Persian Gold Tarantula: a new species from Iran for Tarantula Appreciation Day 2023

Its “woolly, golden hairs” were one of the features so unique it was not necessary for additional individuals to be collected

Guest blog post by Dr Alireza Zamani (@Arachno_AZ)

In the latest issue (1174th) of the scientific open-access journal ZooKeys, you can find our paper describing a new species of tarantula (family Theraphosidae) found in northwestern Iran. 

This species belongs to Chaetopelma, a relatively small genus, distributed in Crete, Sudan, and the Middle East, and one of the only two tarantula genera inhabiting the Mediterranean region. 

Our discovery is significant for several reasons. Firstly, it marks the first record of this genus in Iran and the third known species of tarantulas in this country. Additionally, it extends the known range of Chaetopelma spiders by almost 350 km eastwards. 

We named this species Chaetopelma persianum, paying homage to its occurrence in Iran, which has historically been known as Persia. As a potential common name, we suggest “Persian Gold Tarantula”, where we are also making a reference to the “woolly, golden hairs’’ on its carapace.

The newly described tarantula species (Chaetopelma persianum) seen in a defensive posture.
Photo by Kari Kaunisto. 

For the purpose of our study, we only had one specimen: a female with a leg span of almost 9 cm, available. Yet, its distinct characteristics allowed us to confidently differentiate it from other known Chaetopelma species. 

This tarantula is an obligate burrower and inhabits high elevations in well-vegetated mountainous regions of the northern Zagros Mountains. The holotype specimen was collected from a self-made ground burrow on sloped rocky ground, amidst sparse low vegetation and grasses. 

It all started with local nature enthusiast Mehdi Gavahyan, who photographed a wandering male and sent me the photo. When I figured it was most likely an undescribed species, I asked him to team up with Amir Hossein Aghaei, a nature enthusiast and a friend of mine, and send me specimens of these spiders for further examination. Unfortunately, they only managed to collect that one female. However, it turned out to be enough for us to describe the Persian Gold Tarantula!

Additionally, thanks to local citizen scientists and naturalists, we later also got hold of photos of another two males of the same genus, taken very close to the type locality of the new species: one in Sardasht in West Azerbaijan Province of Iran, and the other in the surroundings of Sulaymaniyah in Iraq. While it is highly probable that both these males belong to Ch. persianum, this cannot be confirmed until further examination of collected material from both sexes is conducted.

Burrow of Persian Gold Tarantulas in West Azerbaijan Province, Iran. The arrow in the photo on the right indicates the location of the burrow. Photos by Amir Hossein Aghaei.

During our research, we also noted that one species of Chaetopelma described from Cameroon is misclassified and should be transferred to another genus. However, this transfer is pending until the type material undergoes examination.

Looking ahead, we believe that more comprehensive investigations employing integrative methods would greatly benefit the taxonomy of Chaetopelma

Habitat of the newly described Persian Gold Tarantula (Chaetopelma persianum) in West Azerbaijan Province, Iran.
Photo by Amir Hossein Aghaei.

For example, Ch. olivaceum, a species with seven junior synonyms and one of the broadest ranges within the entire family, covering an area of approximately 1,493,978 km2, might potentially have cryptic species within its range. Moreover, the disjunct distribution of Ch. olivaceum in Turkey, where it occurs both in the southern regions and as far north as Istanbul, raises the possibility of distinct species status for the latter population, which is geographically isolated from the rest of the recorded occurrences. Integrative studies incorporating molecular data could offer insights into this. 

Additionally, further collection efforts in lesser-sampled or completely unexplored regions, such as Saudi Arabia, Syria, Iraq, eastern Turkey and western Iran, could lead to the discovery of additional Chaetopelma species or records. These findings would be instrumental in gaining a more comprehensive understanding of the taxonomy and distribution of this genus.

Research paper:

Zamani A, West RC (2023) A new species of Chaetopelma Ausserer, 1871 (Araneae, Theraphosidae) from Iran. ZooKeys 1174: 75-84. https://doi.org/10.3897/zookeys.1174.109135 

***

Follow the work by Alireza @Arachno_AZ on Twitter.

Don’t forget to also keep up-to-date with the latest publications in ZooKeys by following the journal on Twitter and Facebook.

You can also sign up for the journal newsletter from the ZooKeys homepage.

Southernmost crocodile newt record is a threatened new species

“Exceptional discovery” for its colors, the amphibian is also the first crocodile newt species known from the Central Highlands of Vietnam.

A spectacular crocodile newt from the Central Highlands of Vietnam was just published in the international peer-reviewed open-access academic journal ZooKeys.

