Ovophis jenkinsi is dark brownish-grey, with trapezoidal patches on its back. It is endemic to China’s Yingjiang County and is not difficult to find in the wild.
Yunnan, China is a biodiversity hotspot, with many new reptile species discovered in the region in recent years. It is also where a research team from China found a new species of medium-sized venomous snake, known as a mountain pit viper.
“We checked specimens of the [snake] genus Ovophis collected by Institute of Zoology, Chinese Academy of Sciences and Beijing Forestry University in Yingjiang, Yunnan in 2008, and found that these specimens were different from all known similar species. We collected some new specimens from Yingjiang in 2023 and finally determined that this population represents a new species!” the researchers explained.
The new species was named Ovophis jenkinsi in honour of herpetologist Robert “Hank” William Garfield Jenkins AM (September 1947−September 2023), who had “a passion for snakes, especially pit vipers, and helped China, along with many Asian countries, complete snake census, conservation, and management projects,” the team writes in their study, which was published in the open-access journal ZooKeys.
Ovophis jenkinsi is generally dark brownish-grey, but some individuals can be deep orange-brown, and has trapezoidal patches on its back. “It is usually slow-moving but shows great aggression when disturbed,” the researchers explain after observing the snake’s behaviour. “When threatened, these snakes inflate their bodies to make themselves appear larger and strike quickly.”
There are no records to date of humans being bitten by this species.
Like many other species, this snake is endemic to China’s Yingjiang County, which means it is currently found only there. “It is not difficult to find this species in the wild, they are active mainly in the autumn and prefer cool, humid, and even rainy nights, probably to avoid competition with other snakes,” the researchers say, suggesting it might feed on small mammals.
“We will be collecting more information about O. jenkinsi in the future, including their appearance, distribution, and habits, to improve our understanding of this species,” the researchers say in conclusion.
Research article:
Qiu X-C, Wang J-Z, Xia Z-Y, Jiang Z-W, Zeng Y, Wang N, Li P-P, Shi J-S (2024) A new mountain pitviper of the genus Ovophis Burger in Hoge & Romano-Hoge, 1981 (Serpentes, Viperidae) from Yunnan, China. ZooKeys 1203: 173-187. https://doi.org/10.3897/zookeys.1203.119218
Two red-tailed coral snakes have been observed competing over a caecilian in the first documented wild case of kleptoparasitism within the family Elapidae.
Kleptoparasitism, or food theft, is a well-documented behaviour in many animal species but is seldom reported among snakes in natural habitats.
The observation, detailed in a recent study published in the open-access journal Herpetozoa by Henrik Bringsøe and Niels Poul Dreyer, showcases the two Micrurus mipartitus snakes engaging in a tug of war over the limbless amphibian.
Elapid snakes are venomous and among the deadliest serpents in the world. There are more than 400 species comprising a very diverse group of snakes such as mambas, cobras, kraits, taipans, tiger snakes, death adders, sea snakes and coral snakes.
The battle occurred in the dense rainforests of Valle del Cauca, western Colombia. Surprisingly, in the tussle, one snake also bit the body of the other. However, the researchers suggest this was likely accidental.
After 17 minutes of observation, the losing coral snake released its bite-hold on the caecilian. The winner then moved away from the losing snake which did not follow.
The study suggests that while such behaviours may be more common in captivity due to controlled environments, their occurrence in nature has been largely underreported, likely due to the elusive nature of these reptiles and the challenges of observing them in their natural habitats.
“Snakes in captivity do that often when only one prey is offered in a terrarium with two or more snakes. But it is rather surprising that it has not been observed more frequently in the wild.”
Henrik Bringsøe, lead author.
This case sheds light on the coral snake interactions with prey species. Caecilians, such as the one in this study, have shown remarkable adaptations such as toxin resistance and increased mucus production.
Henrik Bringsøe previously recorded snake feeding behaviour that was entirely new to science. Check out his guest blog post on the snakes that disembowel and feed on the organs of living toads.
Original source:
Bringsøe H, Dreyer NP (2024) Kleptoparasitism in Micrurus mipartitus (Squamata, Elapidae) competing for the same Caecilia sp. (Gymnophiona, Caeciliidae) in western Colombia. Herpetozoa 37: 77-84. https://doi.org/10.3897/herpetozoa.37.e112716
Researchers of Khamai Foundation and Liberty University have discovered a new species of coffee snake endemic to the cloud forests of northwestern Ecuador.
