Revolutionary method could bring us much closer to the description of hyperdiverse faunas

A novel approach relying on a short sequence of mitochondrial DNA in conjunction with a lateral image of the holotype specimen was proposed to greatly accelerate species identification and description, especially when it comes to hyperdiverse taxa, such as parasitic wasps.

At today’s rate, it could take another two millennia for science to document all currently existing species of multicellular life

Two hundred and sixty-one years ago, Linnaeus formalized binomial nomenclature and the modern system of naming organisms. Since the time of his first publication, taxonomists have managed to describe 1.8 million of the estimated 8 to 25 million extant species of multicellular life, somewhere between 7% and 22%. At this rate, the task of treating all species would be accomplished sometime before the year 4,000. In an age of alarming environmental crises, where taking measures for the preservation of our planet’s ecosystems through efficient knowledge is becoming increasingly urgent, humanity cannot afford such dawdling.

“Clearly something needs to change to accelerate this rate, and in this publication we propose a novel approach that employs only a short sequence of mitochondrial DNA in conjunction with a lateral image of the holotype specimen,”

explain the researchers behind a new study, published in the open-access journal Deutsche Entomologische Zeitschrift (DEZ).
Description rate of parasitic wasps species (superfamily
Ichneumonoidea).
Data from Taxapad (Yu et al. 2016).

In standardized practices, it is required that experts conduct plenty of time- and labor-consuming analyses, in order to provide thorough descriptions of both the morphology and genetics of individual species, as well as a long list of characteristic features found to differentiate each from any previously known ones. However, the scientists argue, at this stage, it is impossible to pinpoint distinct morphological characters setting apart all currently known species from the numerous ones not yet encountered. To make matters worse, finding human and financial resources for performing this kind of detailed research is increasingly problematic.

This holds especially true when it comes to hyperdiverse groups, such as ichneumonoid parasitoid wasps: a group of tiny insects believed to comprise up to 1,000,000 species, of which only 44,000 were recognised as valid, according to 2016 data. In their role of parasitoids, these wasps have a key impact on ecosystem stability and diversity. Additionally, many species parasitise the larvae of commercially important pests, so understanding their diversity could help resolve essential issues in agriculture.

Meanwhile, providing a specific species-unique snippet of DNA alongside an image of the specimen used for the description of the species (i.e. holotype) could significantly accelerate the process. By providing a name for a species through a formal description, researchers would allow for their successors to easily build on their discoveries and eventually reach crucial scientific conclusions.

“If this style were to be adopted by a large portion of the taxonomic community, the mission of documenting Earth’s multicellular life could be accomplished in a few generations, provided these organisms are still here,”

say the authors of the study.

To exemplify their revolutionary approach, the scientists use their paper to also describe a total of 18 new species of wasps in two genera (Zelomorpha and Hemichoma) known from Área de Conservación Guanacaste, Costa Rica. Currently, the team works on the treatment of related species, which still comprise only a portion of the hundreds of thousands that remain unnamed.

###

Original source:

Meierotto S, Sharkey MJ, Janzen DH, Hallwachs W, Hebert PDN, Chapman EG, Smith MA (2019) A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment. Deutsche Entomologische Zeitschrift 66(2): 119-145. https://doi.org/10.3897/dez.66.34683

The first bioluminescent click beetle known from Asia represents a new subfamily

A remarkable bioluminescent click beetle was discovered in the subtropical evergreen broadleaf forests in southwest China. Having prompted the description of a brand new subfamily, the species is the very first bioluminescent click beetle known from the continent.

A remarkable bioluminescent click beetle was discovered in the subtropical evergreen broadleaf forests in southwest China. Scientists Mr. Wen-Xuan Bi, Dr. Jin-Wu He, Dr. Xue-Yan Li, all affiliated with the Chinese Academy of Sciences (Kunming), Mr. Chang-Chin Chen of Tianjin New Wei San Industrial Company, Ltd. (Tianjing, China) and Dr. Robin Kundrata of Palacký University (Olomouc, Czech Republic) published their findings in the open-access journal ZooKeys.