“It is an exceptional discovery as it is one of the most colourful species in the genus Tylototriton. This is also the first time that a crocodile newt species is recorded from the Central Highlands of Vietnam. Occurring at elevations from 1,800 to 2,300 m above sea level, this discovery sets an elevational record for the genus in the country, with former distribution ranges between 250 m and 1,740 m.”

says discoverer and first author of the study Trung My Phung.

Furthermore, the discovery by the Vietnamese-German researcher team, which was supported by the Vietnam Academy of Science and Technology and the Cologne Zoo (Germany), represents the southernmost distribution range of the genus known to date.

The habitat of the new species is located approximately 370 air km away from the nearest Tylototriton population, which makes it an important discovery in terms of evolution and zoogeography. 

The name “ngoclinhensis” refers to the type locality of the new species, Ngoc Linh Mountain. Restricted to evergreen montane forest, the Ngoc Linh Crocodile Newt is currently known only from the Ngoc Linh Nature Reserve, Kon Tum Province, in the Central Highlands of Vietnam. This is the eighth salamander taxon described from Vietnam, and is the thirty-ninth Tylototriton species officially recognized.

The newly described crocodile newt Tylototriton ngoclinhensis sp. nov.
Photo by Prof. Dr. Tao Thien Nguyen.

Crocodile newts, scientifically known as the genus Tylototriton, include nearly 40 species inhabiting montane forest areas throughout the Asian monsoon climate zone. Remarkably, 15 of these species have been described in the past five years, and there remain several unnamed taxa, which contain cryptic species that are morphologically difficult to distinguish. 

Established in 1986, Ngoc Linh Nature Reserve is a key biodiversity area for rare species like the endangered Golden-winged Laughingthrush and the Truong Son Muntjac. The Ngoc Linh Crocodile Newt certainly will represent another flagship species of this protected area and its surroundings, say the researchers.

Ngoc Linh has become a hotspot of amphibian diversity, with numerous endemic species. An earlier study – published in the Nature Conservation journal in 2022 – highlighted the extraordinary endemism rate of amphibians in the Central Highlands of Vietnam.

“[The Central Highlands is] where the highest amphibian species diversity was recorded for Vietnam, with 130 species, while also containing the highest number of regionally occurring, micro-endemic amphibians, amounting for 26 species,”

explains one of the authors of this and the present study, Prof. Dr. Truong Quang Nguyen, vice director of the Institute of Ecology and Biological Resources (IEBR), Hanoi.

This recent discovery is another remarkable case, “demonstrating that the Central Highlands play a special role in Vietnamese amphibian diversification and evolution,” by the words of co-author Dr. Cuong The Pham from IEBR. 

The Ngoc Linh Crocodile Newt belongs to the group of range-restricted, so-called micro-endemic species, which face the greatest risk of extinction because of their presumably small population size. Unfortunately, on top of its special zoogeographic situation and rarity, its particularly colorful appearance will likely make it highly attractive to illegal collectors.

“Therefore, this discovery is of high conservation relevance,”

says one of the corresponding authors, Prof. Dr. Tao Thien Nguyen from the Institute of Genome Research, Hanoi.

The species should be provisionally considered to be listed as Endangered on the IUCN Red List of threatened species, the researchers say. All the species of the genus Tylototriton are already listed in the Appendices of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and also in the Governmental Decree No. 84/2021/ND-CP of Vietnam. The new species thus is automatically protected under these regulations.

Now, conservation activities on site have priority, but the team is already working on breeding conservation measures, which is in line with the One Plan Approach to Conservation, developed by IUCN’s Conservation Planning Specialist Group, which combines in-situ and ex-situ efforts and various expertises for the optimum protection of a species. 

“This has already been successfully implemented for another recently discovered, micro-endemic crocodile newt species from Vietnam, Tylototriton vietnamensis, of which already more than 350 individuals could have successfully been reproduced at the Cologne Zoo in Germany and also at the Melinh Station for Biodiversity in Vietnam, which is a promising example for IUCN’s Reverse the Red campaign and the idea of the conservation zoo”,

says Prof. Dr. Thomas Ziegler, Vietnam conservation team member and coordinator from Cologne Zoo, Germany.

***

Research article:

Phung TM, Pham CT, Nguyen TQ, Ninh HT, Nguyen HQ, Bernardes M, Le ST, Ziegler T, Nguyen TT (2023) Southbound – the southernmost record of Tylototriton (Amphibia, Caudata, Salamandridae) from the Central Highlands of Vietnam represents a new species. ZooKeys 1168: 193-218. https://doi.org/10.3897/zookeys.1168.96091

***

Follow ZooKeys on Twitter and Facebook.

