Citizen scientists from three continents help discover a new, giant slug from Europe

The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.

You might think that Europe is so well studied that no large animals remain undiscovered. Yet today, a new species of giant keelback slug from Montenegro was announced in the open-access Biodiversity Data Journal. The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.

A living specimen of Limax pseudocinereoniger on a researcher’s hand.

The international team of citizen scientists from Italy, the Netherlands, Serbia, South Africa, and the United States found the slug in July 2019 while exploring the spectacular Tara Canyon, Europe’s deepest gorge, on inflatable rafts. The brownish-grey animals, with a sharp ridge along the back, and 20 cm in length when fully stretched, were hiding under rocky overhangs in the narrowest part of the ravine.

A living specimen of Limax pseudocinereoniger seen from the side. Photo by Pierre Escoubas

At first, the newly discovered slugs seemed superficially indistinguishable from the ash-black keelback slug (Limax cinereoniger), which also lives in the Tara Canyon. The team had to use a portable DNA lab to work out that there is a 10% difference between the two slugs in the so-called DNA barcode. Moreover, when they dissected a few of them, they found differences in the reproductive organs as well. This was enough to decide that a new species had been discovered, and they named it Limax pseudocinereoniger to indicate its similarity to L. cinereoniger.

The field trip was run by Taxon Expeditions, which organises real scientific expeditions for the general public, with the aim to make scientific discoveries. Rick de Vries, a web editor and illustrator from Amsterdam who found the first specimen of L. pseudocinereoniger, says: “It’s an incredible thrill to hold an animal in your hands and to know that it is still unknown to science”.

Citizen scientists studying specimens in the team’s field lab in Montenegro.

Zoologist Iva Njunjić, one of the authors of the paper, thinks that more unknown species are likely to be found in Tara Canyon and the Durmitor National Park, of which it is part. “Using a combination of DNA analysis and anatomy will probably reveal more species that are identical on the outside but actually belong to different species,” she says.

In 2023, Taxon Expeditions plans to take a new team of citizen scientists to Montenegro with a mission to discover new species and document the hidden biodiversity.

Taxon Expeditions was founded by Iva Njunjić and Menno Schilthuizen of Naturalis Biodiversity Center and specialises in ‘taxonomy tourism’ trips in Brunei, Italy, Montenegro, Panama, and the Netherlands.

Original source:

Schilthuizen M, Thompson CG, de Vries R, van Peursen ADP, Paterno M, Maestri S, Marcolongo L, Esposti CD, Delledonne M, Njunjić I (2022) A new giant keelback slug of the genus Limax from the Balkans, described by citizen scientists. Biodiversity Data Journal 10: e69685. https://doi.org/10.3897/BDJ.10.e69685

Guest blog post: Operation desert: crab and dwarf spider discovered on sand dunes in military area, Slovakia

Guest blog post by Pavol Purgat

For the first time in Slovakia, the dwarf spider Walckenaeria stylifrons and crab spider Spiracme mongolica were discovered on sand dunes in Záhorie Protected Landscape Area, on  localities that serve as a military complex, used by the native Slovak army. Moreover, the spider W. stylifrons was found in a wine-growing region near the historical town of Modra.

Scientists Pavol Purgat, Dr Peter Gajdoš, Natália Hurajtová, Institute of Landscape Ecology-Slovak Academy of Sciences, Slovakia, and Dr Katarína Krajčovičová, Dr Adrián Purkart, Ľubomír Volnár, Faculty of Natural Sciences-Comenius University in Bratislava, Slovakia have published their paper, where they introduce two new spider species for Slovakia, in the open-access journal CheckList, the journal of biodiversity data.

Dwarf spider, Walckenaeria stilifrons

European continental sand dunes, characterized by high ground temperature, high temperature fluctuations and movement of sand masses, belong to the rare, climatically extreme areas resembling deserts. In Europe, lowland sandy grassland habitats are considered to be among the most endangered and are often the subject of nature conservation.