Biologist Alejandro Arteaga first found the snake in Ecuador’s Pichincha province, while looking for animals to include in a book on the Reptiles of Ecuador.
“This is species number 30 that I have discovered, out of a target of 100,” he says.
Like other coffee snakes, Tudors’s Coffee-Snake often inhabits coffee plantations, especially in areas where its cloud forest habitat has been destroyed. It is endemic to the Pacific slopes of the Andes in northwestern Ecuador, where it lives at elevations of between 1,000 and 1,500 m above sea level.
While it faces no major immediate extinction threats, some of its populations are likely to be declining due to deforestation by logging and large-scale mining.
The researchers hope that its discovery will highlight the importance of preserving the cloud forest ecosystem, and focus research attention on human-modified habitats that surround it such as coffee plantations and pastures.
The name of the new snake species honors Guy Tudor, “an all-around naturalist and scientific illustrator with a deep fondness for birds and all animals, in recognition of the impact he has had on the conservation of South America’s birds through his artistry,” the researchers write in their paper, which was recently published in Evolutionary Systematics.
“We are trying to raise funds for conservation through the naming of new species. This one helped us protect Buenaventura Reserve.
Research article:
Arteaga A, Harris KJ (2023) A new species of Ninia (Serpentes, Colubridae) from western Ecuador and revalidation of N. schmidti. Evolutionary Systematics 7(2): 317-334. https://doi.org/10.3897/evolsyst.7.112476
Follow Evolutionary Systematics on Facebook and X.
In a collaborative study involving institutions from Singapore, Malaysia, Germany, and the UK, scientists have discovered a new species of pit viper from Myanmar that is both similar and different from its adjacent sister species.
Finding and describing new species can be a tricky endeavor. Scientists typically look for distinctive characters that can differentiate one species from another. However, variation is a continuum that is not always easy to quantify. At one extreme, multiple species can look alike even though they are different species—these are known as cryptic species. At the other extreme, a single species can be highly variable, creating an illusion of being different species. But what happens when you encounter both extremes simultaneously?
“Asian pit vipers of the genus Trimeresurus are notoriously difficult to tell apart, because they run the gamut of morphological variation. Some groups contain multiple species that look alike, while others may look very different but are actually the same species,” they say.
The redtail pit viper (Trimeresuruserythrurus) occurs along the northern coast of Myanmar and is invariably green with no markings on its body. A different species called the mangrove pit viper (Trimeresuruspurpureomaculatus) occurs in southern Myanmar. This species typically has distinct dorsal blotches, and incredibly variable dorsal coloration including gray, yellow, brown, and black, but never green. Interestingly, in central Myanmar, sandwiched between the distribution of the redtail pit viper and the mangrove pit viper, a unique population exists that is green with varying degrees of blotchiness, which appears to be a blend between the redtail pit viper and the mangrove pit viper.
“This mysterious population in central Myanmar baffled us and we initially thought that it could be a hybrid population,” the researchers said. In a separate paper, Dr Chan used modern genomic techniques and determined that the population in central Myanmar was actually a distinct species and not a hybrid population.
But this was not the end of the story. The researchers discovered another surprise when they examined the snake’s morphological features: they found that the new species was also highly variable. Certain populations are dark green with distinct blotches, easily distinguishable from its closest relative, the redtail pit viper, which is bright green with no blotches. However, some populations of the new species are bright green with no blotches and look virtually identical to the redtail pit viper.
“This is an interesting phenomenon, where one species is simultaneously similar and different from its closest relative (the redtail pit viper). We think that at some point in the past, the new species may have exchanged genes with the redtail pit viper from the north and the mangrove pit viper from the south,” says Dr Chan.
The new species is called the Ayeyarwady pit viper (Trimeresurusayeyarwadyensis) in reference to the Ayeyarwady River, which is the largest and one of the most important rivers in Myanmar. The river forms an expansive delta that is bounded by the Pathein River to the west and the Yangon River to the east. These rivers and their associated basins also mark the westernmost and easternmost distribution boundaries of the Ayeyarwady pit viper.
Research article:
Chan KO, Anuar S, Sankar A, Law IT, Law IS, Shivaram R, Christian C, Mulcahy DG, Malhotra A (2023) A new species of pit-viper from the Ayeyarwady and Yangon regions in Myanmar (Viperidae, Trimeresurus). ZooKeys 1186: 221-234. https://doi.org/10.3897/zookeys.1186.110422
The U.S. Geological Survey has released a comprehensive synthesis of Burmese python science, showcasing results from decades of USGS-funded research on python biology and potential control tools. The giant constrictor now represents one of the most challenging invasive species management issues worldwide.