Mapping our ecosystems: Pensoft joined the Horizon Europe project MAMBO

With expertise in science communication, dissemination and exploitation, Pensoft is involved in this project set to develop new technologies for monitoring species and their habitats across Europe

With expertise in science communication, dissemination and exploitation, Pensoft became part of this project dedicated to new technologies for species and habitat monitoring across Europe

Background 

The European Union puts a great value in monitoring the health of ecosystems, as comprehensive mapping can aid policy makers’ work in adopting appropriate legislation for nature conservation. It allows for understanding the impact of human activities and making informed decisions for effective management of nature’s resources. This is particularly important for the EU, as it has set ambitious goals to halt biodiversity loss and restore degraded ecosystems by 2030, as outlined in the EU Biodiversity Strategy for 2030

Effective biodiversity monitoring can help the EU track progress towards these goals, assess the effectiveness of conservation policies and initiatives, and identify emerging threats to biodiversity. 

Despite this awareness, efforts to monitor animals and plants remain spatially and temporally fragmented. This lack of integration regarding data and methods creates a gap in biodiversity monitoring, which can negatively impact policy-making. Today, modern technologies such as drones, artificial intelligence algorithms, or remote sensing are still not widely used in biodiversity monitoring. 

MAMBO project (Modern Approaches to the Monitoring of BiOdiversity) recognises this need and aims to develop, test, and implement enabling tools for monitoring conservation status and ecological requirements of species and habitats. Having started in late 2022, the project is set to run for four years until September 2026.

Pensoft – with its proven expertise in communicating scientific results – is committed to amplifying the impact of MAMBO. Pensoft supports the project through tailored approaches to communication, dissemination and exploitation so as to reach the most appropriate target audience and achieve maximum visibility of the project.

Deep-dive into the project

In order to enrich the biodiversity monitoring landscape, MAMBO will implement a multi-disciplinary approach by utilising the technical expertise in the fields of computer science, remote sensing, and social science expertise on human-technology interactions, environmental economy, and citizen science. This will be combined with knowledge on species, ecology, and conservation biology. 

More specifically, the project will develop, evaluate and integrate image and sound recognition-based AI solutions for EU biodiversity monitoring from species to habitats as well as promote the standardised calculation and automated retrieval of habitat data using deep learning and remote sensing.

“Classification algorithms have matured to an extent where it is possible to identify organisms automatically from digital data, such as images or sound,”

comments project coordinator Prof. Toke T. Høye, Aarhus University

“Technical breakthroughs in the realm of high spatial resolution remote sensing set the future of ecological monitoring and can greatly enrich traditional approaches to biodiversity monitoring.” 

In order to achieve its goals, the project will test existing tools in combination with MAMBO-developed new technologies at the project’s demonstration sites geographically spread across Europe. This will contribute to an integrated European biodiversity monitoring system with potential for dynamic adaptations.

Pensoft is part of MAMBO’s Work Package 7 (WP7): “Science-policy interface and dissemination”, led by Helmholtz Centre for Environmental Research (UFZ). The work package is dedicated to providing a distinct identity of the project and its services through branding, visualisation and elaborated dissemination and communication strategy.

Within WP7, Pensoft will also be taking care after the launch of an open-science collection of research outputs in the scholarly journal Research Ideas and Outcomes (RIO). 

Amongst the tasks of the partners in WP7 is also the development of different pathways for integrating new technologies and innovations into the EU Pollinators Monitoring Scheme (EU PoMS; SPRING). 


Full list of partners
  1. Aarhus University (AU)
  2. Naturalis Biodiversity Centre (Naturalis)
  3. Helmholtz Centre for Environmental Research (UFZ)
  4. National Institute for Research in Digital Science and Technology (INRIA)
  5. University of Amsterdam (UvA)
  6. The French Agricultural Research Centre for International Development (CIRAD)
  7. Pensoft Publishers (Pensoft)
  8. Ecostack Innovations Limited (EcoINN)
  9. University of Reading (UREAD)
  10. UK Centre For Ecology & Hydrology (UKCEH) 

You can find more about the project on the MAMBO website: mambo-project.eu. Stay up to date with the project’s progress on Twitter (@MAMBO_EU) and Linkedin (/MAMBO Project).

Unraveling nature’s chorus: AI detects bird sounds in Taiwan’s montane forests

Researchers developed an AI tool which identifies 169 species native to Taiwan from the sound of their calls.

Spectacular subtropical montane forest scenery in Yushan National Park. Credit: Ms. Wen-Ling Tsai

Montane forests, known as biodiversity hotspots, are among the ecosystems facing threats from climate change. To comprehend potential impacts of climate change on birds in these forests, researchers set up automatic recorders in Yushan National Park, Taiwan, and developed an AI tool for species identification using bird sounds. Their goal is to analyze status and trends in animal activity through acoustic data.

