The undiscovered small beetles in the tropical rainforest are probably endless. But that did not discourage citizen scientists on expeditions to the Ulu Temburong forest in Borneo to keep adding them to scientific records, one at a time. Together with a team of researchers, they published a new species, Clavicornaltica mataikanensis in the open-access peer-reviewed Biodiversity Data Journal.
The minute, two-mm-long leaf beetle that lives on the forest floor is the latest discovery of Taxon Expeditions, which organises scientific field trips for teams consisting of both scientists and lay people. Unlike other science/adventure trips, Taxon Expeditions organises real scientific expeditions for lay people, guiding them in the discovery of new species of animals, by focusing on the thousands of ‘little things that run the world’.
Clavicornaltica mataikanensis, named for the stream Mata Ikan (“fish eye”) that runs in the valley where it was found, is one of a plethora of tiny beetle species that live in the leaf litter of tropical forests—and most of them have not yet been scientifically described and named. At 2 mm long, the flea beetle is actually one of the largest among its relatives – which might explain why so little is known about their ecology and diversity.
The field trip, in which local students and researchers also took part, gave untrained lay people the opportunity to participate in the study of this hidden world of biodiversity and in the process of naming and publishing new species. Participant Lehman Ellis, from the US, says it was “exciting and beautiful” to be part of the discovery.
Entomologist and founder of Taxon Expeditions, Dr. Iva Njunjić, says: “We introduce the general public to all these tiny, beautiful, and completely unknown animals, and show them that there is a whole world still to be discovered.”
Research article:
Otani S, Bertoli L, Lucchini F, van den Beuken TPG, Boin D, Ellis L, Friedrich H, Jacquot B, Kountouras S, Lim SR, Nigro E, Su’eif S’ie, Tan WH, Grafe U, Cicuzza D, Delledonne M, Njunjić I, Schilthuizen M (2024) A new, unusually large, Clavicornaltica Scherer, 1974 flea beetle from Borneo, described and sequenced in the field by citizen scientists (Coleoptera, Chrysomelidae, Galerucinae). Biodiversity Data Journal 12: e119481. https://doi.org/10.3897/BDJ.12.e119481
A citizen science project in Italy had high school students monitor the activities of ambrosia beetles, catching them with traps made from recycled plastic bottles.
While invasive alien species (IAS) represent a growing threat to global biodiversity and ecosystems, public awareness of them hasn’t seen a significant increase. Many researchers believe informing people about IAS is an essential long-term investment to counter biological invasions; in particular, “learning by doing” is an extremely effective method for involving new audiences, such as students.
About 500 Italian students aged 11-18 took part in a citizen science project that led to new geographical records of two alien species of ambrosia beetles considered to be quarantine pests by the European Union. Dr. Fernanda Colombari and Prof. Andrea Battisti of the University of Padova have described the results in a paper in the open-access journal NeoBiota.
The project involved schools located in urban areas in north-eastern Italy and aimed to connect environmental education and experiential outdoor learning through lectures, videos, reports, and large-scale surveillance of ambrosia beetles. The students used plastic bottles and hand sanitizer to trap ambrosia beetles in their school grounds. They then assessed their abundance, looking at the different species. Before and after the educational activities, their knowledge and awareness of IAS were tested using simple anonymous questionnaires.
“Our study aimed to both educate students and collect scientific data at sites such as schools where surveillance for potentially invasive ambrosia beetles is not usually conducted, or where it is sometimes misunderstood,” Dr. Colombari and Prof. Battisti write in their paper.
Identifying the specimens collected by the students, the authors found that IAS amounted to 35% of total catches. Remarkably, two out of the four alien species caught, Cnestus mutilatus and Anisandrus maiche, were recorded for the first time in Europe thanks to this study.
Furthermore, questionnaire results showed that the students acquired greater knowledge and increased their awareness and interest in IAS by more than 50%. After the experiment, most of them were interested in learning more about the negative effects of the introduction of IAS and practices to limit their spread.
This study shows that citizen science can successfully involve school students, giving them an opportunity to contribute in an effective early detection of IAS, as most first records occur in cities or suburban areas. The results also point to the primary role of education, which is as a major driver of change in tackling sustainability challenges. Moreover, as students bring home the message and share it with their relatives, the process supports intergenerational learning and enlarges public collaboration.
“People are often unaware of the role they have in the entire invasive process,” the researchers write in their study. Citizen science projects like this one are more than a reliable tool for collecting scientific data; they also help engage the public and spread awareness of biological invasions, eventually contributing to the creation of more efficient management strategies.
