Guest blog post: Unique feeding behaviour of Asian kukri snakes gutting frogs and toads

Guest blog post by Henrik Bringsøe

In September 2020, we reported the first evidence for a newly discovered behaviour in snakes, as we provided extensive photographic documentation, demonstrating a macabre feeding strategy of Asian kukri snakes of the species Oligodon fasciolatus, the Small-banded Kukri Snake: a snake cutting open the abdomen of a toad, inserting its head and pulling out the toad’s organs which are then swallowed.

A Small-banded Kukri Snake attacking a Painted Burrowing Frog, which is inflating its lungs. The snake makes rotations about its own longitudinal body axis (“death rolls”), as it is biting and holding the belly of the frog. Video by Navapol Komanasin.

This is done while the toad is alive and it may take several hours before it dies! We have now provided new evidence that two other species of kukri snakes also exhibit this highly unusual behaviour: Oligodon formosanus, the Taiwanese Kukri Snake, and Oligodon ocellatus, the Ocellated Kukri Snake. These three species are closely-related and belong to the same species group in the genus Oligodon.

On two occasions in Hong Kong, a Taiwanese Kukri Snake was observed eviscerating frogs of the species Kaloula pulchra, the Painted Burrowing Frog or Banded Bullfrog. In one case, the snake had cut open the belly of the frog and inserted its head deep into the frog’s abdomen. In this position, the snake performed repeated rotations about its own longitudinal body axis, also called “death rolls”! We believe that the purpose of these death rolls was to tear out organs to be subsequently swallowed. In the other case, the organs of the frog had been forced out of its abdomen.

A Taiwanese Kukri Snake with its head buried deep into the abdomen of a Painted Burrowing Frog. Initially, the frog moves its long fourth toe of the left hind foot up and down 21 times. During the subsequent active struggle, the snake makes three “death rolls”. Video by Jonathan Rotbart.

A Small-banded Kukri Snake was also observed eating a Painted Burrowing Frog in Northeast Thailand, but it swallowed the frog whole. That snake also performed death rolls, although we have never before seen that behaviour in this species of kukri snake (this species was treated in our 2020 paper). This frog is not considered toxic and is also eaten by other snakes. We believe that prey size is crucial in determining whether the gape width allows large prey to be swallowed whole by kukri snakes. If the prey is too large, the snake may eviscerate a frog or toad, in order to swallow the organs. Afterwards, the snake will perhaps be able to swallow the rest of the frog or toad.

In another new paper, we describe and illustrate the Ocellated Kukri Snake eating the toxic toad Asian Black-spotted Toad (Duttaphrynus melanostictus) in Vietnam. Initially, the large snake’s head was buried past its eyes into the abdomen of the toad, but eventually the snake swallowed the toad whole despite its toxicity. We interpret this behaviour that kukri snakes are in fact resistant to the toads’ cardiac glycoside toxins. Furthermore, toads are only eviscerated if they prove too large to be swallowed whole.

An Ocellated Kukri Snake first pierced this poisonous Asian common toad and buried its head deeply into the abdomen of the amphibian, as it was probably eating the organs. However, as seen in the photo, the kukri snake proceeded to swallow the toad whole. 
Photo by James Holden.

We suggest that the unique behaviour of eviscerating frogs and toads and eating their organs may have evolved specifically in a group of kukri snakes named the Oligodon cyclurus group or clade because it has now been recorded in three of its species, namely Oligodon fasciolatus, Oligodon formosanus and Oligodon ocellatus. We hope that future observations may uncover additional aspects of the fascinating feeding habits of kukri snakes though we may indeed call them gruesome.

*

See more video recordings of the snakes’ unique, even if quite gruesome, behaviours provided as supplementary files to one of the discussed research papers.

*

Follow Herpetozoa on Twitter and Facebook.

*

Research papers: 

Bringsøe H, Suthanthangjai M, Suthanthangjai W, Lodder J, Komanasin N (2021) Gruesome twosome kukri rippers: Oligodon formosanus (Günther, 1872) and O. fasciolatus (Günther, 1864) eat Kaloula pulchra Gray, 1831 either by eviscerating or swallowing whole. Herpetozoa 34: 49-55. https://doi.org/10.3897/herpetozoa.34.e62688

Bringsøe H, Holden J (2021) Yet another kukri snake piercing an anuran abdomen: Oligodon ocellatus (Morice, 1875) eats Duttaphrynus melanostictus (Schneider, 1799) in Vietnam. Herpetozoa 34: 57-59. https://doi.org/10.3897/herpetozoa.34.e62689

Guest blog post: Snakes disembowel and feed on the organs of living toads in a first for science

A Small-banded kukri snake with its head inserted through the right side of the abdomen of an Asian black-spotted toad, in order to extract and eat the organs. The upper part of the front leg is covered by foaming blood, likewise, mixed with air bubbles from the collapsed lung.
Photo by Winai Suthanthangjai

Guest blog post by Henrik Bringsøe


Our observations on the quite small-bodied Asian kukri snakes in Thailand have documented a feeding behaviour which differs from anything ever described in snakes. 