Prof. Hsueh-Wen Chang and Ph.D. Candidate Shih-Hung Wu from National Sun Yat-Sen University, Taiwan, Dr. Ruey-Shing Lin, Assistant Researcher Jerome Chie-Jen Ko from the Endemic Species Research Institute, and Ms. Wen-Ling Tsai from Yushan National Park Headquarters have published a paper in the open access journal Biodiversity Data Journal, detailing their use of AI to detect 6 million bird songs.

Compared to traditional observation-based methods, passive acoustic monitoring using automatic recorders to capture wildlife sounds provides cost-effective, long-term, and systematic alternative for long-term biodiversity monitoring. 

The authors deployed six recorders in Yushan National Park, Taiwan, a subtropical montane forest habitat with elevations ranging from 1,200 to 2,800 meters. From 2020 to 2021, they recorded nearly 30,000 hours of audio files with abundant biological information.

An automatic recorder was installed on a tree to capture the surrounding soundscape. Credit: Ph.D. Candidate Shih-Hung Wu

However, analyzing this vast dataset is challenging and requires more than human effort alone.

To tackle this challenge, the authors utilized deep learning technology to develop an AI tool called SILIC that can identify species by sound. 

SILIC can quickly pinpoint the precise timing of each animal call within the audio files. After several optimizations, the tool is now capable of recognizing 169 species of wildlife native to Taiwan, including 137 bird species, as well as frogs, mammals, and reptiles.

In this study, authors used SILIC to extract 6,243,820 vocalizations from seven montane forest bird species with a high precision of 95%, creating the first open-access AI-analyzed species occurrence dataset available on the Global Biodiversity Information Facility. This is the first open-access dataset with species occurrence data extracted from sounds in soundscape recordings by artificial intelligence.

The Gray-chinned Minivet (left) displays a secondary non-breeding season peak (right) which is possibly related to flocking behavior. Credit: Shih-Hung Wu, Ph.D. Candidate

The dataset unveils detailed acoustic activity patterns of wildlife across both short and long temporal scales. For instance, in diel patterns, the authors identify a morning vocalization peak for all species. On an annual basis, most species exhibit a single breeding season peak; however, some, like the Gray-chinned Minivet, display a secondary non-breeding season peak, possibly related to flocking behavior.

As the monitoring projects continue, the acoustic data may help to understand changes and trends in animal behavior and population across years in a cost-effective and automated manner.

The sound of Gray-chinned Minivet. Credit: Ph.D. Candidate Shih-Hung Wu

The authors anticipate that this extensive wildlife vocalization dataset will not be valuable only for the National Park’s headquarters in decision-making.

“We expect our dataset will be able to help fill the data gaps of fine-scale avian temporal activity patterns in montane forests and contribute to studies concerning the impacts of climate change on montane forest ecosystems,”

they say.

Original source:

Wu S-H, Ko JC-J, Lin R-S, Tsai W-L, Chang H-W (2023) An acoustic detection dataset of birds (Aves) in montane forests using a deep learning approach. Biodiversity Data Journal 11: e97811. https://doi.org/10.3897/BDJ.11.e97811

You can also follow Biodiversity Data Journal on Twitter and Facebook.

Two newly recorded species join Thailand’s aquatic insect fauna

In Thailand, more than 1,000 caddisfly species occur, and a recent study shows that their diversity in the country is even greater than previously suggested.

Caddisflies are an order of aquatic insects with high diversity. In Thailand, more than 1,000 caddisfly species are known to occur, and a recent study in the journal Check Listshows that their diversity in the country is even greater than previously suggested.

Scientists Rungnapa Somnark from Khon Kaen University and Narumon Sangpradub from the Center of Biodiversity Excellence, Chulalongkorn University recorded, for the first time, two caddisfly species that were previously not documented as part of Thailand’s fauna. They were able to catch the insects using black-light traps set up along water streams. The field study took place in the summer of 2017 at Thap Lan National Park, which is a part of Dong Phayayen–Khao Yai Forest Complex, a Natural World Heritage site in the north-eastern Thailand.

The two newly-recorded caddisfly species are Diplectrona erinya, a brown insect previously only known from Tam Dao in Vietnam, and Diplectrona extrema, yellowish-brown in colour and distributed in Borneo, Sumatra, and Java.

They both belong to the genus Diplectrona, which now has 10 documented representatives in Thailand.

The researchers suggest they are probably rare in the country.

“Our study suggests that two newly reported species occur at low densities, which highlights the continuing need for efforts to conserve the [Thap Lan National] park and to conduct more studies on the caddisfly fauna,” they say in conclusion.