The monitoring programme in this study was conducted in the context of the European project HOMED (Holistic management of emerging forest pests and diseases), which has developed a full panel of scientific knowledge and practical solutions for the management of emerging native and non-native pests and pathogens threatening European forests. The main results of HOMED’s research are publically available in a special issue in the open-access scholarly journal NeoBiota.
Original source:
Colombari F, Battisti A (2023) Citizen science at school increases awareness of biological invasions and contributes to the detection of exotic ambrosia beetles. In: Jactel H, Orazio C, Robinet C, Douma JC, Santini A, Battisti A, Branco M, Seehausen L, Kenis M (Eds) Conceptual and technical innovations to better manage invasions of alien pests and pathogens in forests. NeoBiota 84: 211-229. https://doi.org/10.3897/neobiota.84.95177
UC Berkeley entomologist Kipling Will discovered a specimen of Bembidion brownorum while sampling for insects near Freshwater Creek on former Gov. Jerry Brown’s ranch.
When University of California, Berkeley, entomologist Kipling Will first heard that former Gov. Jerry Brown was hosting field scientists on his Colusa County ranch, he jumped at the chance to hunt for beetles on the property.
“I reached out and said, ‘Hey, I want to sample your beetles,’” Will said. “And [Brown] was quite game to let me come up there.”
Will, a professor of environmental science, policy and management, has travelled to all corners of California to study carabid beetles, ground beetles that are important predators of other insects. But Will’s repeated visits to Brown’s ranch proved especially fruitful.
While sampling for insects near Freshwater Creek, Will collected a rare species of beetle that had never been named or described — and which, according to records, had not been observed by scientists in over 55 years. The new species will be named Bembidion brownorum, in honor of Brown and his wife, Anne Brown.
“I’m very glad that [my ranch] is advancing science in some interesting and important ways,” said Brown, who has hosted a wild variety of field researchers, including geologists, anthropologists and botanists, on the property. “There are so many undiscovered species. I think it’s very important that we catalog and discover what we have and understand their impact on the environment — how it’s functioning and how it’s changing.”
Brown’s 2,500-acre ranch is about an hour’s drive north of Sacramento, in an agricultural region where most of the land is privately owned and insect biodiversity is historically understudied. For more than two years, Will has regularly sampled for insects on the ranch, sometimes even showing the beetles that he finds to the Browns.
Jerry Brown said his dedication to welcoming researchers onto his land is rooted in the ranch’s history as a stagecoach stop called Mountain House, and in his own interest in climate change and conservation.
“We don’t have stagecoach stop, but we have a place of gathering, of research and collaboration,” said Brown, who is currently chair of the California-China Climate Institute at UC Berkeley.
After collecting a beetle at the ranch that didn’t resemble any species he was familiar with, Will called up Bembidion expert David Maddison, a professor of integrative biology at Oregon State University, to help identify the specimen. Together, the scientists used morphological and DNA analysis to confirm that the beetle represented a completely new species.
Will then combed through entomology collections at museums throughout California in search of other specimens that may have been unlabeled or misidentified. He found only 21 other specimens of the species, the most recent of which was collected in 1966.
The lack of any more recent specimens indicated to him that the species likely collapsed during the second half of the 20th century, driven out of its natural habitat by rapid urbanization and agricultural development across the state.
“The sad truth is, [the species] has probably been in a huge decline. If you look at the places that it was found the ‘20s and ‘30s and ‘40s, almost none of that natural habitat is left,” Will said. “But we don’t know for sure. So, the thing to do is to get it out there, describe it and tell people, ‘Hey, look for this thing,’ because maybe we’ll find some place where it’s doing fine.
“Having access to Jerry’s ranch in Colusa County gives me the opportunity to really spend time sampling, to look for rare things like this.”
Will and Maddison describe Bembidion brownorum in a study published in the journal Zookeys.
Big for a Bembidion
To the naked eye, Bembidion brownorum isn’t particularly remarkable: The diminutive beetle is brown in color and measures around 5 millimeters in length, about the diameter of a standard pencil. But under magnification, it glows with a green and gold metallic shimmer.
It was the unusual shape of the beetle’s prothorax, the segment of the insect that sits right behind its head, that first caught Will’s eye.
“I was looking at this one beetle thinking, ‘It just doesn’t fit any of the ones that I can identify,’” Will said. “The shape of prothorax is just not like any of the others.”
According to Maddison, Bembidion brownorum is also relatively large compared to other Bembidion beetles, which are usually closer to 3 to 4 millimeters in length.