Normally, snakes would swallow their prey whole. However, this particular species: the Small-banded Kukri Snake (Oligodon fasciolatus), would instead use its enlarged posterior maxillary teeth to cut open the abdomen of large poisonous toads, then inserts its entire head into the cavity to pull out and eat the organs one by one, while the prey is still alive! 

During those macabre attacks, we managed to capture on camera three times, the toads struggled vigorously to escape and avoid being eviscerated alive, but, on all occasions, this was in vain. The fights we saw lasted for up to a few hours, depending on the organs the snake would pull out first.

The toads observed belong to the quite common species called Asian Black-spotted Toad (Duttaphrynus melanostictus), which is known to secrete a potent toxin from their prominent parotid glands, located on the neck and all over the back. Could it be that the snakes have adopted this sophisticated and gory approach to avoid being poisoned?

In a fourth, and equally important, case, an adult kukri snake attacked a somewhat smaller individual of the same toad species. However, this time, the snake swallowed the entire toad. Why did the snake swallow the juvenile toad, we still don’t know. Perhaps smaller toads are less toxic than adults? Or, could it be that kukri snakes are indeed resistant to the Asian Black-spotted toad’s poison, yet the large size of the adult toads prevented the snakes from swallowing them in the three afore-mentioned cases?

Adult Small-banded kukri snake swallowing a large Asian black-spotted toad juvenile
(Phitsanulok, Thailand, 5 June 2020).
Photo by Kanjana Nimnuam

At present, we cannot answer any of these questions, but we will continue to observe and report on these fascinating snakes in the hope that we will uncover further interesting aspects of their biology.

Perhaps you’d be pleased to know that kukri snakes are, thankfully, harmless to humans. However, I wouldn’t recommend being bitten by one of those. The thing is that they can inflict large wounds that bleed for hours, because of the anticoagulant agent these snakes inject into the victim’s bloodstream. Their teeth are designed to inflict lacerations rather than punctures, so your finger would feel as if cut apart! This secretion, produced by two glands, called Duvernoy’s glands and located behind the eyes of the snakes, are likely beneficial while the snakes spend hours extracting toad organs.

Small-banded kukri snake having managed to slit through the left side of the abdomen of the toad underneath the left front leg. Two liver lobes next to the already dead toad are visible.
(Loei, Thailand, 9 August 2016).
Photo by Winai Suthanthangjai

***

Publication:

Bringsøe H, Suthanthangjai M, Suthanthangjai W, Nimnuam K (2020) Eviscerated alive: Novel and macabre feeding strategy in Oligodon fasciolatus (Günther, 1864) eating organs of Duttaphrynus melanostictus (Schneider, 1799) in Thailand. Herpetozoa 33: 157-163. https://doi.org/10.3897/herpetozoa.33.e57096

Shining like a diamond: a new species of diamond frog from northern Madagascar

Despite the active ongoing taxonomic progress on the Madagascar frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete. More new species are constantly being discovered, often within already well-studied areas. So, in one of the relatively well-studied parks in northern Madagascar, a new species of diamond frog, Rhombophryne ellae, was found in 2017. Now, the discovery is published in the open-access journal Zoosystematics and Evolution.

Despite the active ongoing taxonomic progress on Madagascar’s frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete. The known diversity of the diamond frog genus Rhombophryne in Madagascar has increased significantly (more than doubled!) over the last 10 years, but still there are several undescribed candidate species awaiting description. New species are constantly being discovered in Madagascar, often even within already well-studied areas. One such place is the Montagne d’Ambre National Park in northern Madagascar.

Montagne d’Ambre National Park is widely known for its endemic flora and fauna, waterfalls and crater lakes, and considered to be a relatively well-studied area. Yet, only two studies have been published so far on the reptiles and amphibians of the Park.

Rhombophryne ellae was captured just as Cyclone Ava began to make itself felt across Madagascar with high winds and heavy rain. The camp where Dr. Scherz and his team were based became flooded, with rivers running through the kitchen and sleeping area. Miserable weather for humans, but a time of increased activity for some of the more elusive amphibians of the forest.
Credit: Mark D. Scherz
License: CC-BY 4.0

Serving the pursuit of knowledge of the herpetofauna in the region, Germany-based herpetologist Dr. Mark D. Scherz (Bavarian State Collection of Zoology, Technical University of Braunschweig, University of Konstanz) published a description of a new diamond frog species: Rhombophryne ellae, in the open-access journal Zoosystematics and Evolution.

Rhomobphryne ellae
Credit: Mark D. Scherz
License: CC-BY 4.0

“As soon as I saw this frog, I knew it was a new species. The orange flash-markings on the legs and the large black spots on the hip made it immediately obvious to me. During my Master’s and PhD research, I studied this genus and described several species, and there are no described species with such orange legs, and only few species have these black markings on the hip. It’s rare that we find a frog and are immediately able to recognise that it is a new species without having to wait for the DNA sequence results to come back, so this was elating”,

shares Dr. Scherz.