Research article:

Somnark R, Sangpradub N (2023) New records of the caddisflies Diplectrona erinya Malicky, 2002 and Diplectrona extrema Banks, 1920 (Trichoptera, Hydropsychidae) from Thailand. Check List 19(1): 13-20. https://doi.org/10.15560/19.1.13

High-schoolers join scholars to lift the lid on Hong Kong’s soil biodiversity

Most often, the students would find millipedes. They even helped identify two species that are new to Hong Kong’s fauna.

Soil and its macrofauna are an integral part of many ecosystems, playing an important role in decomposition and nutrient recycling. However, soil biodiversity remains understudied globally.

To help fill this gap and reveal the diversity of soil fauna in Hong Kong, a team of scientists from The Chinese University of Hong Kong initiated a citizen science project involving universities, non-governmental organisations and secondary school students and teachers.

“Involving citizens as part of the new knowledge generation process is important in promoting the understanding of biodiversity. Training younger-generation citizens to learn about biodiversity is of utmost importance and crucial to conservation engagement”

– say the researchers in their study, which was published in the open-access Biodiversity Data Journal.

The soil sampling methodology that the students employed in this study.
Video by Sheung Yee Lai, Ka Wai Ting, Tze Kiu Chong and Wai Lok So.

Working side by side with university academics, taxonomists and non-governmental organisation members, students from 21 schools/institutes were recruited to collect soil animals near their campusesfor a year and record their observations.

Between October 2019 and October 2020, they monitored and sampled species across 21 sites of urban and semi-natural habitats in Hong Kong, collecting a total of 3,588 individual samples. Their efforts yielded 150 soil macrofaunal species, identified as arthropods (including insects, spiders, centipedes and millipedes), worms, and snails.

Most often, the students found millipedes (23 out of 150 species). They even helped identify two millipede species that are new to Hong Kong’s fauna: Monographis queenslandica and Alloproctoides remyi. The former is usually found in Australia – the researchers suggest it might have been introduced to the area many decades ago from Queensland or vice versa – and the latter has been observed in Reunion and Mauritius.

Two polyxenid millipede species, collected in this study, turned out to had never before been recorded from Hong Kong.
Left: Monographis queenslandica and Alloproctoides remyi (right).
Image by Sheung Yee Lai, Ka Wai Ting and Wai Lok So.

Millipedes like these two species can accelerate litter decomposition and regulate the soil carbon and phosphorus cycling, while earthworms can modify the soil structure and regulate water and organic matter cycling.

“Before the beginning of this project, the understanding of soil biodiversity in Hong Kong, including the understanding of its contained millipede species, was inadequate”

the researchers write in their paper.

Now, they believe that the identified macrofauna species and their 646 DNA barcodes have established a solid foundation for further research in soil biodiversity in the area.

Their project also serves an additional purpose. Unlike most conventional scientific studies, which are usually carried out by the government, non-governmental organisations or academics in universities alone, this study utilised a citizen science approach through creating a big community engaged with biodiversity. In doing so, it helped educate the public and raise awareness on the use of basic science techniques in understanding local biodiversity.

So, it may have inspired a new generation of future scientists: some students started millipede cultures in their own schools, and one school used the millipede breeding model to participate in a science and technology competition.

This study is a proof that local institutes and high schools can unite together with research teams at universities and perform scientific work, the study’s authors believe.

It “has raised public awareness and potentially opens up opportunities for the general public to engage in scientific research in the future.” 

The team hopes that their approach could inspire future biodiversity sampling and monitoring studies to engage more citizen scientists.

***

Research article:

So WL, Ting KW, Lai SY, Huang EYY, Ma Y, Chong TK, Yip HY, Lee HT, Cheung BCT, Chan MK, Consortium HKSB, Nong W, Law MMS, Lai DYF, Hui JHL (2022) Revealing the millipede and other soil-macrofaunal biodiversity in Hong Kong using a citizen science approach. Biodiversity Data Journal 10: e82518. https://doi.org/10.3897/BDJ.10.e82518

***

Follow Biodiversity Data Journal on Twitter and Facebook.

Extensive practical guide to DNA-based biodiversity assessment methods published as a ‘living’ document by DNAqua-Net COST Action

Between 2016 and 2021, over 500 researchers collaborated within the DNAqua-Net international network, funded by the European Union’s European Cooperation in Science and Technology programme (COST), with the goal to develop and advance biodiversity assessment methods based on analysis of DNA obtained from the environment (e.g. river water) or from unsorted collections of organisms. 

Such innovative methods are a real game changer when it comes to large-scale assessment of biodiversity and ecological monitoring, as collecting environmental samples that are sent to the lab for analysis is much cheaper, faster and non-invasive, compared with capturing and examining live organisms. However, large-scale adoption has been hindered by a lack of standardisation and official guidance. 