“It’s big for a Bembidion,” Maddison said. “At first glance, it was pretty obvious that it was probably something new.”
With so few examples to study, it’s difficult to describe the lifestyle and behavior of Bembidion brownorum with any certainty, Will said. However, given where the beetle was found on Brown’s ranch — in the vicinity of Freshwater Creek, which occasionally dries into a series of trellis-like pools in the summer months — it is likely that the beetle lives near the edges of bodies of water that periodically flood and then evaporate.
The 21 historical specimens of Bembidion brownorum are housed at either the Essig Museum Entomology Collection at UC Berkeley or at the California Academy of Sciences in San Francisco, which both have insect specimens going back more than 100 years. The discovery highlights the vital importance of maintaining these collections for current and future research, the scientists said.
“One of the things that I find interesting about is that, before Kip found that specimen, there were already specimens in collections — there was this hidden diversity that people didn’t recognize,” Maddison said. “At one point, [the beetle] probably was much more widespread and much more common, and Kip and I have some ideas as to where you would target to try to find more.”
Previous specimens were collected at locations throughout the Central Valley and in the Los Angeles Basin, regions that have been transformed over the last century. While the beetle may still survive in some areas, Will said that the patchwork of private landownership may make it difficult to find.
“There is a lot of desire to conserve the environment and combat climate change, but in many cases, we’re not keeping up with the rate of extinction — we’re not able to describe the species that need to be described as fast as things are going extinct,” Will said. “And this certainly is true in California, where there are an awful lot of undescribed insects out there and not a lot being done to get them described. I think that having more knowledge of what they are and where they where they live is really fundamental.”
John S. Sproul of the University of Nebraska Omaha is also a co-author of the study. This research was supported by the Harold E. and Leona M. Rice Endowment Fund at Oregon State University.
Research article:
Maddison DR, Sproul JS, Will K (2023) Re-collected after 55 years: a new species of Bembidion (Coleoptera, Carabidae) from California. ZooKeys 1156: 87-106. https://doi.org/10.3897/zookeys.1156.101072
Press release originally published by Kara Manke, UC Berkeley. Republished with permission.
Michigan State entomologists have discovered dozens of new beetle species — and named some after iconic sci-fi heroines
The original Star Trek television series took place in a future when space is the final frontier, but humanity hasn’t reached that point quite yet. As researchers like Michigan State University entomologists Sarah Smith and Anthony Cognato are reminding us, there’s still plenty to discover right here on Earth.
Working in Central and South America, the duo discovered more than three dozen species of ambrosia beetles — beetles that eat ambrosia fungus — previously unknown to science. Smith and Cognato described these new species on June 16 in the journal ZooKeys.
The Spartans also selected an unusual naming theme named in deference to the female beetles who have helped their species survive and thrive by boldly going where they hadn’t before.
Many of the new species are named for iconic female science fiction characters, including Nyota Uhura of “Star Trek”; Kara “Starbuck” Thrace from the 2000s “Battlestar Galactica” TV series; and Katniss Everdeen from “The Hunger Games” books and movies.
“But overall, our colleagues think it’s a good thing,” Cognato said. “It gives us a chance to talk about taxonomy — the science of classifying organisms — and about diversity.”
Understanding the world’s biodiversity is one of the major drivers of this and related research. Scientists estimate that there are 10 million nonbacterial species in the world and that humans have classified only about 20% of those.
“And some are lost before they’re ever discovered,” said Smith, who is the curator of the A. J. Cook Arthropod Research Collection. When people disrupt native ecosystems with farming and mining, for example, undiscovered species can face extinction before researchers know about them.
For this project, the team did some of its field work in Peru, where illegal gold miners can be particularly devastating to forests. “They’re turning the forest into a wasteland” Smith said. “It may never recover.”
Working in such threatened areas, Smith and Cognato are helping identify beetle species before it’s too late, as well as characterizing a rich variety of physical traits and behaviors.
To be clear, they did this field work long before the pandemic struck, starting around 2008. But it takes time to perform the thorough investigations required to ensure that a species is indeed distinct from its closely related cousins.
“With South America, it can be really hard to know whether a species is new or not, just because the fauna is so poorly studied,” Smith said.
With the stay-at-home orders in effect, she and Cognato had time to focus on projects that had been simmering on the backburner, such as this one that details ambrosia beetles they had collected belonging to the genus Coptoborus.
These tiny beetles make their homes by boring into trees. Once inside, they sustain their nests by cultivating fungus that serves as food. There, a mother produces many female offspring and one or two dwarfed males. The main job of those males is to mate with their sisters, creating a new generation of females prepared to disperse and produce a new brood. This all leads to another reason for studying these beetles: they can become pests.