The researchers decided to understand the spider assemblages living in such extreme habitats in Western Slovakia. During 2018–2019, the study sites were chosen and co-called pitfall traps hidden in the ground were used to collect spiders.

Among other collected species, two spiders were found for the first time in Slovakia. The dwarf spider W. stilifrons is recorded from 15 European countries and it is known from Eastern England to Eastern Germany in the north, and from the Iberian Peninsula to the Crimea and Cyprus in the south. Within Central Europe, the species has so far been known from Austria, Germany and Switzerland. The crab spider S. mongolica is known from Serbia to the European part of Russia. Its distribution in Asia extends from Central Asian part of Russia, Azerbaijan, Kazakhstan to Mongolia and China. In China it is known only from Western Inner Mongolia and Xinjiang region.

Crab spider, Spiracme mongolica

Upon the detailed examination of male copulatory organs, the researchers found out that one of the species shares characters typical for the genus Spiracme, in consideration of that a new combination Spiracme mongolica for the spider previously known as Xysticus mongolicus was suggested.

In conclusion, the authors assume that W. stilifrons can live elsewhere in Europe. The rarity of the species may be related to the occurrence of adults, especially in the winter months, as most researchers are focused only on the growing seasons. The occurrence of S. mongolica in sand dunes in Slovakia confirms this species preference for dry habitats. The new finding of S. mongolica is the most known westernmost.

Research article:
Purgat P, Gajdoš P, Purkart A, Hurajtová N, Volnár Ľ, Krajčovičová K (2021) Walckenaeria stilifrons and Spiracme mongolica (Araneae, Linyphiidae, Thomisidae), two new species to Slovakia. Check List 17 (6): 1601-1608. doi: 10.15560/17.6.1601

The first Red List of Taxonomists in Europe is calling for the support of insect specialists

The Red List of Taxonomists portal, where taxonomy experts in the field of entomology can register to help map and assess expertise across Europe, in order to provide action points necessary to overcome the risks, preserve and support this important scientific community, will remain open until 31st October 2021.

About 1,000 insect taxonomists – both professional and citizen scientists – from across the European region have already signed up on the Red List of Taxonomists, a recently launched European Commission-funded initiative by the Consortium of European Taxonomic Facilities (CETAF), the International Union for Conservation of Nature (IUCN) and the scholarly publisher best-known for its biodiversity-themed journals and high-tech innovations in biodiversity data publishing Pensoft.

Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists until 31st October 2021.

Within the one-year project, the partners are to build a database of European taxonomy experts in the field of entomology and analyse the collected data to shed light on the trends in available expertise, including best or least studied insect taxa and geographic distribution of the scientists who are working on those groups. Then, they will present them to policy makers at the European Commission.

By recruiting as many as possible insect taxonomists from across Europe, the Red List of Taxonomists initiative will not only be able to identify taxa and countries, where the “extinction” of insect taxonomists has reached a critical point, but also create a robust knowledge base on taxonomic expertise across the European region to prompt further support and funding for taxonomy in the Old Continent.

On behalf of the project partners, we would like to express our immense gratitude to everyone who has self-declared as an insect taxonomist on the Red List of Taxonomists registration portal. Please feel welcome to share our call for participation with colleagues and social networks to achieve maximum engagement from everyone concerned about the future of taxonomy!

***

Read more about the rationale of the Red List of Taxonomists project.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

Scientists unravel the evolution and relationships for all European butterflies in a first

For the first time, a complete time-calibrated phylogeny for a large group of invertebrates is published for an entire continent. A German-Swedish team of scientists provide a diagrammatic hypothesis of the relationships and evolutionary history for all 496 European species of butterflies currently in existence. Their study provides an important tool for evolutionary and ecological research, meant for the use of insect and ecosystem conservation.

For the first time, a complete time-calibrated phylogeny for a large group of invertebrates is published for an entire continent. 