Even though the family of click beetles (Elateridae) contain approximately 10,000 species worldwide, it is only about 200 species able to emit light, and they inhabit Latin America and Oceania. Interestingly, the position of the luminous organs varies amongst the different click beetle lineages. In some, they are found on the foremost of the three thoracic segments of the body (prothorax), in others – on both the prothorax and the abdomen, and in few – only on the abdomen.

Luminescent behavior of Sinopyrophorus schimmeli gen. et sp. nov.
Video by Mr Wen-Xuan Bi.

“In 2017, during an expedition to the western Yunnan in China, we discovered a dusk-active bioluminescent click beetle with a single luminous organ on the abdomen, ” recalls lead scientist Mr. Wen-Xuan Bi.

Since no bioluminescent click beetle had previously been recorded in Asia, the team conducted simultaneous morphological and molecular analyses in order to clarify the identity of the new species and figure out its relationship to other representatives of its group.

Co-author Dr. Xue-Yan Li explains:

“The morphological investigation in combination with the molecular analysis based on 16 genes showed that our taxon is not only a new species in a new genus, but that it also represents a completely new subfamily of click beetles. We chose the name Sinopyrophorus for the new genus, and the new subfamily is called Sinopyrophorinae.”

In conclusion, the discovery of the new species sheds new light on the geographic distribution and evolution of luminescent click beetles. The authors agree that as a representative of a unique lineage, which is only distantly related to the already known bioluminescent click beetles, the new insect group may serve as a new model in the research of bioluminescence within the whole order of beetles.

###

Original source:

Bi W-X, He J-W, Chen C-C, Kundrata R, Li X-Y (2019) Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys 864: 79-97. https://doi.org/10.3897/zookeys.864.26689

UCF student names a new frog species after her professor


The newly described species Pristimantis quintanai.
Photo by UCF, Veronica Urgiles.

The team described two new species from the Ecuadorian Andes

University of Central Florida student Veronica Urgiles has helped describe two new frog species discovered in Ecuador, and she named one of them after one of her professors.

Urgiles and an international team of researchers published their findings in the journal ZooKeys.

UCF student Veronica Urgiles named one of the new frog species in honor of Biology Professor Pedro Quintana-Ascencio for his years of dedication to conservation efforts in Ecuador.
Photo by UCF, Karen Norum.

She explains:

“Frogs are by far my favorite. So, getting to describe and name two of them is terrific. I have been looking at these frogs for years now, so going over the whole process of observing them in their habitats and then analyzing them and comparing them under the microscope, to finally naming them is a long, but very satisfying journey.”

Urgiles, a 2017 Fulbright scholar and the lead author, said she chose to attend UCF for its integration of genetics and genomics in biodiversity research and the emphasis on real-world application. She works with Assistant Professor Anna Savage who specializes in species diversity based on molecular analyses.

“One of the things that I found most interesting about these guys is that they don’t have metamorphosis like a regular frog, but instead they develop entirely inside eggs that adult females deposit in the ground,” Urgiles said. “They really don’t need water bodies for their development. Both of the new frog species inhabit high elevation ecosystems in the mountain range over 8,000 feet, so even though we are right there in the equator, it’s very cold and windy most of the year.”

The team of researchers has been studying frogs in Ecuador the past few years. In 2017, Urgiles found the first new species and named it Pristimantis quintanai, after one of her biology professors — Pedro Quintana-Ascencio. She and Savage found the second species — Pristimantis cajanuma — in 2018. Both were found in the Paramo and montane forest of the southern Ecuadorean Andes.

The newly described species Pristimantis cajanuma.
Photo by UCF, Veronica Urgiles.

The frogs are tiny, measuring 0.8 inch. Pristimantis quintanai females are brown and black and Pristimantis cajanuma are green and black, both easily blending into the foliage. They have a distinct call that is sharp and continuous, sounding like tik-tik-tik-tik.

Urgiles examined DNA samples collected by the international team back in Savage’s lab at UCF, generated genetic sequences, and constructed the phylogenetic analysis. Other team members also worked the morphological diagnosis and comparisons with other frogs and an acoustic analysis of the frogs’ calls.

Anna Savage, whose expertise includes describing species diversity based on molecular analyses, says:

“In these analyses, we use all of the genetic similarities and differences we find to build phylogenetic trees, and when we find that a ‘branch’ on the ‘tree’ has strong support and contains all of the individuals that share the same morphological characteristics, then we have good evidence to describe it as a new species. We used this method, along with vocalization and location data, to conclude that the two species we describe are distinct from any other species that have ever been characterized.”