These females arrive at trees ready to bore inside, start a fungus farm and reproduce. Though most prefer to nest in dead or dying parts of trees, some can attack fully healthy trees that are ecologically and economically important. For example, there are species within the genus known to attack balsa trees in Ecuador, the world’s leading exporter of balsa wood.
And if tree-dwelling beetles find their way into nonnative habitats, they can pose large threats to trees that have no natural defenses against the insects. Michiganders are all too familiar with the emerald ash borer, which has claimed millions of ash trees in the state. Another nonnative species of fungus-farming beetle devastated redbay laurels and avocado trees in the Southern U.S.
By identifying species abroad, in their native habitats, researchers including Smith and Cognato are helping the U.S. better prepare for if and when a new pest shows up here. And, historically speaking, Coptoborus beetles are hardy travelers.
Their ancestors originated about 20 million years ago, likely in Southeast Asia, before emigrating and making homes across much of the tropics.
“That’s one of the reasons we chose to name them after female sci-fi characters. Not to anthropomorphize too much, but you have these adventurous females that were blown off their log or had their wood-encased home thrown into the ocean by a mudslide,” Cognato said. If these mated females made it to a new land, they could start a new population, allowing the species to proliferate.
“Along the way, there were so many ways to die, but they ended up colonizing an entire continent.”
Fast forward to now and there are thousands of ambrosia beetle species, including more than 70 of the Coptoborus genus — and counting. In christening the new beetles, Smith and Cognato got some inspiration by finding similarities between the beetle and its namesake.
For instance, the C. uhura was given its name because its reddish color, reminiscent of the uniform worn by Nichelle Nichols’s Uhura character in the original “Star Trek” TV series.
And Sigourney Weaver’s Ellen Ripley character in the “Alien” film franchise had a shaved head in the movie “Alien 3.” One of the beetles, now named C. ripley, was also glabrous, or without hair.
Other names were selected because the duo just liked the characters and found them inspiring. For example, the C. scully beetle was named after Dana Scully, Gillian Anderson’s character on “The X-Files.”
The character is also behind what’s known as the “Scully Effect.” By showing a successful female scientist on TV, the show helped raise awareness of science, technology, engineering and mathematics — or STEM — professions among young women.
In their paper, Smith and Cognato wrote, “We believe in the ‘Scully Effect’ and hope future female scientists, real and fictional, continue to inspire children and young adults to pursue STEM careers.”
Smith and Cognato also took the opportunity to name some beetles in honor of real-life people who have made an impact on their work and their lives.
For example, the C. erwini, is named after a renowned entomologist and friend Terry Erwin, who passed away in 2020. Erwin helped popularize a technique called canopy fogging to collect beetle specimens living in treetops.
“Without his dedication to canopy fogging, this species and most of those described in this publication may never have been discovered,” Smith and Cognato wrote in their study, which is part of a special issue in memory of Erwin, who was also editor-in-chief of ZooKeys.
Also, the C. bettysmithae is named after Smith’s grandmother, Catherine “Betty” Smith. Sarah remembers Betty’s incredible strength in battling cancer and her help fostering her granddaughter’s scientific interest.
“My grandmother supported me a lot with entomology,” Smith said. “I used to spend many weekends with her, and she’d take me out to catch dragonflies.”
Now, she and Cognato are out catching and characterizing insects that are new to science. In doing so, they’re helping protect native ecosystems, painting a more complete picture of the planet’s bountiful biodiversity and even drawing some attention to the power of naming and classifying things.
“Taxonomy was probably one of the first sciences of humans. You can find evidence of it throughout history and across cultures,” Cognato said.
This naming likely started so humans could easily share information about which plants were safe to eat and which animals were dangerous. This is still valuable information today, but naming has evolved to help us appreciate even more dimensions of life on Earth.
Think about being a kid in a park or backyard, Cognato said, and the innate desire to know and name the animals there, say, robins or squirrels. Classification builds connection.
“It helps us communicate and it helps us live better,” Cognato said. “It helps us understand the world and biodiversity.”
Original source:
Smith SM, Cognato AI (2021) A revision of the Neotropical genus Coptoborus Hopkins (Coleoptera, Curculionidae, Scolytinae, Xyleborini). In: Spence J, Casale A, Assmann T, Liebherr JК, Penev L (Eds) Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020). ZooKeys 1044: 609-720. https://doi.org/10.3897/zookeys.144.62246
For 157 years, scientists have wished they could understand the evolutionary relationships of a curious South American ground beetle that was missing a distinctive feature of the huge family of ground beetles (Carabidae). Could it be that this rare species was indeed lacking a characteristic trait known in over 40,000 species worldwide and how could that be? Was that species assigned to the wrong family from the very beginning?