The figure shows the relationships of the 496 extant European butterfly species in the course of their evolution during the last 100 million years.
Image by Dr Martin Wiemers

In a recent research paper in the open-access, peer-reviewed academic journal ZooKeys, a German-Swedish team of scientists provide a diagrammatic hypothesis of the relationships and evolutionary history for all 496 European species of butterflies currently in existence. Their study provides an important tool for evolutionary and ecological research, meant for the use of insect and ecosystem conservation.

In order to analyse the ancestral relationships and history of evolutionary divergence of all European butterflies currently inhabiting the Old continent, the team led by Martin Wiemers – affiliated with both the Senckenberg German Entomological Institute and the Helmholtz Centre for Environmental Research – UFZ, mainly used molecular data from already published sources available from NCBI GenBank, but also contributed many new sequences, some from very local endemics for which no molecular data had previously been available.

The phylogenetic tree also includes butterfly species that have only recently been discovered using molecular methods. An example is this Blue (Polyommatus celina), which looks similar to the Common Blue. It used to be mistaken for the Common Blue in the Canary Islands and the southwestern part of the Mediterranean Region.
Photo by Dr Martin Wiemers

Butterflies, the spectacular members of the superfamily Papilionoidea, are seen as an important proponent for nature conservation, as they present an excellent indicator group of species, meaning they are capable of inferring the environmental conditions of a particular habitat. All in all, if the local populations of butterflies are thriving, so is their habitat.

Furthermore, butterflies are pollinating insects, which are of particular importance for the survival of humans. There is no doubt they have every right to be recognised as a flagship invertebrate group for conservation.

While many European butterflies are seriously threatened, this one: Madeiran Large White (Pieris wollastoni) is already extinct. The study includes the first sequence of this Madeiran endemic which was recorded in 1986 for the last time. The tree demonstrates that it was closely related to the Canary Island Large White (Pieris cheiranthi), another threatened endemic butterfly, which survives only on Tenerife and La Palma, but is already extinct on La Gomera.
Photo by Dr Martin Wiemers

In recent times, there has been a steady increase in the molecular data available for research, however, those would have been only used for studies restricted either to a selected subset of species, or to small geographic areas. Even though a complete phylogeny of European butterflies was published in 2019, also co-authored by Wiemers, it was not based on a global backbone phylogeny and, therefore, was also not time-calibrated.

In their paper, Wiemers and his team point out that phylogenies are increasingly used across diverse areas of macroecological research, such as studies on large-scale diversity patterns, disentangling historical and contemporary processes, latitudinal diversity gradients or improving species-area relationships. Therefore, this new phylogeny is supposed to help advance further similar ecological research.

The study includes molecular data from 18 localised endemics with no public DNA sequences previously available, such as the Canary Grayling (Hipparchia wyssii), which is only found on the island of Tenerife (Spain).
Photo by Dr Martin Wiemers

Original source: 

Wiemers M, Chazot N, Wheat CW, Schweiger O, Wahlberg N (2020) A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938: 97-124. https://doi.org/10.3897/zookeys.938.50878

Invasive parrots have varying impacts on European biodiversity, citizens and economy

The monk parakeet (Myiopsitta monachus), also known as the Quaker parrot, is another South American species, known from the temperate to subtropical regions of Argentina and neighboring countries.
Photo by ParrotNet.

Non-native parrots can cause substantial agricultural damage and threaten native biodiversity, although impacts vary strongly depending on where these parrots have been introduced. Brought to Europe as pets, escaped or released parrots have established numerous wild populations across Europe. Tens of thousands of ring-necked and monk parakeets make up the bulk of Europe’s parrots, but several more species are gaining a foothold too.

A pan-European team of researchers, conservationists, wildlife managers and policy-makers worked together under the umbrella of ParrotNet, an EU COST Action, and have reviewed the available evidence on parrot damage, concluding that measures to prevent parrots from invading new areas are paramount for limiting future harm. Their findings are published in the open-access journal NeoBiota.

The ring-necked parakeet (Psittacula krameri), also known as the rose-ringed parakeet, originates in Africa and South Asia.
Photo by ParrotNet.