The new species is most closely related to a poorly-known and still undescribed species from Tsaratanana in northern Madagascar, but is otherwise quite different from all other diamond frogs. With the orange colouration on its legs, Rhombophryne ellae joins the growing list of frogs that have red to orange flash-markings. The function of this striking colouration remains unknown, despite having evolved repeatedly in frogs, including numerous times in Madagascar’s narrow-mouthed frogs alone.

The new species, Rhombophryne ellae, is well camouflaged among the rainforest leaflitter
Credit: Mark D. Scherz
License: CC-BY 4.0

“The discovery of such a distinctive species within a comparatively well-studied park points towards the gaps in our knowledge of the amphibians of the tropics. It also highlights the role that bad weather, especially cyclones, can play in bringing otherwise hidden frogs out of hiding—Rhombophryne ellae was caught just as Cyclone Ava was moving in on Madagascar, and several other species my colleagues and I have recently described were also caught under similar cyclonic conditions”,

says Dr. Scherz.
Rhombophryne ellae is a small, probably semi-fossorial (sub-terranean-dwelling) species of diamond frog, at home amongst the leaf litter of Montagne d’Ambre National Park, north Madagascar
Credit: Mark D. Scherz
License: CC-BY 4.0

The species is known so far only from a single specimen, making it difficult to estimate its conservation status. Yet, based on the status of other, related frogs from the same area, it will probably be Red-listed as Near Threatened due to its presumably small range and micro-endemicity.

Original source:

Scherz MD (2020) Diamond frogs forever: a new species of Rhombophryne Boettger, 1880 (Microhylidae, Cophylinae) from Montagne d’Ambre National Park, northern Madagascar. Zoosystematics and Evolution 96(2): 313-323. https://doi.org/10.3897/zse.96.51372


‘Social distancing’ saves frogs: New approach to identify individual frogs noninvasively

aitik Patel and Dr Abhijit Das of the Wildlife Institute of India came up with one of the very first non-invasive approaches to identify individual frogs using photos from their natural habitats, which are then processed with the animal recognition software HotSpotter. Their unique method is described in the open-access, peer-reviewed scientific journal Herpetozoa.

A Beautiful stream frog (Amolops formosus) in a Himalayan torrent stream
Photo by Naitik Patel

Globally, 41% amphibian species are regarded as threatened with extinction. However, when it comes to the case of India, the majority of the species falls in the Data Deficient group, according to the criteria of the International Union for Conservation of Nature‘s (IUCN) Red List of Threatened Species.

This means that we hardly have any population data for Indian amphibians, which leads to a serious conservation bottleneck, especially when you are dealing with elusive herpiles. Therefore, there is the pressing priority to obtain demographic trends to prompt and support conservation actions for endemic and habitat-dependent species.

While demographics of natural populations is best estimated with the mark-recapture technique, used in animals, where individuals have distinct body markings, such as the stripes in a tiger, the dots in a whale shark and the fingerprints in a human. In the meantime, while frogs are well known for their individual-specific markings and colour patterns, this kind of technique has never been used in amphibians, even though they have long been recognised as some of the most vulnerable animals on Earth.

On the other hand, it is hardly possible to capture and mark individual frogs in the wild. So, Naitik Patel and Dr Abhijit Das of the Wildlife Institute of India came up with one of the very first non-invasive approaches to identify individual frogs using photos from their natural habitats, which are then processed with the animal recognition software HotSpotter. Their unique method is described in the open-access, peer-reviewed scientific journal Herpetozoa.

“Capturing each frog is not possible in the field, so to address this problem, we conducted a short study on Beautiful stream frogs (Amolops formosus), a species that, just like many other amphibians, has variable body markings amongst individuals. As this species inhabits the Himalayan torrent stream, which is difficult to access, we tried our best to photograph each frog from a distance to avoid any kind of physical contact,”

explains Naitik Patel, a PhD student at the Wildlife Institute of India.

A Beautiful stream frog (Amolops formosus)
Photo by Abhijit Das

Having concluded their study with a success rate of 94.3%, the research team is hopeful that their protocol could be effectively implemented in rapid population estimation for many endangered species of frogs.

“We conducted photographic documentation to capture the unique markings of each frog, and then compared them, using computer-assisted individual identification. With this method, the number of individuals can be counted to estimate the population structure. This study is exceptional, owing to the minimal disturbance it causes to the frogs. Such a technique has rarely been tried on amphibians and is a promising method to estimate their numbers. It can also be used in citizen science projects,”

comments senior scientist Dr Abhijit Das.

###

Original source:

Patel NG, Das A (2020) Shot the spots: A reliable field method for individual identification of Amolops formosus (Anura, Ranidae). Herpetozoa 33: 7-15. https://doi.org/10.3897/herpetozoa.33.e47279

A new Critically Endangered frog named after “the man from the floodplain full of frogs”

A new species of a Critically Endangered miniaturised stump-toed frog of the genus Stumpffia found in Madagascar is named Stumpffia froschaueri after “the man from the floodplain full of frogs”, Christoph Froschauer. The namesake of the new frog is famous for being the first, and European-wide renowned, printer from Zürich, famous for printing “Historia animalium” and the “Zürich Bible”. The finding is published in the peer-reviewed open-access journal Zookeys.