The work is critical because of the vast diversity that has yet to be discovered in the tropical Andes of South America, Urgiles adds. In 2018, 13 new species of frogs were documented in the tropical Andes of Ecuador and so far in 2019 five new frogs have been documented.

There are potentially thousands of new plants and animals in the area that may hold the key to other discoveries. It’s important to know what is there, to better understand the threats to habitat loss and disease so conservation methods can be established to protect the resources.

Veronica Urgiles, a UCF student pursuing a master’s in biology. She named one of the two frog species that she and her team discovered after one of her professors.
Photo by UCF, Karen Norum.

###

Text originally by UCF.

###

Original source:

Urgiles VL, Székely P, Székely D, Christodoulides N, Sanchez-Nivicela JC, Savage AE (2019) Genetic delimitation of Pristimantis orestes (Lynch 1979) and P. saturninoi Brito et al., 2017 and the description of two new terrestrial frogs from the Pristimantis orestes species group (Anura, Strabomantidae). ZooKeys 864: 111-146. https://doi.org/10.3897/zookeys.864.35102

New species of flying squirrel from Southwest China added to the rarest and ‘most wanted’

The newly described flying squirrel species (Biswamoyopterus gaoligongensis).
Photo by Kadoorie Farm & Botanic Garden.

Described in 1981, the genus Biswamoyopterus is regarded as the most mysterious and rarest amongst all flying squirrels. It comprises two large (1.4-1.8 kg) species endemic to southern Asia: the Namdapha flying squirrel (India) and the Laotian giant flying squirrel (Lao PDR). Each is only known from a single specimen discovered in 1981 and 2013, respectively.

Recently, in 2018, a specimen identifiable as Biswamoyopterus was unexpectedly found in the collections of the Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences by in-house expert Quan Li. It had been collected from Mount Gaoligong in Yunnan Province, Southwest China.

The habitat of the newly described flying squirrel.
Photo by Kadoorie Farm & Botanic Garden.

Initially, the individual was considered to belong to the “missing” Namdapha flying squirrel: a species considered as critically endangered due to hunting and habitat loss. The latter had not ever been recorded since its original description in 1981 and was already listed as one of the top 25 “most wanted” species in the world by the Global Wildlife Conservation.

However, a closer look at the specimen from KIZ made it clear that the squirrel exhibited a colouration, as well as skull and teeth anatomy, distinct from any of the previously known species in the genus.

Close-up shot of the newly described flying squirrel species.
Photo by Kadoorie Farm & Botanic Garden.

Subsequently, joined by his colleagues from China (Xuelong JiangXueyou LiFei Li, Ming Jiang, Wei Zhao and Wenyu Song) and Stephen Jackson from Australia, the team of Quan Li conducted a new field survey. Thus, they successfully obtained another specimen and, additionally, recorded observations of two other flying squirrels. As a result, they included a third member to the enigmatic genus: Biswamoyopterus gaoligongensis, also referred to as the Mount Gaoligong flying squirrel. This new to science species was described in a paperpublished in the open-access journal ZooKeys.

“The morphological features of B. gaoligongensis are closer to the critically endangered and missing Namdapha flying squirrel, but is still readily identifiable as a distinct species,” explains Quan Li.

“The new species was discovered in the ‘blank area’ spanning 1,250 km between the isolated habitats of the two known species, which suggests that the genus is much more widespread than previously thought. There is still hope for new Biswamoyopterus populations to be discovered in between or right next to the already known localities,” he says.

As for the conservation status of the newly described species, the researchers note that it inhabits low-altitude forests which are in close proximity to nearby human settlements. Thereby, they are vulnerable to anthropogenic threats, such as agricultural reclamation and poaching.

“Therefore, there is an urgent need to study the ecology, distribution, and conservation status of this rare and very beautiful genus,” concludes the lead author.

The newly described flying squirrel species.
Photo by Kadoorie Farm & Botanic Garden.