Introduced parrots can damage the environment, but severe impacts remain rare and localised. So far, most reports of damage are linked to the widespread and locally abundant ring-necked and monk parakeets. Studies show that in their native ranges, both species can and regularly do inflict large crop losses, but in Europe, expectations of comparable widespread and severe damage to agriculture have so far failed to materialise.

In Europe, competition with native species presents a more serious problem, especially for ring-necked parakeets as they can compete with native species for food and breeding sites. Meanwhile, in the Americas, monk parakeets are notorious for the damage their stick nests cause to power infrastructures by catching fire, yet very little evidence for such problems exist in Europe.

Reported impacts for other parakeet species in Europe are virtually nonexistent, probably because these species have been introduced more recently and currently exist as relatively small and localised populations.

Dr Diederik Strubbe of the Terrestrial Ecology UnitGhent University (Belgium) elaborates:

“It was already well known that introduced parakeets can cause damage. There is the oft-cited example of a vineyard in Surrey (UK) where ring-necked parakeets caused a loss of thousands of bottles of wine. In Seville (Spain), the same parakeet species is threatening an endangered native bat population by evicting them from their roosting tree cavities. Our review of all reported impacts however shows that such severe damage is not the norm. In most cases, parakeets introduced to Europe only do limited damage and, for example, about half of the studies focusing on competition between introduced parakeets and native species explicitly report no evidence of impact.”

The study also highlights that differences in the type of damage, and the way they are reported and summarised influences the outcomes of invasive species impact assessments.

The generalised threat level that invasive species pose is often based on their worst known impacts, whilst the capabilities of a species to do damage often requires specific circumstances. While this is relevant information for identifying those invaders that can potentially have major impacts, it is not necessarily representative of the impacts the species is likely to have when introduced to a new area. Similarly, including damage reports from the native range or from other invaded ranges typically results in higher threat level estimates compared to what actually has been observed in Europe.

What can be done to mitigate parakeet impacts?

The Alexandrine parakeet (Psittacula eupatria), also known as the Alexandrine parrot, occupies a natural range that extends from Afghanistan to Vietnam, including all of India, Sri Lanka and the Andaman Islands.
Photo by ParrotNet.

Based on the results of the study, the ParrotNet members also published a ‘policy brief’, summarising and discussing the implications of their findings for policy makers and wildlife managers. Their recommendations include stricter regulation aimed at preventing parakeet introductions, rapid response when emerging populations are detected and better dissemination of information to the public about the impact parakeets can have. For example, using bird feeders that parakeets cannot access may help reduce the abundance of these birds in cities.

Prof. Jim Groombridge of the Durrell Institute of Conservation and Ecology (DICE)School of Anthropology and ConservationUniversity of Kent (UK) comments:

“What should be done to minimise damage by invasive parakeets is ultimately up to policy-makers. But as scientists, we stress that our work again highlights that the best way to combat invasive species is to prevent their introduction and spread. Parakeet populations have already been successfully removed, for example, from islands such as the Seychelles, demonstrating that it is possible to stop them when prompt and decisive action is taken by governments. For the already established and large parakeet populations that can be found across parts of Europe, there is no ‘silver bullet’ solution to the problems they may locally pose. More applied research is needed to find cost-effective and acceptable methods to reduce parakeet impacts in those areas where they do cause damage”.

The nanday parakeet (Aratinga nenday), also known as the black-hooded parakeet, is a species native to South America.
Photo by ParrotNet.

###

Original source:

White RL, Strubbe D, Dallimer M, Davies ZG, Davis AJS, Edelaar P, Groombridge J, Jackson HA, Menchetti M, Mori E, Nikolov BP, Pârâu LG, Pečnikar ZF, Pett TJ, Reino L, Tollington S, Turbé A, Shwartz A (2019) Assessing the ecological and societal impacts of alien parrots in Europe using a transparent and inclusive evidence-mapping scheme. NeoBiota 48: 45-69. https://doi.org/10.3897/neobiota.48.34222

###

The ParrotNet Policy Brief can be downloaded from: https://www.kent.ac.uk/parrotnet/policybrief/.