A new species proposed to be classified as Critically Endangered of miniaturised stump-toed frog of the genus Stumpffia, found in Madagascar, is named Stumpffia froschaueri after “the man from the floodplain full of frogs”, Christoph Froschauer. The namesake of the new frog is famous for being the first, and European wide renowned, printer from Zürich, famous for printing Historia animalium and the “Zürich Bible”

Christoph Froschauer’s (ca. 1490 – April 1564) family name means “the man from the floodplain full of frogs”, and the printer used to sign his books with a woodcut, showing frogs under a tree in a landscape. Amongst his publications are works by Zwingli, Bullinger, Gessner, Erasmus von Rotterdam and Luther, and as a gift for his art, the printer was given citizenship in Zürich in 1519. Now, scientists have also honoured Froschauer’s great contributions by naming a new frog species after him.

The discovery, made by an international team of scientists from CIBIO (Research Centre in Biodiversity and Genetic Resources) of the University of Porto, Zoological Society of London, University of Lisbon, University of Brighton, University of Bristol, University of Antananarivo and Museo Regionale di Scienze Naturali, is published in the open-access peer-reviewed journal Zookeys.

The new species is reliably known only from a few specimens collected in three forest patches of the Sahamalaza region, an area severely threatened by fire, drought and high levels of forest clearance.

“In Anketsakely and Ankarafa this species has been found only in areas with relatively undisturbed forest, and active individuals were found during the day within the leaf-litter on the forest floor, where discreet calling males were also detected”,

shares lead author Dr. Angelica Crottini from CIBIO.

Even though two out of the three forest patches where Stumpffia froschaueri occurs are now part of a UNESCO Biosphere Reserve, there is a lack in forest border patrols and the area remains under strong pressure from slash-and-burn activities and timber harvesting. Habitat loss and fragmentation are likely to represent a huge threat to the species’ survival and cause population declines, unless remedial actions to enforce the protection of these habitats are taken. The scientists suggest to classify Stumpffia froschaueri as a Critically Endangered species according to criteria of the IUCN Red List.

Life colouration of Stumpffia froschaueri sp. nov., dorsolateral view of paratype ZSM 167/2019 (ACZCV 0968) from Ankarafa Forest
Credit: Gonçalo M. Rosa
License: CC-BY 4.0

“We here reiterate the need to continue with field survey activities, giving particular attention to small and marginal areas, where several microendemic candidate species are likely waiting to be discovered and formally described. This description confirms the Sahamalaza Peninsula as an important hotspot of amphibian diversity, with several threatened species relying almost entirely on the persistence of these residual forest fragments”,

concludes Dr. Crottini.
Life colouration of Stumpffia froschaueri sp. nov., dorsolateral view of paratype ZSM 166/2019 (ACZCV 0939) from Ankarafa Forest
Credit: Gonçalo M. Rosa
License: CC-BY 4.0

Contact:
Dr. Angelica Crottini 
Email: tiliquait@yahoo.it 

Original source:
Crottini A, Rosa GM, Penny SG, Cocca W, Holderied MW, Rakotozafy LMS, Andreone F (2020) A new stump-toed frog from the transitional forests of NW Madagascar (Anura, Microhylidae, Cophylinae, Stumpffia). ZooKeys 933: 139-164. https://doi.org/10.3897/zookeys.933.47619

New to science newts from Vietnam with an important message for Biodiversity Day 2020

A new study, published in the peer-reviewed open-access journal ZooKeys, describes two new to science species and one subspecies of crocodile newts from northern Vietnam. However, this manifestation of the incredible diversity of life hosted on our planet comes as an essential reminder of how fragile Earth’s biodiversity really is.

One of the newly discovered crocodile newt species, Tylototriton pasmansi
Photo by Cuong The Pham

In time for the International Day for Biological Diversity 2020, the date (22 May) set by the United Nations to recognise biodiversity as “the pillars upon which we build civilizations”, a new study, published in the peer-reviewed open-access journal ZooKeys, describes two new to science species and one subspecies of crocodile newts from northern Vietnam. However, this manifestation of the incredible diversity of life hosted on our planet comes as an essential reminder of how fragile Earth’s biodiversity really is.

Until recently, the Black knobby newt (Tylototriton asperrimus) was known to be a common species inhabiting a large area stretching all the way from central and southern China to Vietnam. Much like most of the other members of the genus Tylototriton, colloquially referred to as crocodile newts or knobby newts, it has been increasingly popular amongst exotic pet owners and traditional Chinese medicine practitioners. Meanwhile, authorities would not show much concern about the long-term survival of the Black knobby newt, exactly because it was found at so many diverse localities. In fact, it is still regarded as Near Threatened, according to the International Union for Conservation of Nature‘s Red List.