Recognising the urgent need to scale up ecological monitoring as we respond to the biodiversity and climate crises, the DNAqua-Net team published a guidance document for the implementation of DNA-based biomonitoring tools.

The guide considers four different types of samples: water, sediments, invertebrate collections and diatoms, and two primary analysis types: single species detection via qPCR and similar targeted methods; and assessment of biological communities via DNA metabarcoding. At each stage of the field and laboratory process the guide sets out the scientific consensus, as well as the choices that need to be made and the trade-offs they entail. In particular, the guide considers how the choices may be influenced by common practical constraints such as logistics, time and budget. Available in an Advanced Book format, the guidelines will be updated as the technology continues to evolve.

Leaders of DNAqua-Net are Prof. Dr. Florian Leese of the University of Duisburg-Essen (Germany) and Dr. Agnès Bouchez of the French National Institute for Agriculture, Food, and Environment (INRAE). The core writing team for the present guide book involves Dr. Micaela Hellström (MIX Research AB, Sweden), Dr. Kat Bruce (NatureMetrics Ltd., UK), Dr. Rosetta Blackman (University of Zurich and EAWAG, Switzerland), Dr. Sarah Bourlat (LIB/Museum Koenig, Germany), and Prof. Kristy Deiner (ETH Zurich and SimplexDNA AG, Switzerland).

“Back in 2016 we realised that all around the globe researchers are testing new eDNA methods, developing individual solutions and products. While this is excellent, we need to reach a consensus and provide this consensus to stakeholders from the applied sectors”, 

says Florian Leese.
This video was created as part of EU COST Action DNAqua-Net (CA15219) and shows how environmental DNA (eDNA) can be sampled and analysed from aquatic ecosystems. It shows the whole cycle from the start to final results. 
Credit: DNAqua-Net

The guide’s lead author Dr. Kat Bruce adds:

“The urgency of addressing the twin biodiversity and climate crises means that we need to accelerate the adoption of new technologies that can provide data and insights at large scales. In doing so, we walk a tricky line to agree on sufficiently standardised methods that can be usefully applied as soon as they add value, while still continuing to develop them further and innovate within the field. It was a daunting task to seek consensus from several hundred scientists working in a fast-moving field, but we found that our technology is based on a strong foundation of knowledge and there was a high level of agreement on the core principles – even if the details vary and different users make different choices depending on their environmental, financial or logistical constraints.”

Looking back on the last four years that culminated in the publication of a “living” research publication, Prof. Dr. Kristy Deiner says:

“The document took many twists and turns through more than ten versions and passionate discussions across many workshops and late night drinks. All in the days when we could linger at conferences without fear of the pandemic weighing on us. As we worked to find consensus, one thing was clear: we had a lot to say and a standard review paper was not going to cut it. With the knowledge and experience gathered across the DNAqua-Net, it made sense to not limit this flow of information, but rather to try and tackle it head on and use it to address the many questions we’ve all struggled with while developing DNA-based biodiversity survey methods.”

Now that the document – or at least its first version – is publicly available, the researchers are already planning for the next steps and challenges.

“The bottom line is we’ve come a long way in the last ten years. We have a buffet of methods for which many produce accurate, reliable and actionable data to the aid of biodiversity monitoring and conservation. While there is still much work to be done, the many unanswered questions are because the uptake is so broad. With this broad uptake comes novel challenges, but also new insights and a diversity of minds with new ideas to address them. As said this is planned to be a living document and we welcome continued inputs no matter how great or small,” says Deiner.

Dr. Micaela Hellström recalls:

“The book evolved over the four years of COST Action DNAqua-Net which made it possible for the many scientists and stakeholders involved to collaborate and exchange knowledge on an unprecedented scale. Our whole team is well aware of the urgent need to monitor biodiversity loss and to provide accurate species distribution information on large scales, to protect the species that are left. This was a strong driving force for all of us involved in the production of this document. We need consensus on how to coherently collect biodiversity data to fully understand changes in nature.”

“It was a great and intense experience to be a part of the five-person core writing team. In the months prior to submitting the document, we spent countless hours, weekends and late nights researching the field, communicating with researchers and stakeholders, and joining vivid Zoom discussions. As a result, the present book provides solid guidance on multiple eDNA monitoring methods that are – or will soon become – available as the field moves forward.” 

***

The DNAqua-Net team invites fellow researchers and practitioners to provide their feedback and personal contributions using the contacts below.