New moth in Europe: A southern hemisphere species now resident in Portugal

As travelling in the 21st century is easier than ever, so is for species to make their way to new areas, sometimes increasing their distributional range, or even establishing whole new habitats. On the other hand, when they leave their natural predators and competitors behind, and find abundance of suitable resources somewhere else, they are running the risk of becoming invasive.

Nevertheless, such is not the case of a small, darkish brown moth from the southern hemisphere that is now resident in central Portugal. There, the species do not exhibit invasive behaviour, and so far has been only observed in very low numbers. The discovery is published in the open access journal Nota Lepidopterologica by an international research team, led by Martin Corley, CIBIO-InBIO, Portugal.

In 2012, Jorge Rosete, one of the co-authors of the study, spotted a female specimen that he could not identify near his house. When Martin took a look at it, he placed it in the concealer moth family (Oecophoridae), but was unable to recognise neither its species, nor its genus. It did not took long before a few more specimens were found, including males.

Initially, Martin thought the moth might originate from Australia, given the abundance of eucalyptus plantations in the area where it was found, and the fact that there are more concealer moth species in Australia than on any other continent. However, despite their efforts and contacts with other researchers, they failed to find an Australian species to match the Portuguese specimens. As a result, the mystery remained for the next four years, until a molecular study into moth DNA pulled the curtains.

A fragment of DNA, also called DNA barcode, matched three other genetically identical unnamed specimens, originally collected from South Africa, in the DNA database BOLD. Further collaboration with Alexander Lvovsky, Russian Academy of Sciences, allowed the assignation of the specimens to a species name: Borkhausenia intumescens, known from South Africa. However, it did not end there. Further research into museum collections showed that in fact this species had been previously described from Argentina as Borkhausenia crimnodes, and therefore should be named as such.

The origin of the Portuguese specimens remain a mystery, but it is evident that the species is now established in central Portugal. The larvae of other species in the same genus feed on decomposed plants, so this is likely the case with the moth species as well. It might be that it has entered the country through Figueira da Foz port along with imported timber from South America intended for the paper industry.

It is not known if this is a South African species that had first been transported to South America, and then – to Portugal, or if it is originally South American. It is also possible that it is not native in neither of these areas, and instead originates from another country, where it has not even been discovered yet. The moth favours warm temperate zones and potentially might appear anywhere in the world with suitable climate.

###

Original source:

Corley MFV, Ferreira S, Lvovsky AL, Rosete J (2017) Borkhausenia crimnodes Meyrick, 1912 (Lepidoptera, Oecophoridae), a southern hemisphere species resident in Portugal. Nota Lepidopterologica 40(1): 15-24. https://doi.org/10.3897/nl.40.10938.

New caddisfly species discovered in the Balkan biodiversity hotspot of Kosovo

The Republic of Kosovo turns out to be a unique European biodiversity hotspot after a second new species of aquatic insect has been described from the Balkan country. The new caddisfly was discovered by Prof. Halil Ibrahimi from the University of Prishtina, Kosovo, and international research team. They have their finding published in the open-access journal ZooKeys.

The new caddisfly species was found during a field trip, undertaken by the scientists in Sharr National Park in Kosovo. The aquatic insect belongs to the highly diverse genusDrusus, which, unfortunately, is under threat of extinction because of the ongoing pollution activities and mismanagement of freshwater ecosystems.

Called Drusus sharrensis, the new caddisfly has been named after the mountains where it was found. Thus, it is yet another example for a species, either animal or plant, bearing the same combination of names, and highlighting this range of mountains as a highly rich in rare and endemic species.

“Even though just discovered, the species may be already threatened by illegal logging, water extraction from springs, expansion of touristic activities and several other anthropogenic factors,” points out the author, “such as limestone and rock quarries operating in the Sharr Mountains in the vicinity of aquatic ecosystems potentially causing severe siltation.”

