomphuphuang N (2022) A new genus of bamboo culm tarantula from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1080: 1-19. https://doi.org/10.3897/zookeys.1080.76876
For the first time in Slovakia, the dwarf spider Walckenaeria stylifrons and crab spider Spiracme mongolica were discovered on sand dunes in Záhorie Protected Landscape Area, on localities that serve as a military complex, used by the native Slovak army. Moreover, the spider W. stylifrons was found in a wine-growing region near the historical town of Modra.
European continental sand dunes, characterized by high ground temperature, high temperature fluctuations and movement of sand masses, belong to the rare, climatically extreme areas resembling deserts. In Europe, lowland sandy grassland habitats are considered to be among the most endangered and are often the subject of nature conservation.
The researchers decided to understand the spider assemblages living in such extreme habitats in Western Slovakia. During 2018–2019, the study sites were chosen and co-called pitfall traps hidden in the ground were used to collect spiders.
Among other collected species, two spiders were found for the first time in Slovakia. The dwarf spider W. stilifrons is recorded from 15 European countries and it is known from Eastern England to Eastern Germany in the north, and from the Iberian Peninsula to the Crimea and Cyprus in the south. Within Central Europe, the species has so far been known from Austria, Germany and Switzerland. The crab spider S. mongolica is known from Serbia to the European part of Russia. Its distribution in Asia extends from Central Asian part of Russia, Azerbaijan, Kazakhstan to Mongolia and China. In China it is known only from Western Inner Mongolia and Xinjiang region.
Crab spider, Spiracme mongolica
Upon the detailed examination of male copulatory organs, the researchers found out that one of the species shares characters typical for the genus Spiracme, in consideration of that a new combinationSpiracme mongolica for the spider previously known as Xysticus mongolicus was suggested.
In conclusion, the authors assume that W. stilifrons can live elsewhere in Europe. The rarity of the species may be related to the occurrence of adults, especially in the winter months, as most researchers are focused only on the growing seasons. The occurrence of S. mongolica in sand dunes in Slovakia confirms this species preference for dry habitats. The new finding of S. mongolica is the most known westernmost.
Research article: Purgat P, Gajdoš P, Purkart A, Hurajtová N, Volnár Ľ, Krajčovičová K (2021) Walckenaeria stilifrons and Spiracme mongolica (Araneae, Linyphiidae, Thomisidae), two new species to Slovakia. Check List 17 (6): 1601-1608. doi: 10.15560/17.6.1601
As someone who enjoys taking regular long walks, listening to podcasts has always been an irreplaceable source of pleasure for me. As an arachnologist and taxonomist, I had been hoping for years that someone would start a podcast dedicated to taxonomy and the discovery of new species. Thankfully, earlier this year Dr. L. Brian Patrick from Dakota Wesleyan University started such a project with the New Species Podcast, and the results are much, much better than what I’d been hoping for. I was particularly delighted when I got invited to the show to talk about a paper in which, together with my colleague Dr. Yuri M. Marusik, we described 17 new species of zodariid spiders from Iran and Turkmenistan.
Loveh region in northern Iran, where Mesiotelus patricki was found. Photo by Barbod Safaei-Mahroo
I first met Brian in person at the 19th International Congress of Arachnology in Taiwan in 2013, where we had a fruitful discussion about various collecting methods for spiders and other arthropods. I personally believe that it is of utmost importance that efforts like Brian’s to popularize taxonomy – especially in these trying times – should be publicly acknowledged. And what better way to acknowledge someone’s efforts in popularizing the discovery of new species than to actually dedicate a new species name to them? For this reason, together with my colleague Dr. Marusik we decided to name one of our newly discovered species of Iranian spiders after Brian, in recognition of his wonderful job on the production of the podcast.
Mesiotelus patricki. Photo by Alireza Zamani
I am deeply moved and flattered that anyone would name a species after me. I think they must have run out of ideas for specific epithets if they’re naming a species after me!
I am glad that the podcast has inspired at least a few people, and I am trying to help more people understand that dozens to hundreds of new species are described almost every day of the year. I want people to understand the process of biodiversity discovery and the lab and field work associated with that process. Most importantly, I hope that people recognize that we are losing species before we can even find them.
L. Brian Patrick
The new species is named Mesiotelus patricki and is a member of the family Liocranidae. Commonly known as spiny-legged sac spiders, this family is relatively poorly studied globally, with less than 300 currently recognized species; most liocranids are free-living ground-dwelling spiders that can be found within the forest litter and under rocks and stones, usually in well-vegetated habitats.