Occurrence records were obtained from a large geospatial database of invasive species reports (Early Detection & Distribution Mapping System) submitted by both researchers and the public. The map illustrates the chronology of python removals across southern Florida and represents the best professional estimate of the invasion front, which is not exact and will change over time.
“For the first time, all the science on python ecology and potential control tools has been consolidated into one document, allowing us to identify knowledge gaps and important research areas to help inform future python management strategies. This synthesis is a major milestone for Burmese python research; six years in the making, it represents the consensus of the scientific community on the python invasion,” said USGS Ecologist Jacquelyn Guzy, lead author for the publication.
Burmese pythons were confirmed to have an established breeding population in Everglades National Park in 2000. The population has since expanded and now occupies much of southern Florida. They consume a wide range of animals and have altered the food web and ecosystems across the Greater Everglades.
Photo by U.S. Geological Survey.Photo by Conservancy of Southwest Florida.Photo by U.S. Geological Survey.Burmese pythons.
The synthesis, which pulled together the expertise of scientists and managers nationwide, provides a breakdown of 76 prey species found in python digestive tracts, which primarily included mammals and birds, as well as two reptile species, American alligator and Green iguana. However, as the scientists noted, the number of animals may increase as the python population expands to new areas.
It also reports new findings including a summary of body sizes of pythons measured by state and federal agencies between 1995 and 2022, as well as descriptions of length-mass relationships, the estimated geographic spread of pythons over time, and a comprehensive assessment of all control tools explored to date.
Illustration by Natalie Claunch demonstrates typical features of the Burmese python.
One of the hallmark issues of the Burmese python invasion has been the difficulty of visually detecting or trapping pythons in an immense natural landscape, Guzy said. Pythons do not readily enter any type of trap, occupy vast stretches of inaccessible habitat, and camouflage extremely well within the subtropical Florida environment.
Examples of cryptic coloration contributing to low detection probability in representative habitat where Burmese pythons have been captured. White circles indicate pythons. Photos by
“Extremely low individual python detection rates hamper our ability to both estimate python abundance and expand control tools across the extensive natural landscape” says USGS Research Ecologist Kristen Hart, an author of the publication.
Because the Burmese python has spread throughout southern Florida, eradication of the population across the landscape is not possible with existing tools, the publication states. However, researchers at USGS and partner institutions are exploring potential novel techniques such as genetic biocontrol, that may one day provide an avenue towards larger-scale population suppression.
Eradication of the population across the landscape is not possible with existing tools, a new report states. USGS and partners are "exploring potential novel techniques such as genetic biocontrol, that may one day provide an avenue towards larger-scale population suppression."
In the meantime, important areas of research according to the publication include reproductive life history and estimation of demographic vital rates such as survival, to help managers evaluate and refine existing control tools. With improved control tools managers may be able to reduce population expansion and minimize the future impact of pythons on the environment.
The USGS python research over the past decades has been largely supported by the USGS Greater Everglades Priority Ecosystem Sciences (GEPES) Program with additional support from the USGS Biothreats and Invasive Species program.
Research article:
Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM (2023) Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NeoBiota 80: 1-119. https://doi.org/10.3897/neobiota.80.90439
Story originally published by the USGS. Republished with permission.
A new species of snake was described from western Panama. First documented in 1977 by Dr. Charles Myers, a scientist studying amphibians and reptiles throughout Panama, it was only now that it got a scientific description.
The new snake has been given the name Dipsas aparatiritos. The genus Dipsas includes the snailsuckers, a unique group of snakes that feed on soft-bodied prey including snails extracted from their shells, slugs, and earthworms. The species epithet “aparatiritos” is Greek for unnoticed: a reference to the fact that the snake had remained hidden in plain sight for over forty years at a very well-studied field site.
Live individual of Dipsas aparatiritos in Parque Nacional General de División Omar Torrijos Herrera photographed in the wild. Photo by Kevin Enge
Scientists Dr. Julie Ray, University of Nevada – Reno, Paola Sánchez-Martínez, Abel Batista, Daniel G. Mulcahy, Coleman M. Sheehy III, Eric N. Smith, R. Alexander Pyron and Alejandro Arteaga, have described the new species in a paper published in the open-access journal ZooKeys.
