New species of terrestrial crab found climbing on trees in Hong Kong

A new species of terrestrial crab has been found to climb trees on the eastern coast of Hong Kong. All specimens spotted during the survey have been collected at a height of approximately 1.5 – 1.8 m, walking on the bark of the branches at ebbing and low tides. The species is described in the open access journal ZooKeys.

Among the crab’s characteristic traits are squarish predominantly dark brown carapace, very long legs and orange chelipeds. The species is less than a centimetre long, with the studied specimens measuring between 8 and 9 millimetres, irrespective of their sex. However, the chelipeds of the males appear stout, while in females they are distinctly more slender.

The scientists who found the new species (Haberma tingkok), Dr. Stefano Cannicci, the Swire Institute of Marine Science at the University of Hong Kong, and Dr. Peter Ng, National University of Singapore, have placed the new species in a small genus, which now contains merely three species. In fact, Dr. Peter Ng has been involved in the discovery of all of them. He also led the team that established the genus 15 years ago, having collected a small previously undescribed species of mangrove crab from Singapore.

The discovery of the tiny crustacean once again proves how little is known about the diversity of these crabs in Hong Kong. Furthermore, the mangroves that make for the habitat of the new species are under severe impact by both pollution and land reclamation, which underlines the urgent need for their conservation.

Earlier this year, Dr. Peter Ng teamed up with Dr. Jose Christopher Mendoza to describe another new species of crab, collected from the rubble at the island of Guam and named after two of the main characters in J. K. Rowling’s Harry Potter fantasy series.

###

Original source:

Cannicci S, Ng PLK (2017) A new species of micro-mangrove crab of the genus Haberma Ng & Schubart, 2002 (Crustacea, Brachyura, Sesarmidae) from Hong Kong. ZooKeys 662: 67-78. https://doi.org/10.3897/zookeys.662.11908

New species of Brazilian copepod suggests ancient species diversification and distribution

A new species of groundwater copepod has been discovered in the rocky savannas of Brazil – an ecosystem suffering from heavy anthropogenic impact. Upon description, the tiny crustacean turned out to also represent a previously unknown genus. It is described by Dr. Paulo H. C. Corgosinho, Montes Claros State University, Brazil, and his team in the open access journal Zoosystematics and Evolution.

Prior to the discovery of the new species, named Eirinicaris antonioi, only one genus of its subfamily (Parastenocaridinae) had been recorded in the Neotropical region, which comes to show that related species had already spread across a huge range when the ancient supercontinent Gondwana split apart.

The new copepod measures about 0,300 mm and can be told apart by its morphological characteristics, including unusual sensorial structures at the rear part of the body, as well as unique sexual dimorphism.

The copepods of the family Parastenocarididae are adapted to life in groundwater, where they thrive between sand grains. These tiny creatures measure less than 1 mm, ranging between 0,200 and 0,400 mm in length. They can be found in various microbiotopes along rivers, lakes and human-made structures, such as dug or artesian wells. Alternatively, these copepods might be associated with mosses and other semi-terrestrial environments.

“This is the first species described from Goiás state, Central Brazil,” explain the authors. “With the discovery of this new species our knowledge about the geographical distribution of the copepod family Parastenocarididae is increased. Our project highlights the vast amounts of undiscovered biodiversity of the Brazilian rocky savannas, which are under high anthropogenic threat.”

###

Original source:

Corgosinho PHC, Schizas NV, Previattelli D, Falavigna da Rocha CE, Santos-Silva EN (2017) A new genus of Parastenocarididae (Copepoda, Harpacticoida) from the Tocantins River basin (Goiás, Brazil), and a phylogenetic analysis of the Parastenocaridinae. Zoosystematics and Evolution 93(1): 167-187. https://doi.org/10.3897/zse.93.11602

With flying colors: Top entomology students honoured with wasp species named after them

The highly divergent parasitic wasps have long been causing headaches to scientists. At one point, taxonomists began using some genera as “dumping grounds for unplaced members”, simply to organise the species.

Two entomologists from the University of Kentucky, USA – Drs. Michael J. Sharkey and Eric Chapman, have recently addressed one such issue by describing ten new genera and many more new species and combinations. The resulting paper is published in the open access journal ZooKeys.

Scabagathis emilynadeauaeInterestingly, among the newly described species there are two wasps named after two excellent entomology students: Leuroagathis paulbakeri and Scabagathis emilynadeauae. Both Mr. Paul Baker and Ms. Emily Nadeau scored 100% during an Entomology class in 2015. Paul passed the written exam with flying colours, while Emily did best on the weekly quizzes.