The species, Nototylus fryi,or Fry’s strange-combed beetle, is known so far only from a single, damaged specimen found in 1863 in the Brazilian State of Espíritu Santo, which today is kept in the Natural History Museum of London. So rare and unusual, due to its lack of “antennal cleaners” – specialised “combing” structures located on the forelegs and used by carabids to keep their antennae clean, it also prompted the description of its own genus: Nototylus, now colloquially called strange-combed beetles.
No mention of the structure was made in the original description of the species, so, at one point, scientists even started to wonder whether the beetle they were looking at was in fact a carabid at all.
Because the area where Fry’s strange-combed beetle had been found was once Southern Atlantic Forest, but today is mostly sugar cane fields, cacao plantations, and cattle ranches, scientists have feared that additional specimens of strange-combed beetles might never be collected again and that the group was already extinct. Recently, however, a US team of entomologists have reported the discovery of a second specimen, one also representing a second species of strange-combed beetles new to science.
Following a careful study of this second, poorly preserved specimen, collected in French Guiana in 2014, the team of Dr Terry Erwin (Smithsonian Institution), Dr David Kavanaugh (California Academy of Sciences) and Dr David Maddison (Oregon State University) described the species, Nototylus balli, or Ball’s strange-combed beetle, in a paper that they published in the open-access scholarly journal ZooKeys. The entomologists named the species in honour of their academic leader and renowned carabidologist George E. Ball, after presenting it to him in September 2016 around the time of his 90th birthday.
Despite its poor, yet relatively better condition, the new specimen shows that probable antennal grooming organs are indeed present in strange-combed beetles. However, they looked nothing like those seen in other genera of ground beetles and they are located on a different part of the front legs. Rather than stout and barely movable, the setae (hair-like structures) in the grooming organs of strange-combed beetles are slender, flexible and very differently shaped, which led the researchers to suggest that the structure had a different role in strange-combed beetles.
Judging from the shapes of the setae in the grooming organs, the scientists point out that they are best suited for painting or coating the antennae, rather than scraping or cleaning them. Their hypothesis is that these rare carabids use these grooming structures to cohabitate with ants or termites, where they use them to apply specific substances to their antennae, so that the host colony recognises them as a friendly species, a kind of behaviour already known in some beetles.
However, the mystery around the strange-combed beetle remains, as the scientists found no evidence of special secretory structures in the specimen studied. It turns out that the only way to test their hypothesis, as well as to better understand the evolutionary relationships of these beetles with other carabids is finding and observing additional, preferably live, specimens in their natural habitat. Fortunately, this new discovery shows that the continued search for these beetles may yield good results because strange-combed beetles are not extinct.
***
Original source:
Erwin TL, Kavanaugh DH, Maddison DR (2020) After 157 years, a second specimen and species of the phylogenetically enigmatic and previously monobasic genus Nototylus Gemminger & Harold, 1868 (Coleoptera, Carabidae, Nototylini). ZooKeys 927: 65-74. https://doi.org/10.3897/zookeys.927.49584
A remarkable bioluminescent click beetle was discovered in the subtropical evergreen broadleaf forests in southwest China. Having prompted the description of a brand new subfamily, the species is the very first bioluminescent click beetle known from the continent.
A remarkable bioluminescent click beetle was discovered in the subtropical evergreen broadleaf forests in southwest China. Scientists Mr. Wen-Xuan Bi, Dr. Jin-Wu He, Dr. Xue-Yan Li, all affiliated with the Chinese Academy of Sciences (Kunming), Mr. Chang-Chin Chen of Tianjin New Wei San Industrial Company, Ltd. (Tianjing, China) and Dr. Robin Kundrata of Palacký University (Olomouc, Czech Republic) published their findings in the open-access journal ZooKeys.
Even though the family of click beetles (Elateridae) contain approximately 10,000 species worldwide, it is only about 200 species able to emit light, and they inhabit Latin America and Oceania. Interestingly, the position of the luminous organs varies amongst the different click beetle lineages. In some, they are found on the foremost of the three thoracic segments of the body (prothorax), in others – on both the prothorax and the abdomen, and in few – only on the abdomen.
“In 2017, during an expedition to the western Yunnan in China, we discovered a dusk-active bioluminescent click beetle with a single luminous organ on the abdomen, ” recalls lead scientist Mr. Wen-Xuan Bi.