Dipsas aparatiritos has the characteristic bulbous head and brown-and-black patterning of many of the snakes in the genus. It looks very similar to its closest known relative, Dipsas temporalis, which is also found in Panama. It is now known that D. aparatiritos is endemic to, or known only from, the western and central parts of the country.
The Hidden Snail-eating Snake, Dipsas aparatiritos. Photo by Dr. Julie M. Ray
Panama has a rich diversity of snakes, with over 150 documented species in a country the size of Ireland or the U.S. state of South Carolina. Dr. Ray has documented over 55 species of snakes in Parque Nacional General de División Omar Torrijos Herrera where the newly described snake is best studied, and over 80 species in Coclé Province in Central Panama. She published a field guide, Snakes of Panama, in 2017.
Four individuals of Dipsas aparatiritos intertwined on one plant at Parque Nacional General de División Omar Torrijos Herrera. Photo by Noah Carl
Co-author of the species description Dr. Alex Pyron, The George Washington University, visited Parque Nacional General de División Omar Torrijos Herrera in June 2013 with Dr. Frank Burbrink, American Museum of Natural History. “That was my first trip to Central America,” he says. “We were able to see the after-effects of the amphibian declines. But I was struck by the diversity and abundance of snakes that were still present, including this species of snail-eater we have just described, the rare Geophis bellus [a small leaf litter snake known from just one specimen prior to this discovery] and an unusual Coralsnake.”
Despite being a new species, Dipsas aparatiritos is relatively common in Parque Nacional General de División Omar Torrijos Herrera and has been studied for years before it was described. Dr. Ray has published a paper about the diet of snail-eating snakes, where it was found that earthworms from bromeliads compose a large portion of the diet of Dipsas aparatiritos. She also co-authored a paper on trophic cascades following amphibian declines, where it was found that Dipsas aparatiritos actually was increasing in numbers due to a diet independent of amphibians.
The Hidden Snail-eating Snake, Dipsas aparatiritos. Photo by Dr. Julie M. Ray
Dipsas aparatiritos is already considered Near Threatened based on IUCN Red List standards. The snake is endemic to Panama and comes from a limited range in the cloud forests of mid-elevation, where at least 44% of the overall range has been deforested. In addition, as snakes are constantly persecuted by humans, almost all snake species are in danger of extinction in the near future. Efforts must be made to conserve these rare species, the researchers believe, especially as so many are just being described now.
“This work was a true collaboration of scientists from different countries each contributing their expertise to thoroughly understand this new species, morphologically and molecularly,” said Dr. Ray.
“We are in an exciting time in science. Naturalists and scientists must continue to document the natural world; there are many species out there yet to be found and described. The usage of molecular techniques is exciting and facilitates the confirmation of so many new species.”
Research article:
Ray JM, Sánchez-Martínez P, Batista A, Mulcahy DG, Sheehy III CM, Smith EN, Pyron RA, Arteaga A (2023) A new species of Dipsas (Serpentes, Dipsadidae) from central Panama. ZooKeys 1145: 131-167. https://doi.org/10.3897/zookeys.1145.96616
Jiuzhaigou National Nature Reserve, a World Heritage Site, lies in the transition zone from the eastern edge of the Qinghai-Tibet Plateau to the Sichuan Basin in Sichuan Province, China, and occupies an area of 651 km2. The reserve is covered with well-preserved original forests, and numerous alpine lakes. Beautiful and picturesque, it is home to some rare animals, such as the Giant Panda (Ailuropoda melanoleuca) and Golden Snub-nosed Monkey (Rhinopithecus roxellana).
Landscape in Jiuzhaigou National Park. Photo by Jie Du
The herpetological diversity, in contrast to the mammals, is relatively low in the area due to the harsh alpine environment. To find out more about it, and to investigate the post-earthquake ecological system in the region, a group of researchers conducted a series of investigations in Jiuzhaigou National Nature Reserve. During their herpetological surveys, they collected some specimens of Gloydius, a genus of venomous pit vipers endemic to Asia, from Zharu Valley.
After running morphological and phylogenetic analyses, the scientists found out that these specimens in fact belonged to a yet-to-be-described species.
Holotype of Gloydius lateralis. Photo by Sheng-chao Shi.
“The new species is morphologically similar, and phylogenetically closely related to G. swild, another recently described species from Heishui, Aba, Sichuan, but differs from it by having larger eyes (related to the head) and a continuous regular brown stripe on each dorsolateral side of the body,” explained the corresponding author, Dr Jingsong Shi.
“Thus, we named it after its unique color pattern: Gloydius lateralis.”