***

Original source:

Bruce K, Blackman R, Bourlat SJ, Hellström AM, Bakker J, Bista I, Bohmann K, Bouchez A, Brys R, Clark K, Elbrecht V, Fazi S, Fonseca V, Hänfling B, Leese F, Mächler E, Mahon AR, Meissner K, Panksep K, Pawlowski J, Schmidt Yáñez P, Seymour M, Thalinger B, Valentini A, Woodcock P, Traugott M, Vasselon V, Deiner K (2021) A practical guide to DNA-based methods for biodiversity assessment. Advanced Books. https://doi.org/10.3897/ab.e68634

Snake photo posted on Instagram leads to the discovery of a new species from the Himalayas

An image on Instagram prompted the discovery of a new species of Kukri snake from Himachal Pradesh, India. Intrigued by a post shared by a master student, the research team found and examined more specimens to discover they belonged to a yet undescribed species. Their study, published in the open-access journal Evolutionary Systematics, highlights how little we still know about the biodiversity in the Western Himalayas.

Virender Kumar Kharadwaj

Intrigued by a photo shared on Instagram, a research team from India discovered a previously unknown species of kukri snake.

Staying at home in Chamba because of the COVID-19 lockdown, Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar, started exploring his backyard, photographing everything he found there and posting the pictures online. His Instagram account started buzzing with the life of the snakes, lizards, frogs, and insects he encountered.

One of those photos – a picture of a kukri snake – popped up in the feed of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and immediately caught his attention. After a chat with Harshil Patel (Veer Narmad South Gujarat University, Surat), he decided to get in touch with Virendar and find out more about the sighting.

The snake, which Virendar encountered along a mud road on a summer evening, belongs to a group commonly known as Kukri snakes, named so because of their curved teeth that resemble the Nepali dagger “Kukri”. 

At first sight, the individual that Virendar photographed looked a lot like the Common Kukri snake (Oligodon arnensis). However, a herpetologist could spot some unique features that raised questions about its identity. 

Kukri snake

Virendar uploaded the photo on 5 June 2020, and by the end of the month, after extensively surveying the area, he found two individuals – enough to proceed with their identification. However, the COVID-19 pandemic slowed down the research work as labs and natural history museums remained closed. 

Upon the reopening of labs, the team studied the DNA of the specimens and found out they belonged to a species different from the Common Kukri snake. Then, they compared the snakes’ morphological features with data from literature and museums and used micro computed tomography scans to further investigate their morphology. In the end, the research team were able to confirm the snakes belonged to a species previously unknown to science.

The discovery was published in a research paper in the international peer-reviewed journal Evolutionary Systematics. There, the new species is described as Oligodon churahensis, its name a reference to the Churah Valley in Himachal Pradesh, where it was discovered. 

What’s even more interesting is that the exploration of your own backyard may yield still undocumented species… if one looks in their own backyard, they may end up finding a new species right there.

Zeeshan A. Mirza

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” comments Zeeshan A. Mirza.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

“Compared to other biodiversity hotspots, the Western Himalayas are still poorly explored, especially in terms of herpetological diversity, but they harbor unique reptile species that we have only started to unravel in the last couple of years,” Mirza adds.

Research article:

Mirza ZA, Bhardwaj VK, Patel H (2021) A new species of snake of the genus Oligodon Boie in Fitzinger, 1826 (Reptilia, Serpentes) from the Western Himalayas. Evolutionary Systematics 5(2): 335-345. https://doi.org/10.3897/evolsyst.5.72564

A star in subtropical Japan: a new species of parasitoid wasp constructs unique cocoon masses hanging on 1-meter-long strings

A new species of parasitoid wasp that constructs remarkable star-shaped cocoon masses is reported from the biodiversity hot spot Ryukyu Islands. Japanese researchers observed how the wasps construct “stars” after making their way out of the moth larvae they inhabit during their own larval stage. In their study, published in the open-access journal Journal of Hymenoptera Research, the team discuss the ecological significance of the cocoon mass and the evolution of this peculiar structure.

A unique “star” was discovered from the Ryukyu Islands, a biodiversity hot spot in subtropical Japan: a star-shaped structure that turned out to be the cocoon mass of a new species of parasitoid wasp. Researchers Shunpei Fujie (Osaka Museum of Natural History), So Shimizu, Kaoru Maeto (Kobe University), Koichi Tone (Okinawa Municipal Museum), and Kazunori Matsuo (Kyushu University) described this parasitoid wasp as a new species in the open-access Journal of Hymenoptera Research.

The new parasitoid wasps, Meteorus stellatus. Photo by Fujie S

Parasitoid wasps parasitize a variety of organisms, mostly insects. They lay eggs in the host, a larva of hawk moth in this case, where the wasp larvae later hatch. After eating the host from the inside out, the larvae spin threads to form cocoons, in which they pupate, and from which the adult wasps eventually emerge. 