Since no bioluminescent click beetle had previously been recorded in Asia, the team conducted simultaneous morphological and molecular analyses in order to clarify the identity of the new species and figure out its relationship to other representatives of its group.
Co-author Dr. Xue-Yan Li explains:
“The morphological investigation in combination with the molecular analysis based on 16 genes showed that our taxon is not only a new species in a new genus, but that it also represents a completely new subfamily of click beetles. We chose the name Sinopyrophorus for the new genus, and the new subfamily is called Sinopyrophorinae.”
In conclusion, the discovery of the new species sheds new light on the geographic distribution and evolution of luminescent click beetles. The authors agree that as a representative of a unique lineage, which is only distantly related to the already known bioluminescent click beetles, the new insect group may serve as a new model in the research of bioluminescence within the whole order of beetles.
###
Original source:
Bi W-X, He J-W, Chen C-C, Kundrata R, Li X-Y (2019) Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys 864: 79-97. https://doi.org/10.3897/zookeys.864.26689
The Indonesian island of Sulawesi has been long known for its enigmatic fauna, including the deer-pig (babirusa) and the midget buffalo. However, small insects inhabiting the tropical forests have remained largely unexplored.
Such is the case for the tiny weevils of the genus Trigonopterus of which only a single species had been known from the island since 1885. Nevertheless, a recent study conducted by a team of German and Indonesian scientists resulted in the discovery of a total of 103 new to science species, all identified as Trigonopterus. The beetles are described in the open-access journal ZooKeys.
“We had found hundreds of species on the neighboring islands of New Guinea, Borneo and Java – why should Sulawesi with its lush habitats remain an empty space?” asked entomologist and lead author of the study Dr Alexander Riedel, Natural History Museum Karlsruhe (Germany).
In fact, Riedel knew better. Back in 1990, during a survey of the fauna living on rainforest foliage in Central Sulawesi, he encountered the first specimens that would become the subject of the present study. Over the next years, a series of additional fieldwork, carried out in collaboration with the Indonesian Institute of Sciences (LIPI), managed to successfully complete the picture.
“Our survey is not yet complete and possibly we have just scratched the surface. Sulawesi is geologically complex and many areas have never been searched for these small beetles,” said Raden Pramesa Narakusumo, curator of beetles at the Museum Zoologicum Bogoriense (MZB), Indonesian Research Center for Biology.
Why have all these beetles remained overlooked for so long?
Unlike the all-time favourite stag beetles or jewel beetles, tiny beetles that measure no more than 2-3 millimeters seem to have been attracting little interest from entomologists. Their superficial resemblance does not help identification either.
In fact, the modern taxonomic approach of DNA sequencing seems to be the only efficient method to diagnose these beetles. However, the capacity for this kind of work in Indonesia is very limited. While substantial evidence points to thousands of undescribed species roaming the forests in the region, there is only one full-time position for a beetle researcher at the only Indonesian Zoological Museum near Jakarta. Therefore, international collaboration is crucial.
103 beetle names
Coming up with as many as 103 novel names for the newly described species was not a particularly easy task for the researchers either. While some of the weevils were best associated with their localities or characteristic morphology, others received quite curious names.
A small greenish and forest-dwelling species was aptly named after the Star Wars character Yoda, while a group of three species were named after Asterix, Obelix and Idefix – the main characters in the French comics series The Adventures of Asterix. Naturally, Trigonopterus obelix is larger and more roundish than his two ‘friends’.
Other curious names include T. artemis and T. satyrus, named after two Greek mythological characters: Artemis, the goddess of hunting and nature and Satyr, a male nature spirit inhabiting remote localities.
Additionally, the names of four of the newly described beetles pay tribute to renowned biologists, including Charles Darwin (father of the Theory of Evolution), Paul D. N. Hebert (implementer of DNA barcoding as a tool in species identification) and Francis H. C. Crick and James D. Watson (discoverers of the structure of DNA).
Six-legged déjà vu
Back in 2016, in another weevil discovery, Dr Alexander Riedel and colleagues described four new species from New Britain (Papua New Guinea), which were also placed in the genus Trigonopterus. Similarly, no weevils of the group had been known from the island prior to that study. Interestingly, one of the novel species was given the name of Star Wars’ Chewbacca in reference to the insect’s characteristically dense scales reminiscent of Chewie’s hairiness. Again, T. chewbacca and its three relatives were described in ZooKeys.