One of the new genera (Chimaeragathis) is named after the Greek mythological monster Chimera. Known as the sibling of the infamous Cerberus and Hydra, the Hellenes would describe Chimera as a horrid hybrid comprising several animals – usually a lion, a goat, and a serpent. The scientists have picked this name as a reference to the multiple diagnostic characters of the genus. In turn, each of those characters consists of a set of features used to diagnose related genera.Chimaeragathis eurysoma

To breed, the females of these wasps lay eggs inside the early stages of caterpillars of various moths. At first, the larva develops quietly as if unnoticed by the host. By the time the caterpillar is ready to spin a cocoon, the parasitoid ‘awakes’ and consumes the host from the inside.

The aim of the present study is to revise the representatives of a tribe of braconid parasitoid wasps inhabiting Southeast Asia with a focus on Thailand. While having described a lot of new taxa, the scientists have saved another batch of new species for a separate future paper.

###

Original source:

Sharkey MJ, Chapman E (2017) Ten new genera of Agathidini (Hymenoptera, Braconidae, Agathidinae) from Southeast Asia. ZooKeys 660: 107-150. https://doi.org/10.3897/zookeys.660.12390

New frog from the Peruvian Andes is the first amphibian named after Sir David Attenborough

While there are already a number of species named after famous British broadcaster and naturalist Sir David Attenborough, including mammals, reptiles, invertebrates and plants, both extinct and extant, not until now has the host of the BBC Natural History’s Life series been honoured with an amphibian.

A new fleshbelly frog, recently discovered in the Peruvian Andes, is formally described as Pristimantis attenboroughi, while commonly it is to be referred to as the Attenborough’s Rubber Frog. The new species is published in the open-access journal ZooKeys.

Scientists Dr. Edgar Lehr, Illinois Wesleyan University, and Dr. Rudolf von May, University of Michigan, spent two years (2012-2014) surveying montane forests in central Peru, in order to document the local amphibians and reptiles, and evaluate their conservation statuses. Their efforts have been rewarded with several new species of frogs and a new spectacled lizard.

Each of these discoveries, including the Attenborough’s Rubber Frog, prove how beneficial it is to take into account both morphological and the genetic data, while looking for species new to science. For example, the authors report that when they spotted the P. attenboroughi frog for the first time, both of them were sure that they had found a species of another genus.

FIG. 2-female guarding eggs-not croppedThe Attenborough’s rubber frog is known to inhabit several localities across the Pui Pui Protected Forest, a nature reserve located at elevations between 3400 and 3936 m a.s.l. in central Peru. The adult males reach size of 14.6-19.2 mm in length, while the females are larger measuring between 19.2 and 23.0 mm. Their ground colour ranges from pale to dark gray, or reddish brown to brownish olive with dark gray scattered flecks. Meanwhile, the juveniles are paler (yellowish to reddish brown) with contrasting dark brown flecks and distinct stripes.

Due to the amphibian being known from fewer than ten localities, spread across less than 20,000 km2, the species should be deemed either Vulnerable or Endangered, according to the IUCN Red List Categories and Criteria. However, the authors suggest that the Attenborough’s Rubber frog should be listed as Near Threatened instead, since the Piu Piu forest is formally protected and still largely unknown, so it is likely that there are more additional populations of the new species. On the other hand, factors such as fungal infections, climate change, pollution, and man-made fires continue to be threats for many Andean amphibians even inside protected areas.

“We dedicate this species to Sir David Frederick Attenborough in honor for his educational documentaries on wildlife, especially on amphibians (e.g., Life in Cold Blood, Fabulous Frogs), and for raising awareness about the importance of wildlife conservation,” explain the authors.

In the present study, the scientists note that there are more terrestrial-breeding frogs from the surveyed montane forests that will be described in the near future.

Among the numerous namesakes of Sir David Attenborough to date, there are a rare genus of beautiful flowering plants, a rare butterfly species, commonly known as the Attenborough’s black-eyed satyr, a flightless weevil species, as well as a number of extinct species.

###

Original source:

Lehr E, von May R (2017) A new species of terrestrial-breeding frog (Amphibia, Craugastoridae, Pristimantis) from high elevations of the Pui Pui Protected Forest in central Peru. ZooKeys 660: 17-42. https://doi.org/10.3897/zookeys.660.11394

Portuguese moth’s mystery solved after 22 years

An unknown moth, collected from Portugal 22 years ago, has finally been named and placed in the tree of life thanks to the efforts of an international team of scientists. The moth was unambiguously placed in the family of geometer moths (Geometridae), commonly known as loopers or inchworms due to the characteristic looping gait of their larvae.