“Additionally, recent development of a winter tourism facility at Brezovice, close to the type locality of the new species, may enhance local degradation of terrestrial and, particularly, aquatic ecosystems in the Sharr Mountains,” he further explains. “The Brezovica Touristic Centre Development Project was designed by the Government of the Republic of Kosovo with support from the European Union to promote the touristic appeal and thus, economic importance of the area. This project will impact a total area of roughly 3,700 ha.”

This is the second aquatic insect species discovered from Kosovo for the last twelve months and probably more are to be expected in this highly under-investigated area of the European continent.

###

Original source:

Ibrahimi H, Vitecek S, Previši? A, Kučini? M, Waringer J, Graf W, Balint M, Keresztes L, Pauls SU (2016) Drusus sharrensis sp. n. (Trichoptera, Limnephilidae), a new species from Sharr National Park in Kosovo, with molecular and ecological notes. ZooKeys 559: 107-124. doi: 10.3897/zookeys.559.6350

Seventy-four cuckoos in the nest: A new key to all North European cuckoo wasp species

Captivating with their bright, vivid and brilliantly metallic bodies, the cuckoo wasps are also fascinating with their curious lifestyle, which has given them this common name. However, in terms of their taxonomic grouping, they have been quite problematic due to similarities between species and a wide range of variations within them.

To shed light on the issue, an international research team, led by MSc Juho Paukkunen, Finnish Museum of Natural History, Helsinki, provides descriptions and illustrations of all 74 species found in the Nordic and Baltic countries, including one new, in their recent publication in the open-access journal ZooKeys.

Beautiful in appearance, the cuckoo wasps penetrate the nests of unrelated solitary wasps and solitary bees to lay their eggs, similar to how a cuckoo bird does in songbird nests. With their armoured bodies and the ability to curl up into a tight ball the cuckoo wasps are well-defended against the owners of the nests and their stings and jaws. At the larval stage, they take advantage of their hosts by either parasitising them or stealing their food, eventually killing the host’s offspring.

Within the Nordic representatives of the family there are an exceptionally large number of red-listed and endangered species. This is one of the reasons why the authors intend to trigger more interest among their fellow entomologists about these curious wasps. They have compiled all relevant information concerning their distribution, abundance, habitats, flight season and host species. The authors have tried to keep their identification key as comprehensive and concise as possible, by singling out the essential information on diagnostic characters.

In the present study, the researchers describe a new species, called Chrysis borealis, which can be translated as ‘Northern’ cuckoo wasp. Although the male and female individuals are very similar, there is a significant variation in the colouration within the species. It is especially noticeable between the specimens collected from the northern localities and those from the southern ones. For instance, while the middle section of the body in southern specimens is either bright blue or violet with a greenish shimmer, in northern individuals it is nearly black, turning to greenish or golden green at the periphery.

The varying shades within a certain species are quite common among the cuckoo wasps. While it is often that distinctive colouration among other wasps and insects indicates their separate origin and therefore, taxonomic placement, within the emerald family it can be a mere case of habitat location with the northern populations typically darker.

Such tendencies often lead to doubts such as the one the authors have faced regarding their new species. It has been suggested that the Northern cuckoo wasp is in fact yet another variation of the very similar C. impressa, which is generally slightly brighter in colour, but at the same time distributed in warmer localities. However, using DNA sequence information and morphometric analysis, the team shows that there are enough consistent differences to separate them as distinct species, although they are defined as evolutionarily young siblings.

With their research the authors intend to provide a basis for further and more detailed studies on the distribution, biology and morphology of the North European representatives of these intriguing wasps.

###

Original source:

Paukkunen J, Berg A, Soon V, Odegaard F, Rosa P (2015) An illustrated key to the cuckoo wasps (Hymenoptera, Chrysididae) of the Nordic and Baltic countries, with description of a new species. ZooKeys 548: 1-116. doi: 10.3897/zookeys.548.6164