However, over the past decade, the increasing amount of research conducted in the region revealed that there are, in fact, many previously unknown to science species, most of which would have been assumed to be yet another population of Black knobby newts. As a result, today, the crocodile newts represent the most species-rich genus within the whole family of salamanders and newts (Salamandridae).

One of the newly discovered crocodile newt species, Tylototriton sparreboomi
Photo by Anh Van Pham

Even though this might sound like great news for Earth’s biodiversity, unfortunately, it also means that each of those newly discovered species has a much narrower distributional range, making them particularly vulnerable to habitat loss and overcollection. In fact, the actual Black knobby newt turns out to only exist within a small area in China. Coupled with the high demand of crocodile newts for the traditional Chinese medicine markets and the exotic pet trade, this knowledge spells a worrying threat of extinction for the charming 12 to 15-centimetre amphibians.

In order to help with the answer of the question of exactly how many Vietnamese species are still being mistakenly called Black knobby newt, the German-Vietnamese research team of the Cologne Zoo (Germany), the universities of Hanoi (Vietnam), Cologne and Bonn (Germany), and the Vietnam Academy of Science and Technology analysed a combination of molecular and detailed morphological characters from specimens collected from northern Vietnam. Then, they compared them with the Black knobby newt specimen from China used to originally describe the species back in 1930.

Thus, the scientists identified two species (Tylototriton pasmansi and Tylototriton sparreboomi) and one subspecies (Tylototriton pasmansi obsti) previously unknown to science, bringing the total of crocodile newt taxa known from Vietnam to seven. According to the team, their discovery also confirms northern Vietnam to be one of the regions with the highest diversity of crocodile newts.

“The taxonomic separation of a single widespread species into multiple small-ranged taxa (…) has important implications for the conservation status of the original species,”

comment the researchers.

The newly discovered crocodile newts were named in honour of the specialist on salamander chytrid fungi and co-discoverer Prof. Dr. Frank Pasmans and, sadly, the recently deceased salamander enthusiasts and experts Prof. Fritz-Jurgen Obst and Prof. Dr. Max Sparreboom.

The newly discovered crocodile newt subspecies, Tylototriton pasmansi obsti
Photo by Anh Van Pham

In light of their findings, the authors conclude that the current and “outdated” Near Threatened status of the Black knobby newt needs to be reassessed to reflect the continuous emergence of new species in recent years, as well as the “severe threats from international trade and habitat loss, which have taken place over the last decade.”

Meanwhile, thanks to the commitment to biodiversity conservation of Marta Bernardes, lead author of the study and a PhD Candidate at the University of Cologne under the supervision of senior author Prof Dr Thomas Ziegler, all crocodile newts were included in the list of internationally protected species by the Convention on International Trade in Endangered Species (CITES) last year.

Today, some of the threatened crocodile newt species from Vietnam are already kept at the Cologne Zoo as part of conservation breeding projects. Such is the case for the Ziegler’s crocodile newt (Tylototriton ziegleri), currently listed as Vulnerable on the IUCN Red List and the Vietnamese crocodile newt (Tylototriton vietnamensis), currently considered as Endangered. Fortunately, the latter has been successfully bred at Cologne Zoo and an offspring from Cologne was recently repatriated.

###

Original source:

Bernardes M, Le MD, Nguyen TQ, Pham CT, Pham AV, Nguyen TT, Rödder D, Bonkowski M, Ziegler T (2020) Integrative taxonomy reveals three new taxa within the Tylototriton asperrimus complex (Caudata, Salamandridae) from Vietnam. ZooKeys 935: 121-164. https://doi.org/10.3897/zookeys.935.37138

Scientists discover bent-toed gecko species in Cambodia

Originally published by North Carolina Museum of Natural Sciences

A new species of bent-toed gecko (Cyrtodactylus phnomchiensis) has been described from Cambodia’s Prey Lang Wildlife Sanctuary by Wild Earth Allies Biologist Thy Neang in collaboration with North Carolina Museum of Natural Sciences‘ Herpetologist Bryan Stuart. This new species is described in ZooKeys.

The species was discovered by Thy Neang during Wild Earth Allies field surveys in June-July 2019 on an isolated mountain named Phnom Chi in the Prey Lang Wildlife Sanctuary when he encountered an unusual species of bent-toed gecko. “It was an extremely unexpected discovery. No one thought there were undescribed species in Prey Lang,” said Neang.

The geckos were found to belong to the C. irregularis species complex that includes at least 19 species distributed in south¬ern and central Vietnam, eastern Cambodia, and southern Laos. This is the first member of the complex to be found west of the Mekong River, demonstrating how biogeographic barriers can lead to speciation. Additionally, the geckos were unique in morphological characters and mitochondrial DNA, and distinct from C. ziegleri to which they are most closely related. Researchers have named the species Cyrtodactylus phnomchiensis after Phnom Chi mountain where it was found.