The new species description is published in the open access journal Nota Lepidopterologica, along with a taxonomic review of the genus Ekboarmia, thought to comprise four species in the western Mediterranean area.

The first specimen, a male, was found in 1995 in Lagoa de Santo André, south of Lisbon, near the Atlantic coast. Despite its unique appearance, the specialists did not find enough similarities with any other European species, making its classification impossible. When three females were finally found following an intensive search in 2009, the team of scientists hoped they would find enough evidence to solve the mystery.

“The discovered females had different wing patterns compared to the males, suggesting sexual dimorphism, adding another complexity in the identification. This new species could not have been classified on the basis of external characters alone,” explains Dieter Stüning from Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.

In 2015, two specimens, a male and a female, have been DNA barcoded and recently became targets of detailed morphological examinations. DNA data played an essential role in demonstrating that the male and the female belong to the same species, whereas morphological structures finally provided unambiguous evidence to place the mystery moth in the geometrid genus Ekboarmia. The species name miniaria seemed appropriate to denote its small size. The tiny moth is the smallest in its genus whose other species are externally dissimilar.

Peder Skou from Denmark played a central role in the discovery of the species, tirelessly searching for more material to solve the questions. “Discovery of an undescribed and distinct macromoth from Europe is a rare occasion, because the continent’s fauna is probably the most exhaustively studied in the world,” explains Skou.

Pasi Sihvonen from the Finnish Museum of Natural History concludes: “Virtually nothing is known about the species. Altogether, only 11 specimens have been found between 1995 and 2011. Larvae of related species feed on juniper needles, which might also be the foodplant of the new species. We hope that the richly illustrated publication of the new moth will lead to new discoveries of this mysterious species. More data are needed, for instance, its conservation status cannot be evaluated due to insufficient life history and distribution data.”

###

Original source:

Skou P, Stüning D, Sihvonen P (2017) Revision of the West-Mediterranean geometrid genus Ekboarmia, with description of a new species from Portugal (Lepidoptera, Geometridae, Ennominae). Nota Lepidopterologica 40(1): 39-63. https://doi.org/10.3897/nl.40.10440

Shadow-loving insect named after Tuomas Holopainen of Nightwish

Tuomas Holopainen, the multi-talented musician and founder of the symphonic metal band Nightwish, is also a full-blooded nature person. This gave conservation biologist Jukka Salmela of Metsähallitus Parks & Wildlife Finland an idea for the name of a new species he found in Finland. Discovered in eastern Lapland during an insect survey, the fungus gnat was given the scientific name Sciophila holopaineni after Tuomas. The new species is described in the open access Biodiversity Data Journal.

“I am very, very touched. This is the highest honour a nature nerd like me can receive,” Tuomas Holopainen replied after Jukka, who collected and described the fungus gnat, asked him for permission to name the species after him.

The idea for the name came up to Salmela while he was thinking about the habitat and appearance of the species. Then, he recalled Tuomas Holopainen’s interest in the natural sciences.

So far, the new species of fungus gnat has been only known from two locations: the Törmäoja Natura Area in Savukoski, eastern Lapland, and a meadow close to the White Sea, Russian Karelia.

The dark and beautiful gnat thrives in shadowy environments. In Törmäoja, it was caught in a river gulch next to the river source, while hiding under the shelter of the forest. Salmela proposes ‘tuomaanvarjokainen’ as the common Finnish name, inspired by the latest Nightwish album. After all, the themes of the album, Endless Forms Most Beautiful, are evolution and the diversity of nature.

Fungus gnats are flies, which feed on dead wood or fungi. Some of the larvae are predaceous. At current count, there are almost 800 species in Finland and about 1,000 in the Nordic countries. In fact, the Fennoscandia region is one of Europe’s biodiversity hotspots for this group of insects.

The Tuomas Holopainen’s species is only one of the eight new flies described in the study. Among them are the Boletina norokorpii fungus gnat, named after Docent Yrjö Norokorpi and known only from Ylitornio; Phronia reducta, which inhabits Salla and Siberia; and Orfelia boreoalpina found in Törmäoja and the German Alps.

The Parks & Wildlife Finland of Metsähallitus is responsible for the management and species surveys of the State’s nature reserves. The collected data is needed in activities such as assessing the status of biodiversity, the protection of species, and planning the management and use of the reserves. Insects are as good an indicator of the state of the natural environment as better-known vertebrates or plants. The diversity of insect species forms part of natural biodiversity and is necessary to human well-being.