Oh, WOW, I am so deeply moved (I shed a tear!) that my friend and colleague @Persian_spiders named a new spider species after me! Mesiotelus patricki Zamani & Marusik, 2021 in @ZooKeys_Journal, and named to honor me and the @PodcastSpecies work that I have done. Thanks, Alireza! pic.twitter.com/nxYLLEnbOK
Loveh region in northern Iran, where Mesiotelus patricki was found. Photo by Barbod Safaei-Mahroo
In the same paper, we also described a new genus and another nine new species of spiders from Iran. Among these, Brigittea avicenna was named after the preeminent Persian polymath Avicenna, while Zagrotes borna and Zagrotes parla were named using Persian given names, meaning “young” and “glowing”, respectively.
It is noteworthy that all of the specimens used in this study had been collected in the 70s by Austrian and Swiss zoologists, and had been sitting on museum shelves for decades, waiting to be “discovered” and formally described. This clearly demonstrates the importance of natural history museums and the value of their scientific collections, as major institutes around the world house hundreds of thousands of undescribed species that are just out there, waiting to be named. We hope that efforts like Brian’s podcast would bring more attention to taxonomy and discovery of new species, as more and more people and investments are indeed needed in this field to unveil the magnificent biodiversity of our planet.
“The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous.”
Parasitoid wasps (Hymenoptera) are one of the most species rich animal taxa on Earth, but their tropical diversity is still poorly known. Now, scientists have discovered the Dolichomitus meii and Polysphincta parasitoid wasp species previously unknown to science in South America. The new species found in the rainforests entice with their colours and exciting habits. Researchers at the University of Turku have already described 53 new animal species this year.
Researchers at the Biodiversity Unit of the University of Turku, Finland, study insect biodiversity particularly in Amazonia and Africa. In their studies, they have discovered hundreds of species previously unknown to science. Many of them are exciting in their size, appearance, or living habits.
“The species we have discovered show what magnificent surprises the Earth’s rainforests can contain. The newly discovered Dolichomitus meii wasp is particularly interesting for its large size and unique colouring. With a quick glance, its body looks black but glitters electric blue in light. Moreover, its wings are golden yellow. Therefore, you could say it’s like a flying jewel,” says Postdoctoral Researcher Diego Pádua from the Instituto Nacional de Pesquisas da Amazônia (INPA) in Brazil, who has also worked at the Biodiversity Unit of the University of Turku.
Dolichomitus parasitoid wasps are parasitic on insect larvae living deep in tree trunks. They lay a single egg on the insect larva and the wasp hatchling eats the host larva as it develops.
The Dolichomitus meii wasp was discovered in western Amazonia. Its body looks black but glitters electric blue in light. The wasp lays its eggs on insect larvae living deep in wood. It reaches the host larvae with a long ovipositor. Picture: Filippo De Giovanni and Rodrigo Araújo
“The ovipositor of the Dolichomitus meii wasp is immensely long. It sticks the ovipositor into holes in the wood and tries to find host larvae inside. The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous,” says Professor of Biodiversity Research Ilari E. Sääksjärvi from the University of Turku.
Polysphincta Parasitoid Wasps Manipulate the Behaviour of the Host Spider
At the same time as the publication on the Dolichomitus meii species, the researchers published another research article on South American wasp species. The article describes altogether seven new wasp species belonging to the Polysphincta genus.
Polysphincta bonita refers to the species’ beautiful appearance. The species is parasitic on spiders. Picture: Diego Padúa and Ilari E. Sääksjärvi
The Polysphincta parasitoid wasps are parasitic on spiders. The female attacks a spider in its web and temporarily paralyses it with a venomous sting. After this, the wasp lays a single egg on the spider, and a larva hatches from the egg. The larva gradually consumes the spider and eventually pupates.
“The wasps that are parasitic on spiders are extremely interesting as many of them can manipulate the behaviour of the host spider. They can change the way a spider spins its web, so that before its death, the spider does not spin a normal web to catch prey. Instead, they spin a safe nest for the parasitoid wasp pupa,” describes Professor Sääksjärvi.
Researchers at University of Turku Have Already Discovered 53 New Species This Year
The new species are often discovered through extensive international collaboration. This was also the case with the newly published studies.
“For example, the discovery of the Dolichomitus meii species was an effort of six researchers. Moreover, these researchers all come from different countries,” says Professor Sääksjärvi.