A new species of bent-toed gecko (Cyrtodactylus phnomchiensis) has been discovered in Cambodia’s Prey Lang Wildlife Sanctuary by Wild Earth Allies Biologist Thy Neang in collaboration with Bryan Stuart of the North Carolina Museum of Natural Sciences.
Photo by Thy Neang

Bent-toed geckos of the genus Cyrtodactylus are one of the most species-diverse genera of gekkonid lizards, with 292 recognized species. Much of the diversity within Cyrtodactylus has been described only during the past decade and from mainland Southeast Asia, and many of these newly recognized species are thought to have extremely narrow geographic ranges. As such, Cyrtodactylus phnomchiensis is likely endemic to Phnom Chi, which consists of an isolated small mountain of rocky outcrops (peak of 652 m elevation) and a few associated smaller hills, altogether encompassing an area of approximately 4,464 hectares in Kampong Thom and Kratie Provinces within the Prey Lang Wildlife Sanctuary, Cambodia.

The forest habitat in Phnom Chi remains in relatively good condition, but small-scale illegal gold extraction around its base threatens the newly discovered species. A second species of lizard, the scincid Sphenomorphus preylangensis, was also recently described from Phnom Chi by a team of researchers including Neang. These new discoveries underscore the importance of Prey Lang Wildlife Sanctuary for biodiversity conservation and the critical need to strengthen its management.

Habitat at Phnom Chi, the type locality of the newly described bent-toed gecko.
Photo by Thy Neang

Further, an assessment of C. phnomchiensis is urgently warranted by the IUCN Red List of Threatened Species (IUCN 2020) because of its small area of occupancy, status as relatively uncommon, and ongoing threats to its habitat.

“This exciting discovery adds another reptile species to science for Cambodia and the world. It also highlights the global importance of Cambodia’s biodiversity and illustrates the need for future exploration and biological research in Prey Lang,”

said Neang.

“When [Neang] first returned from fieldwork and told me that he had found a species in the C. irregularis group so far west of the Mekong River in Cambodia, I did not believe it. His discovery underscores how much unknown biodiversity remains out there in unexpected places. Clearly, Prey Lang Wildlife Sanctuary is important for biodiversity and deserves attention,”

said Neang’s co-author Stuart of the North Carolina Museum of Natural Sciences.

###

Original source:

Neang T, Henson A, Stuart BL (2020) A new species of Cyrtodactylus (Squamata, Gekkonidae) from Cambodia’s Prey Lang Wildlife Sanctuary. ZooKeys 926: 133-158. https://doi.org/10.3897/zookeys.926.48671

###

For more information on Wild Earth Allies, please visit: http://www.wildearthallies.org.

For more information on the North Carolina Museum of Natural Sciences, please visit:http://www.naturalsciences.org.

Vibes before it bites: 10 types of defensive behaviour for the False Coral Snake

The False Coral Snake (Oxyrhopus rhombifer) may be capable of recognising various threat levels and demonstrates ten different defensive behaviours, seven of which are registered for the first time for the species. Scientists from the Federal University of Viçosa (Brazil) published their laboratory observation results based on a juvenile specimen in the open-access journal Neotropical Biology and Conservation.

In a recent paper in the open-access journal Neotropical Biology and Conservation, a group of Brazilian scientists from the Federal University of Viçosa (Brazil) published ten different defensive behaviours for the False Coral Snake (Oxyrhopus rhombifer), seven of which are registered for the first time for the species. One of these is reported for the first time for Brazilian snakes.

Evolution shaped anti-predator mechanisms in preys, which can be displayed either with avoidance or defensive behaviours. The current knowledge about such mechanisms are still scarce for many snake species, but it is constantly increasing over the last years. These data are helpful for better understanding of the species ecology, biology and evolution.

The False Coral Snake (O. rhombifer) is a terrestrial snake species with a colouration like the true coral snake . The species has a wide geographic distribution, occurring in Argentina, Paraguay, Uruguay, Bolivia and all Brazilian biomes. Among its previously known anti-predator mechanisms, this species has already shown cloacal discharge, body flattening, struggling, erratic movements and hiding the head.

However, these behaviors were only a small part of what this species is capable of doing to defend itself! In November 2017, a juvenile male  captured in the Atlantic Forest of southeastern Brazil was observed under laboratory settings, where the scientists would simulate a predation attempt with an increasing threat level.

We released the snake on to the laboratory bench and let it notice our presence. The animal remained motionless at first, then performed a pronounced dorsoventral flattening of the anterior part of the body, raised its tail, adopted an S-shaped posture, raised the first third of the body and performed brief body vibrations. Then we approached the snake, which remained with the same posture and body vibrations. When we touched the animal (not handling), it remained with the S-shaped posture, keeping the first third of the body elevated and the dorsoventral flattening (however, less accentuated) and started to display erratic movements, false strikes and locomotor escape. When handled, the snake only struggled,

shares the lead scientist Mr. Clodoaldo Lopes de Assis.