On the origin of Trigonopterus weevils
Sulawesi is at the heart of Wallacea, a biogeographic transition zone between the Australian and Asian regions. The researchers assume that Trigonopterus weevils originated in Australia and New Guinea and later reached Sulawesi. In fact, it was found that only a few populations would one day diversify into more than a hundred species. A more detailed study on the rapid evolution of Sulawesi Trigonopterus is currently in preparation.
Future research
To help future taxonomists in their work, in addition to their monograph paper in ZooKeys, the authors have uploaded high-resolution photographs of each species along with a short scientific description to the website Species ID.
“This provides a face to the species name, and this is an important prerequisite for future studies on their evolution,” explained the researchers.
“Studies investigating such evolutionary processes depend on names and clear diagnoses of the species. These are now available, at least for the fauna of Sulawesi.”
###
Original Source:
Riedel A, Narakusumo RP (2019) One hundred and three new species of Trigonopterus weevils from Sulawesi. ZooKeys 828: 1-153. https://doi.org/10.3897/zookeys.828.32200
An outstanding monograph of the Australopacific Region’s saprinine hister beetles supported by the Alexander von Humboldt Foundation
Amid his ongoing revisionary work on a number of hister beetle genera, the Slovakian-born naturalised Dutch entomologist and Alexander von Humboldt Foundation researcher, Dr. Tomáš Lackner, Bavarian State Collection of Zoology, together with fellow entomologist Dr. Richard Leschen, Landcare Research, discovered two new genera and a total of four new species from the Australopacific Region. The newly described endemic insects are featured in an extensive monograph published in the open access journal ZooKeys.
Hister beetles, also known as Clown beetles because of their flattened legs, represent a quite diverse family (Histeridae) of beetles living almost everywhere around the world. Amongst their characteristic traits are their shiny metallic wings. Most of these beetles are predaceous and feed on larvae of other insects, including some pests. Occasionally, some species filter-feed on dung. Curiously, the Clown beetles tend to play dead when threatened.
While the hister beetle subfamily Saprininae is common and diverse throughout the globe, with only 40 species in nine native and three introduced genera, they are poorly represented in the Australopacific Region. This is one of the reasons the present discoveries documenting the new diversity in the group are remarkable.
The authors note that their scarcity in the area might be as a result of the long-standing isolation of the Australian continent in combination with the originally densely forested large islands like New Zealand and New Guinea.
However, “the Australopacific Region harbors several species with very interesting morphologies and ecologies,” point out the scientists.
Amongst the most impressive newly described saprinines, there is the first truly myrmecophilous species and genus (Iridoprinus myrmecophilus) known from the region, which is likely to be dependent on its co-habitation with ants. The beetle is only known from Australia where it has been collected from the nests of another species, endemic to the country – the Meat anSimilarly, the new histerid species Saprinus rarus is the first known termitophilous saprinine from the Australopacific Region and only the third in the subfamily as a whole. Found in the nest of the arboreal Tree termite, the species had been previously collected, but it has been so rare that it has not been determined as a new to science species until now. Hence, it earned the scientific name rarus as in ‘rare’.
In conclusion, the team noted the next challenge about the Australopacific saprinines – the genus Saprinodes which is not only restricted to Australia, but also has a life history shrouded in mystery. So far, it has only been collected from pitfalls and flight intercept traps.
For lead author Dr. Tomáš Lackner, this is the tenth in a line of studies focused on the world’s remarkable histerids published in ZooKeys.
The Alexander von Humboldt foundation is an intermediary organisation for German foreign cultural and educational policy promoting international cultural dialogue and academic exchange. It offers flexible sponsorship programmes for researchers at all stages of their careers to enable outstanding scientists and scholars from abroad to complete long-term research stays in Germany.
With as many as 120 recently discovered weevils placed in the genus Laparocerus, it now hosts a total of 237 known species and subspecies. They are all flightless beetles and most of them endemic (living exclusively in one geographic location) to a single island of the archipelagos of Madeira, Selvagens and the Canary Islands (17 islands in total). Only two species inhabit Morocco, the nearest continental land.
Independent Canarian entomologist Dr. Antonio Machado, who has been collecting and studying this genus of weevils for the last sixteen years and researched 46,500 specimens so far, was helped by geneticist Dr. Mariano Hernández, from the University of La Laguna, Tenerife, Canary Islands, Spain, to undertake a phylogenetic study using three mitochondrial genes and one nuclear gene. The resulting phylogenetic tree also allowed for estimating the whole evolutionary process along a timeframe of about 11.2 million years. Their study is published in the open access journal ZooKeys.