The work to map out biodiversity previously unknown to science continues at the University of Turku and there are interesting species discoveries ahead.
“I just counted that, in 2021, the researchers of the Biodiversity Unit at the University of Turku have described already 53 new species from different parts of the globe – and we’re only halfway through the year,” Sääksjärvi announces cheerfully.
Di Giovanni F, Pádua DG, Araujo RO, Santos AD, Sääksjärvi IE (2021) A striking new species of Dolichomitus Smith, 1877 (Hymenoptera: Ichneumonidae; Pimplinae) from South America. Biodiversity Data Journal 9: e67438. https://doi.org/10.3897/BDJ.9.e67438
Pádua DG, Sääksjärvi IE, Spasojevic T, Kaunisto KM, Monteiro RF, Oliveira ML (2021) A review of the spider-attacking Polysphincta dizardi species-group (Hymenoptera, Ichneumonidae, Pimplinae), with descriptions of seven new species from South America. ZooKeys 1041: 137-165. https://doi.org/10.3897/zookeys.1041.65407
New species named after famous novelist Neil Gaiman, musician and human rights activist Peter Gabriel and singer-songwriter Brandi Carlile are among thirty-three new trapdoor spiders described from across North and South America. Following the discovery, published in the openly accessible, peer-reviewed scholarly journal ZooKeys, the known species in the genus Ummidia increased more than twice.
In a recent revision of the trapdoor spider genus Ummidia completed at the University of California, Davis, co-authors Dr. Rebecca Godwin (Piedmont University, GA) and Dr. Jason Bond (University of California, Davis, CA) described 33 new species found throughout North and South America. Their study is published in the openly accessible, peer-reviewed scholarly journal ZooKeys. A number of these species were named after popular artists, including Neil Gaiman, Peter Gabriel and Brandi Carlile.
“I think anything we can do to increase people’s interest in the diversity around them is worthwhile and giving species names that people recognize but that still have relevant meaning is one way to do that,” says Dr. Godwin.
A male Ummidia brandicarlileae from Yucatán, Mexico
The newly described trapdoor spider Ummidia brandicarlileae is named after singer-songwriter and activist Brandi Carlile, and occurs in Yucatán, Mexico, where Carlile’s annual Girls Just Wanna Weekend Festival is held. The event was created to counter the lack of female representation at mainstream music festivals.
A male Ummidia neilgaimani from Roanoke Co., Virginia, U.S.
Similarly, Ummidia neilgaimani is named after fantasy and horror writer, Neil Gaiman, author of a number of fantasy and horror books with spider-based characters, and a particular favorite of Dr. Godwin.
A male Ummidia gabrieli from Baja California Sur, Mexico
In addition to these pop culture references, Godwin and Bond named several species in honor of various people and places. The Pine Rockland trapdoor spider, found in southern Florida, is named after the critically endangered pine rockland habitat in which it is found. Ummidia paulacushingae is named for Dr. Paula Cushing, long-time collaborator and friend of Bond and friend, and mentor to Godwin.
With the names of the new to science species, the authors were also able to shed light on lesser-known historical figures. Ummidia bessiecolemanae is named for Bessie Coleman (1892–1926), the first African American and Native American woman to obtain her pilot’s license.
Trapdoor spiders are unique compared to most of the spiders that we are familiar with in that they don’t use silk to make a web. Instead, they live in burrows lined with silk and covered with a “trapdoor”.
Trapdoor spiders in the genus Ummidia are actually very widespread—they can be found from Maryland west to Colorado through Mexico and Caribbean as far south as Brazil. However, because they spend most of their lives underground, people rarely ever encounter a trapdoor spider. When trapdoor spiders are young, they leave their mother’s burrow and make one of their own. Females will spend their entire lives (which can be decades) in those burrows if they aren’t disturbed, but when a male spider matures (5 to 7 years of age), they emerge in search of females. This is when people are most likely to see them.
“I am continually blown away by how little we know about what is out there living on this planet with us. Most people don’t even realize they are sharing their space with these creatures literally right under their feet”
Dr. Rebecca Godwin
“Given the fact that these spiders tend to have very limited ranges and have very low dispersal, entire species can be winked out of existence without us ever knowing they were here, and I find that kind of heartbreaking. Documenting the diversity of groups like Ummidia gives us knowledge we need to appreciate and conserve the rich and diverse life that surrounds us.”