Amongst ten recorded behaviour types only three were among those already registered for this species. Since defensive responses in snakes decrease as body size increases, juveniles exhibit a broader set of defensive behaviour than adults. Because of that, some types of behaviour described in this study might be explained either by physical constraints or stage of development of the individual.

Some types of behaviour resemble the ones of true coral snakes of the genus Micrurus, a group of extremely venomous snakes. Thus, this similarity may be linked with the mimicry hypothesis between these two groups, where harmless false coral snakes take advantage of their similar appearance to the true coral snakes to defend themselves.

Another type of anti-predation mechanism shown — body vibrations — is yet an unknown behaviour for Brazilian snakes and has been recorded for the first time. This type of behaviour is difficult to interpret, but could represent a defensive signal against non-visually orientated predators.

Finally, defensive strategies of the specimen differed according to the threat level imposed: starting from discouraging behaviour up to false bites, erratic movements and locomotor escape.


Some defensive types of behaviour displayed by the juvenile Oxyrhopus rhombifer
Credit: Mr. Clodoaldo Lopes de Assis
License: CC-BY 4.0

O. rhombifer may be capable of recognising different threat levels imposed by predators and adjusting its defensive behaviour accordingly,

highlights Mr. Clodoaldo Lopes de Assis.

Through such simple laboratory observations we can get a sense of how Brazilian snakes are yet poorly known regarding their natural history, where even common species like the false coral snake O. rhombifer can surprise us!

Mr. Clodoaldo Lopes de Assis adds in conclusion.

***

Original source:
Lopes de Assis C, José Magalhães Guedes J, Miriam Gomes de Jesus L, Neves Feio R (2020) New defensive behaviour of the false coral snake Oxyrhopus rhombifer Duméril, Bibron & Duméril, 1854 (Serpentes, Dipsadidae) in south-eastern Brazil. Neotropical Biology and Conservation 15(1): 71-76. https://doi.org/10.3897/neotropical.15.e48564

UCF student names a new frog species after her professor


The newly described species Pristimantis quintanai.
Photo by UCF, Veronica Urgiles.

The team described two new species from the Ecuadorian Andes

University of Central Florida student Veronica Urgiles has helped describe two new frog species discovered in Ecuador, and she named one of them after one of her professors.

Urgiles and an international team of researchers published their findings in the journal ZooKeys.

UCF student Veronica Urgiles named one of the new frog species in honor of Biology Professor Pedro Quintana-Ascencio for his years of dedication to conservation efforts in Ecuador.
Photo by UCF, Karen Norum.

She explains:

“Frogs are by far my favorite. So, getting to describe and name two of them is terrific. I have been looking at these frogs for years now, so going over the whole process of observing them in their habitats and then analyzing them and comparing them under the microscope, to finally naming them is a long, but very satisfying journey.”

Urgiles, a 2017 Fulbright scholar and the lead author, said she chose to attend UCF for its integration of genetics and genomics in biodiversity research and the emphasis on real-world application. She works with Assistant Professor Anna Savage who specializes in species diversity based on molecular analyses.

“One of the things that I found most interesting about these guys is that they don’t have metamorphosis like a regular frog, but instead they develop entirely inside eggs that adult females deposit in the ground,” Urgiles said. “They really don’t need water bodies for their development. Both of the new frog species inhabit high elevation ecosystems in the mountain range over 8,000 feet, so even though we are right there in the equator, it’s very cold and windy most of the year.”

The team of researchers has been studying frogs in Ecuador the past few years. In 2017, Urgiles found the first new species and named it Pristimantis quintanai, after one of her biology professors — Pedro Quintana-Ascencio. She and Savage found the second species — Pristimantis cajanuma — in 2018. Both were found in the Paramo and montane forest of the southern Ecuadorean Andes.

The newly described species Pristimantis cajanuma.
Photo by UCF, Veronica Urgiles.

The frogs are tiny, measuring 0.8 inch. Pristimantis quintanai females are brown and black and Pristimantis cajanuma are green and black, both easily blending into the foliage. They have a distinct call that is sharp and continuous, sounding like tik-tik-tik-tik.

Urgiles examined DNA samples collected by the international team back in Savage’s lab at UCF, generated genetic sequences, and constructed the phylogenetic analysis. Other team members also worked the morphological diagnosis and comparisons with other frogs and an acoustic analysis of the frogs’ calls.

Anna Savage, whose expertise includes describing species diversity based on molecular analyses, says:

“In these analyses, we use all of the genetic similarities and differences we find to build phylogenetic trees, and when we find that a ‘branch’ on the ‘tree’ has strong support and contains all of the individuals that share the same morphological characteristics, then we have good evidence to describe it as a new species. We used this method, along with vocalization and location data, to conclude that the two species we describe are distinct from any other species that have ever been characterized.”

The work is critical because of the vast diversity that has yet to be discovered in the tropical Andes of South America, Urgiles adds. In 2018, 13 new species of frogs were documented in the tropical Andes of Ecuador and so far in 2019 five new frogs have been documented.