###

Original source:

Salmela J, Kolcsár L (2017) New and poorly known Palaearctic fungus gnats (Diptera, Sciaroidea). Biodiversity Data Journal 5: e11760. https://doi.org/10.3897/BDJ.5.e11760

Gehry’s Biodiversity Museum – favorite attraction for the butterflies and moths in Panama

Ahead of Gehry’s Biodiversity Museum‘s opening in October 2014, PhD candidate Patricia Esther Corro Chang, Universidad de Panama, studied the butterflies and moths which had been attracted by the bright colours of the walls and which were visiting the grounds of the tourist site.

The resulting checklist, published in the open access journal Biodiversity Data Journal, aims to both evaluate the biodiversity and encourage the preservation and development of the Amador Causeway (Calzada de Amador) and the four Causeway Islands. The name of the islands derives from their being linked to each other and the mainland via a causeway made of rocks excavated during the construction of the Panama Canal.

The researcher reports a total of six butterfly and eight moth families, identified from the 326 specimens collected over the course of 10 months from the botanical garden of the museum and adjacent areas. They represent a total of 52 genera and 60 species.

IMG_0096Interestingly, the eye-catching bright colours of the walls of the museum seem to play an important role for the insect fauna of the area. Not only are numerous butterflies and moths being attracted to the site, but they also express curious behaviour. On various occasions, for example, a species of skipper butterfly was seen to show a clear preference for yellowish surfaces. In their turn, a number of butterfly predators, such as jumping spiders, are also frequenting the walls.

The article in the journal provides knowledge of the butterfly and moth fauna at the mainly vegetated study area, located on a narrow strip of water distant from the city of Panama.

###

Original source:

Corro-Chang P (2017) Behavioural notes and attraction on Lepidoptera around the Gehry’s Biodiversity Museum (Causeway, Calzada de Amador, Panamá, República de Panamá). Biodiversity Data Journal 5: e11410. https://doi.org/10.3897/BDJ.5.e11410

Bird spiders detectives: The solution to a 200-year-old hairy mystery

Three species and three genera of birdeater spiders are described as new to science in a paper recently published in the open access journal ZooKeys. In their study, the Brazilian spider experts, Drs. Caroline Fukushima and Rogério Bertani, Laboratory of Ecology and Evolution, Instituto Butantan, report the diversity of the oldest tarantula genus (Avicularia), whose name derives from a famous 18th-century illustration depicting a bird caught by a spider.

FIG 2Even though these harmless tarantulas have long been a favourite exotic pet around the world, their identity has remained problematic ever since the first species was described back in 1758 by the “father of modern taxonomy”, Carl Linnaeus.

“He described the species based on a hodgepodge of spiders,” explain the authors. “Over the next centuries, other species with completely different characteristics were called Avicularia creating a huge mess.” As a result, basic questions, such as the characteristic traits of the genus, the number of its species and their localities, have been left unanswered.

To address the confusion, the team studied both newly collected specimens and also specimens from around the world which had previously been deposited in museum collections. Thus, they concluded that, instead of the 49 species previously assigned to the problematic genus, there are in fact only 12, including three new to science.

One of the new species, Avicularia merianae, is named after Maria Sybilla Merian (1647-1717), a pioneering scientist and a remarkable artist who made the famous illustration of a spider eating a bird. In fact, it was her work that gave birth to the popular name used for a whole group of spiders, also known as birdeaters or bird spiders.

Meanwhile, the name of the new genus Ybyrapora, which occurs in the Brazilian Atlantic rainforest, translates to “those that live in trees” from the indigenous local language Tupi. It refers to the arboreal habitat of these species. The other two tarantula genera live exclusively on the Caribbean Islands.

FIG 3“People think all biologists are like Indiana Jones, with their daily lives full of adventures in the wild. But most of the time, they are much more like Sherlock Holmes – sitting on a chair, collecting and analysing clues (specimens and scientific papers) and then using logical reasoning to solve Nature’s mysteries,” comments Dr. Caroline Fukushima.

“We, taxonomists, are ‘wildlife detectives’ who play an essential role not only in biology and conservation. Our work can also become the grounds for new technologies, medicines and ideas that could solve a variety of problems,” she adds.

“We are delighted to have finally closed one of the oldest unsolved cases,” the authors conclude.

###

Original source:

Fukushima CS, Bertani R (2017) Taxonomic revision and cladistic analysis of Avicularia Lamarck, 1818 (Araneae, Theraphosidae, Aviculariinae) with description of three new aviculariine genera. ZooKeys 659: 1-185. https://doi.org/10.3897/zookeys.659.10717

Saving the Underworld: Clarifying the subterranean fauna classification for improved conservation

Inevitably, many habitats, including the particularly vulnerable subterranean ones, will continue being erased from our planet as a result of human activities and interests. The challenge is to protect the ones that are the sole habitats to certain organisms, so that their species are safe from extinction. Hence, it is essential that the distribution of every each one of them is clearly defined.

