Tramp ant caught globetrotting under false name

A century-old mystery surrounding the origin of an invasive ant species was recently solved by an international team of scientists. Since 1893, when it was first discovered as an invasive species in the Canary Islands, entomologists have been debating where this mystery species came from. While some insisted on the Mediterranean, some proposed Arabia and others argued for Africa. The correct answer? Asia.

The authors of the study, published in the open-access journal ZooKeys, solved the taxonomic puzzle by fitting together disparate pieces of evidence. “I was having a terrible time trying to distinguish this one Asian species from the mysterious ant that was coming in on shipments from the Caribbean, Europe and Africa,” says Dr. Eli Sarnat, University of Illinois, about his research at the Smithsonian on tramp ants that were intercepted at US ports.

Tramp ants, many of which are pest species, are spread across the globe by stowing away in the cargo of ships and planes, thus posing rising environmental, food security and public health concerns.

The same day Sarnat was working on the mysterious ant in the Smithsonian, he received an email from Dr. Evan Economo, Okinawa Institute of Science and Technology (OIST). Economo and Dr. Georg Fischer, also affiliated with OIST, had included Madagascar samples of the species in a genetic analysis, and the results unexpectedly placed it within a group of Asian species. The closest genetic match to the enigmatic ant turned out to be the very same Asian species that Sarnat had found in the Smithsonian collection.

The last piece of the riddle was discovered thanks to the painstaking work of Dr. Benoit Guénard. Guénard, a professor at the University of Hong Kong, had spent years mapping the global distributions of every ant species known to science. When he compared the ranges of the mysterious ant with the common Asian species, the two fit together like a jigsaw puzzle.

Evidence gathered from classic taxonomy, modern genetic analysis, and exhaustively researched distribution maps all pointed to the same conclusion.

“What had long been considered two different species — one found across a wide swath of Asia and the other a tramp species spread by humans across Europe, Africa, the Americas and Australia — are actually one single supertramp species,” Economo explained. “It is striking that we had these two continental super-common invaders with almost entirely complementary ranges right under our noses, yet until now no one noticed they were actually the same species,”


Original source:

Sarnat EM, Fischer G, Guénard B, Economo EP (2015) Introduced Pheidole of the world: taxonomy, biology and distribution. ZooKeys 543: 1-109.doi: 10.3897/zookeys.543.6050

Additional information:

This work was supported by USDA APHIS Identification Technology Program (13-8130-1439-CA), subsidy funding to OIST, and NSF (DEB-1145989). This work was supported by USDA APHIS Identification Technology Program (13-8130-1439-CA), subsidy funding to OIST, and NSF (DEB-1145989).

Cage the fly: Walk-in field cages to assess mating compatibility in pest fruit flies

Fruit flies mating compatibility studies have been examined by an international team of researchers to assess the usefulness of walk-in field cages in studying the sexual behavior within fruit fly species complexes and recognition of taxonomically misplaced flies. In addition, they have also evaluated the relevant chemical signals during pheromone emission for species discrimination. The experimental part was conducted with the support of Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture in Seibersdorf, Austria. Their findings are published in the open-access journal ZooKeys.

Evolution has led to divergence in some groups, which sometimes results in new, yet very similar species. Hence, they might successfully confuse taxonomists, making them coin terms like ‘cryptic’ species, or in other words, distinct species misplaced under the same name.

However, these species are kept isolated from each other via reproductive barriers. Preventing interbreeding and hybridization, they can be ecological and mechanical, but also behavioral (i.e. sexual). The latter are behaviors or signals that affect recognition within a species, as well as attractiveness and mate choice. They affect their evolution and therefore, are key elements in species differentiation.

The authors of the present paper have found that the walk-in field cages methodology provides an appropriate ground to study these issues. By applying it, researchers around the world are able to detect pest species among others when occurring in the same populations.

Apart from taxonomic value, the scientists also point out the significance of these findings to pest management. As the studied pest fruit fly species are agricultural pests of major economic importance, assessing their mating behaviour, including the pheromones the males emit when attracting partners, can be utilised in the development of highly specific control methods. For instance, there is the sterile insect technique that involves releasing males reproductively sterilised via ionizing radiation into a wild population, where they inseminate the pest females with sterile sperm so that they end up with unviable offspring.

The main advantage of using walk-in field cages, rather than small laboratory-based ones, is that they provide semi-natural conditions under which they are “reliable and powerful tools to measure the level of mating compatibility among different species and populations of a putative single species.”

However, the present paper highlights that such an approach is only to be applied as a part of integrative taxonomic analyses, together with molecular, physiological and morphological approaches when assessing to which species a particular pest population belongs.


Original source:

Juarez ML, Devescovi F, Brizova R, Bachmann G, Segura DF, Kalinova B, Fernandez P, Ruiz MJ, Yang J, Teal PEA, Caceres C,, Vreysen MJB, Hendrichs J, Vera MT (2015) Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation. In: De Meyer M, Clarke AR, Vera MT, Hendrichs J (Eds) Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade. ZooKeys 540: 125-155. doi: 10.3897/zookeys.540.6133