The molecular analysis confirms that all Laparocerus weevils have a common evolutionary ancestor (monophyly), but could not clarify whether that ancient founding species arrived from southern Europe or northwestern Africa. The two extant Moroccan species were found to be the result of a back-colonisation from the Canary Islands to Africa, and not the ancestral source lineage, which unfortunately is still unknown.
Colonisation of Macaronesia started in Porto Santo, Madeiran archipelago, which is the oldest island, and from there it ‘jumped’ to Madeira and the Desertas. The colonisation of the Canary Islands started shortly after, and it basically moved stepwise from the east to the west in line with the decreasing age of the volcanic islands. Yet, there have been several back-colonisations, as well (see map). Large islands, such as Tenerife (2034 km2), ended up with 65 species and subspecies. Globally, there is an outstanding ratio of one endemic Laparocerus for each 35.7 km2; a record not beaten by any other genus of plant or animal in Macaronesia.
The evolutionary process responsible for such richness comprises sequential radiation events in these archipelagoes, each generating several monophyletic groups. These groups, 20 in total, have been recognised as subgenera of Laparocerus, and five of them — Aridotrox, Belicarius, Bencomius, Canariotrox, and Purpuranius — are described as new to science in this study. Colonisation routes, habitat shifts, disruption of populations by volcanism, dispersal by massive landslides, and other relevant aspects for adaptive and non-adaptive radiation, are largely discussed and confronted with previously published data referring to other groups of beetles or to other biological organisms (spiders, bush crickets, plants, etc.).
“If oceanic islands have been traditionally considered as laboratories of evolution and species-producing machines, Laparocerus will become the ideal guinea-pig for broadening studies in dispersal and speciation processes of all kinds,” say the authors. “Working with such a group is like getting a picture of Nature with more pixels. Several intriguing cases highlighted in this contribution may turn into the inspiration for further phylogeographic research.”
The scientists hope that, in near future Laparocerus will merit sharing the podium with Darwin´s finches or Drosophila in the studies of island evolution”.
###
Original source:
Machado A, Rodríguez-Expósito E, López M, Hernández M (2017) Phylogenetic analysis of the genus Laparocerus, with comments on colonisation and diversification in Macaronesia (Coleoptera, Curculionidae, Entiminae). Zookeys 651: 1-77 (02 Feb 2017) https://doi.org/10.3897/zookeys.651.10097
With social networks abound, it is no wonder that there is an online space where almost anyone can upload a photo and report a sighting of an insect. Identified or not, such public records can turn out to be especially useful — as in the case of an Old World beetle species — which appears to have recently entered Canada, and was recently discovered with the help of the BugGuide online portal and its large citizen scientist community.
Having identified the non-native rove beetle species Ocypus nitens in Ontario, Canada, based on a single specimen, author Dr Adam Brunke, affiliated with the Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, sought additional data to confirm his discovery.
Eventually, he found them in the citizen-generated North American digital insect collection BugGuide, created and curated by an online community of naturalists, insect enthusiasts and entomologists. After he verified as many as 26 digital photographs to be records of the same species, he concluded that the rove beetle has expanded its distribution to two new locations — Ontario, its first in Canada, and the state of Vermont, USA. His study is published in the open access Biodiversity Data Journal.
The species O. nitens is a fairly large rove beetle measuring between 12 and 20 mm in length and visibly distinguished by the characteristic form of the head and relatively short forewings. Furthermore, the insect is quite easy to spot because it prefers living around humans, often being spotted in woodlots and backyards.
As a result of the hundreds of years of Transatlantic trade, many species have been transported accidentally among various produce to subsequently adapt and establish on the other side of the ocean. While the rove beetle species O. nitens was first reported from the Americas in 1944, it was not until the turn of the new millennium that it escaped the small area in New England, USA, which had so far been its only habitat on the continent. Then, its distributional range began to rapidly expand. It is unlikely that the presence of this rove beetle, especially in Ontario, has long remained undetected, because of thorough and multiple sampling initiatives undertaken by professionals and students in the past.
The effect of the newly recorded species on the native rove beetles is still unknown. On the other hand, there are observations that several related beetles have experienced a drop in their populations in comparison to the records from the beginning of the century.
“Citizen-generated distributional data continues to be a valuable ally in the detection of adventive insects and the study of their distributional dynamics,” concludes the author.
###
Original source:
Brunke A (2016) First detection of the adventive large rove beetle Ocypus nitens (Schrank) in Canada and an update of its Nearctic distribution using data generated by the public. Biodiversity Data Journal 4: e11012. https://doi.org/10.3897/BDJ.4.e11012