Research article:
Godwin RL, Bond JE (2021) Taxonomic revision of the New World members of the trapdoor spider genus Ummidia Thorell (Araneae, Mygalomorphae, Halonoproctidae). ZooKeys 1027: 1-165. https://doi.org/10.3897/zookeys.1027.54888
Guest blog post by Manfredo Alejandro Turcios-Casco
Since its foundation in 2015, the research team “The Big Bat Theory” has filled important information gaps regarding bats and their ectoparasites in Honduras. We started as just bachelor students mist-netting bats in our university (Universidad Nacional Autónoma de Honduras- UNAH) in our free time. Then we studied a lot about their natural history, distribution, and ecology, and, without any financial support, we started to travel the country studying bats.
The early years of “The Big Bat Theory” research group
At that time, we did not know that many of those records, in the future, would be important for Honduras. After saving some money, we travelled to different departments of Honduras such as Francisco Morazán, Valle, Gracias a Dios, Comayagua, and Santa Bárbara. Then we found support from Marcio Martínez to get to know La Mosquitia, and we started studying bats in unexplored regions. Because of this initiative, we collaborated with bat ectoparasite specialist Gustavo Graciolli and bat specialist Richard Laval, which resulted in the publication of our research in the open-access, peer-reviewed journal Check List.
As a result of this project, we were able to register for the first time the Spinturnicidae family in Honduras with the species Periglischrus iheringi and P. ojastii, a new record of Basilia ortizi (Nycteribiidae), Aspidoptera delatorrei, Strebla matsoni (found hosting Artibeus jamaicensis for the first time), and Neotrichobius bisetosus (Streblidae). The latter, previously only known from Venezuela, is the record with the northernmost locality published to date. We managed to increase the number of species of bat ectoparasites in Honduras to 48, which is 33 more than in Paraguay and 65 less than in Peru.
Species of ectoparasites recorded for the first time in Honduras: A) Periglischrus iheringi (Spinturnicidae); B) Periglischrus ojastii (Spinturnicidae); C) Aspidoptera delatorrei (Streblidae); D) Trichobius yunkeri (Streblidae); E) Basilia ortizi (Nycteribiidae); F) Neotrichobius bisetosus (Streblidae); G) Strebla matsoni (Streblide).
We definitely consider that this still misunderstood group needs more research effort locally and in general. Considering the lack of knowledge, the chances of discovering new species for the region, new records for the country or region, as well as new discoveries about the relationship and interactions with their hosts, are high. The number of bat species registered for Honduras is a predictor of the number of ectoparasite species that may exist. We also consider “La Reserva de la Biosfera del Río Plátano” an important site for the study of ectoparasites of bats. This is the most important area in Honduras for bat research and conservation, not only because of its high biodiversity, but also because it is a poorly studied region.
“We are very motivated to have carried out this study on new records of ectoparasites in bats, since it is the first investigation we do on this taxon, but we are sure that it will not be the last, since we have already begun to collect new data in collaboration with experts on this topic. We are sure that new discoveries still await us in this area, and we are eager to make new contributions and enrich the information on this taxon in Honduras and the world.”
Alejandro Orellana, co-author of the publication
***
Research paper:
Gustavo Graciolli G, Ávila-Palma HD, Ordoñez-Trejo EJ, Soler-Orellana JA, Ordoñez-Mazier DI, Martínez M, LaVal R, Turcios-Casco MA (2021) Additions of host associations and new records of bat ectoparasites of the families Spinturnicidae, Nycteribiidae and Streblidae from Honduras. Check List 17(2): 459–469. https://doi.org/10.15560/17.2.459
Considered as one of the best studied spiders, the orb-weavers remain poorly known in the central parts of the Palearctic ecozone. Hence, an international research team took to the Caucasus, Middle East and Central Asia. Their article in the open-access peer-reviewed journal ZooKeys documents three new-to- science species, where one is named after the Indo-Iranian god of light Mithra. Another carries the name of the flamboyant French mathematician and spider aficionado Cédric Villani.
With their astonishingly precise spiral webs, orb-weaving spiders are the arachnid analogy of first-class mathematicians, note the researchers behind the study
Despite being considered as one of the best-studied spiders in the Palearctic, the orb-weaver spiders (family Araneidae) remain poorly known in the central parts of the ecozone. To bridge the knowledge gaps, an international research team of researchers took to the Caucasus, Middle East and Central Asia to study two of those genera: Araniella and Neoscona.