There are potentially thousands of new plants and animals in the area that may hold the key to other discoveries. It’s important to know what is there, to better understand the threats to habitat loss and disease so conservation methods can be established to protect the resources.

Veronica Urgiles, a UCF student pursuing a master’s in biology. She named one of the two frog species that she and her team discovered after one of her professors.
Photo by UCF, Karen Norum.

###

Text originally by UCF.

###

Original source:

Urgiles VL, Székely P, Székely D, Christodoulides N, Sanchez-Nivicela JC, Savage AE (2019) Genetic delimitation of Pristimantis orestes (Lynch 1979) and P. saturninoi Brito et al., 2017 and the description of two new terrestrial frogs from the Pristimantis orestes species group (Anura, Strabomantidae). ZooKeys 864: 111-146. https://doi.org/10.3897/zookeys.864.35102

Austrian Herpetological Society’s journal Herpetozoa moves to Pensoft’s ARPHA platform

Newly published research articles demonstrate numerous innovative features to the benefit of readers, authors and all other users

Published since 1988 by the Austrian Herpetological Society (ÖGH, Österreichische Gesellschaft für Herpetologie), the renowned peer-reviewed, open-access Herpetozoa is added to the growing portfolio of international scientific journals published on the ARPHA scholarly platform, as a result of a new partnership with scholarly publisher and technology provider Pensoft.

Follow Herpetozoa on Twitter and Facebook.

As before, Herpetozoa welcomes original research articles, short contributions and reviews covering all aspects of the study of amphibians and reptiles. The papers are published in English, whereas a translation of the abstract into German may also be included. The journal operates a single-blind peer review policy.

Thanks to the fast-track and convenient publishing provided by ARPHA, each manuscript is carried through all stages from submission and reviewing to dissemination and archiving without ever leaving the platform’s collaboration-friendly online environment.

Right underneath the new sleek look and feel welcoming users from the journal’s homepage, there are a lot of high-tech perks to benefit authors, readers, reviewers and editors alike.

Furthermore, all publications are available in three formats (PDF, XML, HTML), complete with a whole set of semantic enhancements, so that the articles are easy to find, access and harvest by both humans and machines.


Editor-in-Chief of Herpetozoa, Dr Günter Gollmann states:

“We decided to move to Open Access online publishing to increase the visibility of our journal, and to speed up the publication process. The highly attractive presentation provided by Pensoft should boost attention for the papers we publish. While Herpetozoa welcomes contributions of any length on all topics in herpetology, I hope that authors will appreciate the suitability of the new format for data-rich studies in natural history. Such research is often dismissed as “too descriptive” by other international journals, but is essential for conservation of biodiversity.”

ARPHA’s and Pensoft’s founder and CEO Prof Lyubomir Penev says:

“I am pleased to see Herpetozoa having found its new home on the ARPHA platform amongst all Pensoft journals and other highly reputed academic titles from around the globe. With our own strong background in zoological sciences, I am certain that our partnership with Herpetozoa will be quick to prove fruitful to both of us, but most importantly, to all readers, authors, editors and reviewers alike.”

With its move to the open-access, technologically advanced scholarly publishing platform, Herpetozoa lines up next to historical and well-known society journals, including Deutsche Entomologische ZeitschriftAlpine Entomology (previously Journal of the Swiss Entomological Society), Journal of Hymenoptera ResearchZoologia and others, which have all chosen to modernise with the help of ARPHA.

What’s new on Herpetozoa?

Amongst the first batch of articles published in Herpetozoa in partnership with ARPHA/Pensoft, there is an Italian study tracking the long-disputed origin of the Mediterranean-native common chameleon (Chamaeleo chamaeleo) back to its ancestors in North Africa and the Middle East. Another paper by a research team from Romania compares the effects of carnivore, vegetarian and omnivorous diets on the growth, development and mortality in tadpoles of the common toad. In their study of the South American frog species Leptodactylus fuscus, scientists from Universidade Federal de Mato Grosso do Sul (Brazil) compare the diet of a population living in the wild with another one, which inhabits an urban environment. Their aim was to determine the impact urbanisation could be having on this otherwise abundant amphibian.

Distribution of the common chameleon in Salento (southern Italy) in 2018. Black dots represent observation localities (Basso et al. 2019).
Study openly accessible at:
https://doi.org/10.3897/herpetozoa.32.e35611

###

Herpetozoa is indexed in Biological AbstractsBIOSIS (Previews)Current Contents – AgriculturalScience Citation Index (Expanded)Web of ScienceZoological Record (Plus). Currently, its Journal Impact Factor stands at 1.125.

###

About the Austrian Herpetological Society:

The Austrian Herpetological Society (Österreichische Gesellschaft für Herpetologie, ÖGH) was founded in 1984 to advance all branches of herpetology. The society supports scientific research and promotes conservation of amphibians and reptiles, as well as their habitats. To raise public awareness of these animal groups, ÖGH organizes meetings and excursions and publishes the journals Herpetozoa and ÖGH-Aktuell.