The larvae of Meteorus stellatus emerging from a host moth. Photo by Tone K

Larvae of the newly discovered parasitoid wasp form star-shaped masses of cocoons lined up in a spherical pattern, suspended by a thread that can reach up to 1 meter in length. The structure, 7 to 14 mm wide and 9 to 23 mm long, can accommodate over 100 cocoons.

The star-shaped cocoon mass and the cable of the new parasitoid wasps. Photo by Shimizu S

Despite its peculiarity, the wasp species constructing these masses had not been previously described: morphological observation and molecular analysis revealed that it was new to science. The authors aptly called it Meteorus stellatus, adding the Latin word for “starry” to its scientific name.

Thanks to the recent publication, we now have the first detailed report about the construction of such a remarkable cocoon mass in parasitoid wasps. We can also see what the process looks like, as the researchers were able to film the wasps escaping from the moth larvae and forming the star-shaped structure.

Why does M. stellatus form cocoons in such a unique structure?

The authors of the study believe this unique structure helps the wasps survive through the most critical time, i.e. the period of constructing cocoons and pupating, when they are exposed to various natural enemies and environmental stresses. The star shape most likely reduces the exposed area of individual cocoons, thus increasing their defense against hyper-parasitoids (wasps attacking cocoons of other parasitoid wasps), while the long thread that suspends the cocoon mass protects the cocoons from potential enemies like ants.

“How parasitoid wasps have evolved to form such unique masses instead of the common individual cocoons should be the next thing on our ‘to-research’ list,” say the authors.

Research article:

Fujie S, Shimizu S, Tone K, Matsuo K, Maeto K (2021) Stars in subtropical Japan: a new gregarious Meteorus species (Hymenoptera, Braconidae, Euphorinae) constructs enigmatic star-shaped pendulous communal cocoons. Journal of Hymenoptera Research 86: 19-45. https://doi.org/10.3897/jhr.86.71225

Guest blog post: Operation desert: crab and dwarf spider discovered on sand dunes in military area, Slovakia

Guest blog post by Pavol Purgat

For the first time in Slovakia, the dwarf spider Walckenaeria stylifrons and crab spider Spiracme mongolica were discovered on sand dunes in Záhorie Protected Landscape Area, on  localities that serve as a military complex, used by the native Slovak army. Moreover, the spider W. stylifrons was found in a wine-growing region near the historical town of Modra.

Scientists Pavol Purgat, Dr Peter Gajdoš, Natália Hurajtová, Institute of Landscape Ecology-Slovak Academy of Sciences, Slovakia, and Dr Katarína Krajčovičová, Dr Adrián Purkart, Ľubomír Volnár, Faculty of Natural Sciences-Comenius University in Bratislava, Slovakia have published their paper, where they introduce two new spider species for Slovakia, in the open-access journal CheckList, the journal of biodiversity data.

Dwarf spider, Walckenaeria stilifrons

European continental sand dunes, characterized by high ground temperature, high temperature fluctuations and movement of sand masses, belong to the rare, climatically extreme areas resembling deserts. In Europe, lowland sandy grassland habitats are considered to be among the most endangered and are often the subject of nature conservation.

The researchers decided to understand the spider assemblages living in such extreme habitats in Western Slovakia. During 2018–2019, the study sites were chosen and co-called pitfall traps hidden in the ground were used to collect spiders.

Among other collected species, two spiders were found for the first time in Slovakia. The dwarf spider W. stilifrons is recorded from 15 European countries and it is known from Eastern England to Eastern Germany in the north, and from the Iberian Peninsula to the Crimea and Cyprus in the south. Within Central Europe, the species has so far been known from Austria, Germany and Switzerland. The crab spider S. mongolica is known from Serbia to the European part of Russia. Its distribution in Asia extends from Central Asian part of Russia, Azerbaijan, Kazakhstan to Mongolia and China. In China it is known only from Western Inner Mongolia and Xinjiang region.

Crab spider, Spiracme mongolica

Upon the detailed examination of male copulatory organs, the researchers found out that one of the species shares characters typical for the genus Spiracme, in consideration of that a new combination Spiracme mongolica for the spider previously known as Xysticus mongolicus was suggested.

In conclusion, the authors assume that W. stilifrons can live elsewhere in Europe. The rarity of the species may be related to the occurrence of adults, especially in the winter months, as most researchers are focused only on the growing seasons. The occurrence of S. mongolica in sand dunes in Slovakia confirms this species preference for dry habitats. The new finding of S. mongolica is the most known westernmost.

Research article:
Purgat P, Gajdoš P, Purkart A, Hurajtová N, Volnár Ľ, Krajčovičová K (2021) Walckenaeria stilifrons and Spiracme mongolica (Araneae, Linyphiidae, Thomisidae), two new species to Slovakia. Check List 17 (6): 1601-1608. doi: 10.15560/17.6.1601