As a result, in their article, recently published in the open-access scientific journal ZooKeys, arachnologists Alireza Zamani (University of Turku, Finland), Yuri M. Marusik (Institute for Biological Problems of the North RAS, Russia) and Anna Šestáková (The Western Slovakian Museum, Slovakia) describe three new-to-science species, where one: Araniella villanii – carries the name of the flamboyant French mathematician and spider aficionado Cédric Villani, who has been dubbed the “Lady Gaga of Mathematics”. Even if unknown until now, the species turned out to have a wide distribution, ranging from south-western Iran to eastern Kazakhstan and northern India.
A female specimen of the newly described orb-weaver species Araniella villanii on its web (Kazakhstan) Photo by Alireza Zamani
“It’s a well-known fact within the arachnological community that spiders are masters of mathematics and architecture. Orb-web spiders, in particular, tend to build beautiful and architecturally aesthetic webs, some of which are formed in spirals in line with the repetitive pattern of the golden ratio,”
explains lead author of the study Alireza Zamani.
The web of the garden orb-web spider Araneus diadematus, for example, usually has 25 to 30 radial threads forming an astonishingly precise angle of about 15°, which the spider carefully measures using its front legs. According to scientific observations, if the front legs are removed, the regularity of the angles between adjacent radial threads is impaired.
A female specimen of the newly described orb-weaver species Araniella villanii on its web (Kazakhstan) Photo by Alireza Zamani
For these and many other reasons, spiders must have been an inspiration for mathematicians like Cédric Villani, who has publicly shown a mysterious love for these arachnids. Awarded the Fields Medal (some say it is the Mathematics equivalent of the Nobel Prize) in 2010 and having served as the director of Sorbonne University‘s Institut Henri Poincaré from 2009 to 2017, the Frenchman’s love for spiders is quite evident, thanks to the constant presence of a spider brooch on his lapel. Although he has never explained the reason behind his appreciation of these eight-legged wonders, now he has a real, even scientifically sound connection to them in the real world.
Apart from Araniella villanii, whose scientific name honours the prominent scientist and recognises his love for spiders, the other two newly-described species also have a story behind their names. One of them: Neoscona isatis, discovered in central Iran, was named after the historical name of its type locality; and Araniella mithra, known from north-western, central and south-western Iran, was named after Mithra, the god of light in the ancient Indo-Iranian mythology.
Curiously, spiders in the genus Araniella are green in colour due to certain bile pigments (biliverdin) that make them very difficult to spot in their natural habitat, as they live mostly on leaves.
French mathematician and spider aficionado Cédric Villani (left) with lead author and discoverer of the three new-to-science orb-weaver spiders Alireza Zamani (right) in Iran (2015)
“I met Mr. Villani in May 2015 at University of Tehran, where he was an invited speaker. We got to briefly talk about our shared interest in spiders, and I had the opportunity to present him an Iranian wolf spider as a souvenir!”
recalls Zamani.
“It’s important to note that, with the efforts of taxonomists, new species are being discovered and described with an average rate of 18,000 species per year, but simultaneously both known and undescribed species go extinct due to human activities, with the current rate being within or even higher than the range of the newly described ones. A first step towards conservation of biodiversity includes taxonomic research to document species and to define hotspots of species diversity in order to protect such carefully selected habitats,”
he points out.
A female specimen of the newly described orb-weaver species Araniella villanii in its natural habitat (Kazakhstan) Photo by Anatoliy Ozernoy
“However, with the current situation of low funding for taxonomic research, the number of students doing taxonomic research is in severe decline and the current average ‘shelf life’ (between discovery and description) of a new species remains at about 21 years. Araniella villanii is a great example of how much we don’t know about our biodiversity.”
Despite being discovered all the time, new species mostly have very restricted ranges and are only known from a few nearby localities. Orb-weaver spiders have very good dispersal abilities and it is relatively uncommon to detect new species of them.
“Araniella villanii is known from a few localities in southwestern Iran, eastern Kazakhstan and northern India, a distribution range covering at least ten countries, and yet the species was unknown to science until now. I think that the message that this particular discovery implies is that while there are such widely-distributed undescribed species out there, we need more and more taxonomic research, both in the field and in the natural history museum collections, which house a considerable number of undescribed species, in order to preserve the remaining biodiversity on earth, before it’s too late”.
###
Original source:
Zamani A, Marusik YM, Šestáková A (2020) On Araniella and Neoscona (Araneae, Araneidae) of the Caucasus, Middle East and Central Asia. ZooKeys 906: 13-40. https://doi.org/10.3897/zookeys.906.47978