Holotype of Gloydius lateralis. Photo by Sheng-chao Shi
The newly described snake feeds on small mammals, such as mice, and “is active on sunny days by the roadside in a hot, dry valley”, the researchers write in their study, which was published in the open-access scientific journal ZooKeys.
“The discovery of G. lateralis provides new insights into the diversity and the distribution patterns of Asian pit vipers”, they write, suggesting that the formation of the Qinghai-Tibet Plateau might be one of the key factors to the geographical isolation of the alpine pit vipers in southwest China.
Landscapes in Jiuzhaigou National Park. Photo by Jie Du
Jiuzhaigou National Nature Reserve, where G. lateralis was found, receives millions of tourists every year. “The only known habitat of the new species is Zharu Valley, and it is now under touristic development,” the researchers point out. “Thus, warning signs are still needed to remind visitors to watch out for the venomous pit viper, since this and another pit viper species, Protobothrops jerdonii, are often found in grass or bushes on both sides of roads.”
Snakes’ thermoregulation needs make them more prone to vehicle collisions, which is why the research team highlights the necessity to remind drivers to slow down in order to avoid road killings.
Original source:
Zhang M-H, Shi S-C, Li C, Yan P, Wang P, Ding L, Du J, Plenković-Moraj A, Jiang J-P, Shi J-S (2022) Exploring cryptic biodiversity in a world heritage site: a new pitviper (Squamata, Viperidae, Crotalinae) from Jiuzhaigou, Aba, Sichuan, China. ZooKeys 1114: 59–76. https://doi.org/10.3897/zookeys.1114.79709
A substantial part of the trade in blood pythons in Indonesia is illegal and underreported, a new study published in the open-access journal Nature Conservation found.
Wildlife trade is a multi-million dollar industry. While some animals are traded legally, in compliance with legislation that aims to protect populations, wildlife trafficking continues to thrive in many places, threatening precious species with extinction.
Reptiles are exported in large numbers, and snakes are no exception. They are mostly traded for their skins, used in luxury leather products, or as pets. In the case of the blood python, which can reach up to 250 cm in length, there are clear indications of misdeclared, underreported or illegal trading involving tens of thousands of individuals around the world.
According to Vincent Nijman, professor in anthropology at Oxford Brookes University in the UK, harvest and trade in certain species of snakes, especially ones that are common and have a high reproductive output, can be sustainable. But how do we make sure it really is?
Blood python in Kaeng Krachan National Park in Thailand. Photo by Tontan Travel
“Sustainability is best assessed by surveying wild populations, but this takes time and effort,” Nijman explains. “An alternative method is to use data from slaughterhouses and compare how certain parameters (number of snakes, size, males vs females) change over time.”
This method has been used by several research groups to assess the sustainability of the harvest and trade in blood pythons in Indonesia. The outcomes of these assessments vary widely, with some researchers claiming the trade is sustainable, and others that it is not and that populations are in decline.
“A major problem with these assessments is that while they can detect a change in, for instance, the number of blood pythons that arrive in slaughterhouses, it is unclear if this is due to changes in the wild population, changes in harvest areas, methods of harvesting, or changes in the regulations that permit the harvest to take place,” Nijman elaborates.
Blood python in Kaeng Krachan National Park in Thailand. Photo by Tontan Travel
Using publicly available information, and searching for evidence of illicit trade, he set out to establish if there is sufficient data to assess whether blood pythons are indeed exploited sustainably in Indonesia.
“There is no conclusive data to support that the harvest of blood pythons in North Sumatra is sustainable, but there is sufficient evidence to suggest that a substantial part of this trade is illegal,” he points out in his study, which was published in the open-access journal Nature Conservation.
He goes on to explain that there is no one-on-one relationship between the sustainability of harvest and trade and its legality: “A species can be legally traded to extinction, or it can be traded illegally in small enough numbers for it to be sustainable.”
Conceptual framework of the relationship between population size, sustainable harvest and global conservation status. The harvest that took place between A and B, C and D, and E and F, could be considered sustainable, whereas it is unsustainable between B and C and D and E. The global threat assessment based on two of the IUCN threat level criteria (population size and declining populations) are not tightly linked to harvest sustainability (modified after Yamaguchi 2014).
A clear trend in the last decade was a change in the way blood pythons are harvested, compared to previous periods, “from opportunistic capture to, at least in part, targeted collection.”
Blood pythons are not included on Indonesia’s protected species list, but their harvest and trade, both domestically and internationally, is regulated by a quota system. The harvest for domestic trade typically constitutes 10% of what is allowed to be exported.