Brazilian scientists Prof. Eleonora Trajano, Universidade Federal de São Carlos, and Prof. Dr. Marcelo Rodrigues de Carvalho, Universidade de São Paulo, discuss the current classification system, its application and complexities in a paper published in the open access Subterranean Biology.

9759_Image 2Nowadays, there are three categories of subterranean fauna accepted. Troglobites live exclusively underground and are usually characterised with reduced or lacking eyes and pale or transparent colors; troglophiles may live both in caves and on the surface, with individuals commuting between these habitats and promoting genetic interchange between subterranean and surface populations; trogloxenes use caves regularly, but must leave them periodically in order to complete their life cycle.

Throughout the years, many alterations and subdivisions have been applied to the classification used when determining whether a cave organism belongs exclusively to the subterranean habitat, or not, before concluding these three groups, also known as the Schiner-Racovitza system. It is important to separate them properly, since the destruction of a habitat to an endemic troglobite, for instance, would immediately wipe out its whole species, as it would be impossible for the animals to move away.

However, many historic publications do not feature enough details about the described species’ distribution, nor identification of the used classification, so that the information is unreliable. Furthermore, there have been times, when people have been even afraid to survey the underground habitats, led by beliefs and associations linking caves to the “World of the Dead”.

In their paper, the authors conclude that the only way to define the species status of subterranean organisms with certainty is to study each species’ dynamics over a period of at least three years, since animals may migrate on a seasonal and/or non-seasonal basis. Also, scientists need to study thoroughly the area outside the surveyed cave, while testing for sampling sufficiency at all times.oo_124566

“When employing classifications of subterranean organisms, especially for conservation purposes, these conditions should be checked for reliability of the status attributed to them,” say the authors. “Misplacing these organisms within the Schiner-Racovitza categories impairs the efficiency of such policies.”

###

Original source:

Trajano E, Carvalho MR (2017) Towards a biologically meaningful classification of subterranean organisms: a critical analysis of the Schiner-Racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterranean Biology 22: 1-26. https://doi.org/10.3897/subtbiol.22.9759

Bee species with little known nesting-behavior observed to use plastic instead of leaves

Little is known about the nesting activities of some lineages of megachiline bees. Dr. Sarah Gess, affiliated with both Albany Museum and Rhodes University, South Africa, and Peter Roosenschoon, Conservation Officer at the Dubai Desert Conservation Reserve, United Arab Emirates, made use of their earlier observations gathered during a survey on flower visitation in the spring of 2015, to fill some gaps in the knowledge of of three species from such lineages.

Among their findings, published in the open access Journal of Hymenoptera Research, is a curious instance of a bee attempting to build brood cells using green pieces of plastic. Having examined two nests of the leafcutter bee species Megachile (Eurymella) patellimana, they report that one of the females nested in burrows in compacted sandy ground beneath a plant, and the other – in the banks of an irrigation furrow.

11290_Nest of P. grandiceps after emergence of imagines, visible trapped between their natal nest and a nest of Megachile maxillosa

However, while the former was seen carrying a freshly cut leaf, the latter seemed to have discovered a curious substitute in the form of green plastic. Later on, upon checking the nest, the researchers found that the phenomenon they had observed was no isolated incident – at least six identical pieces of narrow, tough, green plastic were grouped together in an apparent attempt to construct a cell. It turns out that the bee had been deliberately cutting off approximately 10-milimetre-long pieces with its large and strong toothed mandibles, before bringing them back to the nest.

“Although perhaps incidentally collected, the novel use of plastics in the nests of bees could reflect ecologically adaptive traits necessary for survival in an increasingly human-dominated environment,” the authors quote an earlier study.

The two studied mason bee species (Megachile (Maximegachile) maxillosa and Pseudoheriades grandiceps) were seen to construct their nests using a mixture of resin and sand in pre-existing cavities, such as trap-nests, above the ground. The researchers note that resin is a common nest-building material among numerous species of mason bees, also known as resin bees. Previously, it has been suggested that apart from making the nest waterproof, the plant secretions may contain substances that fend off parasites.

The authors’ earlier paper exploring the flower visitation by bees and wasps in the Dubai Desert Conservation Reserve is also published in the open-access Journal of Hymenoptera Research.

###

Original source:

Gess SK, Roosenschoon PA (2017) Notes on the nesting of three species of Megachilinae in the Dubai Desert Conservation Reserve, UAE. Journal of Hymenoptera Research 54: 43-56. https://doi.org/10.3897/jhr.54.11290