Nijman’s research identified substantial evidence of underreported and illegal international trade in blood pythons. “Part of any assessment of sustainability of the harvest and trade in blood pythons must address this as a matter of urgency,” he concludes.
A beautiful non-venomous snake, previously unknown to science, was discovered in Paraguay and described by researchers of the Paraguayan NGO Para La Tierra with the collaboration of Guyra Paraguay and the Instituto de Investigación Biológica del Paraguay. It belongs to the genus Phalotris, which features 15 semi-subterranean species distributed in central South America. This group of snakes is noted for its striking colouration with red, black, and yellow patterns.
Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery in the open-access scientific journal Zoosystematics and Evolution. The authors named it Phalotris shawnella, in honour of two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.
Phalotris shawnella. Photo by Jean-Paul Brouard
The new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots. Only known from three individuals, it is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its known distribution consists of two spots with sandy soils in that department – Colonia Volendam and Laguna Blanca – which are 90 km apart.
Phalotris shawnella. Photo by Jean-Paul Brouard
The extreme rarity of this species led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.
Phalotris shawnella. Photo by Jean-Paul Brouard
This species can only be found in the famous tourist destination of Laguna Blanca, an area declared as an Important Area for the Conservation of Amphibians and Reptiles.
Phalotris shawnella. Photo by Jean-Paul Brouard
“This demonstrates once again the need to protect the natural environment in this region of Paraguay,” the authors comment. “Laguna Blanca was designated as a Nature Reserve for a period of 5 years, but currently has no protection at all. The preservation of this site should be considered a national priority for conservation.”
Research article:
Smith P, Brouard J-P, Cacciali P (2022) A new species of Phalotris (Serpentes, Colubridae, Elapomorphini) from Paraguay. Zoosystematics and Evolution 98(1): 77-85. https://doi.org/10.3897/zse.98.61064
An image on Instagram prompted the discovery of a new species of Kukri snake from Himachal Pradesh, India. Intrigued by a post shared by a master student, the research team found and examined more specimens to discover they belonged to a yet undescribed species. Their study, published in the open-access journal Evolutionary Systematics, highlights how little we still know about the biodiversity in the Western Himalayas.
Intrigued by a photo shared on Instagram, a research team from India discovered a previously unknown species of kukri snake.
Staying at home in Chamba because of the COVID-19 lockdown, Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar, started exploring his backyard, photographing everything he found there and posting the pictures online. His Instagram account started buzzing with the life of the snakes, lizards, frogs, and insects he encountered.
The snake, which Virendar encountered along a mud road on a summer evening, belongs to a group commonly known as Kukri snakes, named so because of their curved teeth that resemble the Nepali dagger “Kukri”.
At first sight, the individual that Virendar photographed looked a lot like the Common Kukri snake (Oligodon arnensis). However, a herpetologist could spot some unique features that raised questions about its identity.
Kukri snake
Virendar uploaded the photo on 5 June 2020, and by the end of the month, after extensively surveying the area, he found two individuals – enough to proceed with their identification. However, the COVID-19 pandemic slowed down the research work as labs and natural history museums remained closed.
Upon the reopening of labs, the team studied the DNA of the specimens and found out they belonged to a species different from the Common Kukri snake. Then, they compared the snakes’ morphological features with data from literature and museums and used micro computed tomography scans to further investigate their morphology. In the end, the research team were able to confirm the snakes belonged to a species previously unknown to science.
The discovery was published in a research paper in the international peer-reviewed journal Evolutionary Systematics. There, the new species is described as Oligodon churahensis, its name a reference to the Churah Valley in Himachal Pradesh, where it was discovered.
What’s even more interesting is that the exploration of your own backyard may yield still undocumented species… if one looks in their own backyard, they may end up finding a new species right there.
Zeeshan A. Mirza
“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” comments Zeeshan A. Mirza.
Zeeshan Mirza
Harshil Patel
“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”
“Compared to other biodiversity hotspots, the Western Himalayas are still poorly explored, especially in terms of herpetological diversity, but they harbor unique reptile species that we have only started to unravel in the last couple of years,” Mirza adds.
Research article:
Mirza ZA, Bhardwaj VK, Patel H (2021) A new species of snake of the genus Oligodon Boie in Fitzinger, 1826 (Reptilia, Serpentes) from the Western Himalayas. Evolutionary Systematics 5(2): 335-345. https://doi.org/10.3897/evolsyst.5.72564