###

Original source:

Li Q, Li X-Y, Jackson SM, Li F, Jiang M, Zhao W, Song W-Y, Jiang X-Y (2019) Discovery and description of a mysterious Asian flying squirrel (Rodentia, Sciuridae, Biswamoyopterus) from Mount Gaoligong, southwest China. ZooKeys 864: 147-160. https://doi.org/10.3897/zookeys.864.33678

Field research in Turkmenistan’s highest mountain reveals high biological diversity

Camera trap image of male Markhor Capra falconeri at the Koytendag State Nature Reserve
Photo by Koytendag State Nature Reserve

New open-access book presents a comprehensive report on the remarkable ecosystems of the Koytendag nature reserve

Situated in the extreme south-east of Turkmenistan: on the border with Uzbekistan and close to the border with Afghanistan, Koytendag presents one of the most distinct landscapes in Central Asia. Reaching elevations of up to 3,137 m, this is also the highest mountain in Turkmenistan.

Location of Koytendag
Image by Atamyrat Veyisov

Koytendag State Nature Reserve and its three Wildlife Sanctuaries: Hojapil, Garlyk and Hojaburjybelent, were established between 1986 and 1990 to protect and preserve the mountain ecosystem of the Koytendag region and maintain the ecological balance between the environment and increasing economic activities.

Since 2013, a series of scientific expeditions and assessments were coordinated and funded by the Royal Society for the Protection of Birds (RSPB) to pave the way for the protection and preservation of the unique landscape and rare wildlife the site is recognised for.

As a result, the efforts of the conducted field studies of multidisciplinary international research teams are brought together in a comprehensive report, which is now openly available as an Advanced Book from the scientific publisher and technology provider Pensoft, edited by Geoff Welch (RSPB) and Prof. Pavel Stoev (National National Museum of Natural History of Bulgaria and Pensoft). Soon, the book will also be available in Russian.

The book is split into eight sections focused on different areas within the study of biodiversity: Flora, Surface dwelling invertebrates, Cave fauna, Fish, Amphibians, Reptiles, Birds and Mammals. An additional chapter is dedicated to the hydrogeology of the site because of its key role in supporting both the cave fauna and the local communities.

Entrance to the newly discovered record-breaking underground lake at the Koytendag State Nature Reserve
Photo by Mikhail Pereladov

In the summary of the report, the authors make a list of the most significant findings made during the research. These include the discovery of a cave hosting the largest underground lake in the whole North Eurasia (4,400 m2) and a total of 48 species of higher plants that can only be found in Koytendag. In terms of Koytendag’s surface-dwelling fauna, the report lists a number of species new to science: a scorpion (most likely yet unnamed species currently recognised as a species complex) and a spider. Meanwhile, a total of seven previously unknown species were found underground, including the very first exclusively subterranean animal found in the country: the insect-like ‘marvellous’ dipluran named Turkmenocampa mirabilis, and a strongly adapted to the underground waters of a desert sinkhole Gammarus troglomorphus. Additionally, the annual monitoring, conducted since 1995 by the reserve staff, report an encouraging increase in the populations of the rare markhors and mouflons. An intact predator-prey community was also identified as a result of observations of numerous Eurasian lynxes and grey wolves, as well as prey species.

Entrance of the cave Kaptarhana, (Lebap Province, Eastern Turkmenistan), where scientists discovered the first ever exclusively subterranean dweller for the country (find more here).
Photo by Aleksandr Degtyarev

Stephanie Ward, RSPB Central Asia Partner Development Officer, says:

“RSPB has been working in Turkmenistan under a Memorandum of Understanding with the Government since 2004. In that time we have had the privilege of working with a team of talented and dedicated national experts across the diverse and inspiring nature of this fascinating country. Our work in Koytendag has captured the attention and interest of many international scientists who hope that their contemporary biodiversity research will help to deepen the understanding and therefore ensure protection of the unique wonders of this mountain ecosystem. As a potential UNESCO World Heritage Site, we will continue to collaborate with the Turkmen people on the research and promotion of Koytendag State Nature Reserve.

Book editor and member of the research team Prof. Pavel Stoev adds:

“Koytendag Mountain is among the least explored and, simultaneously, one of the most biologically diverse regions in Central Asia. The rapid assessments of its flora and fauna revealed a high number of highly specialised species, all of which have undergone a long evolution to adapt to the harsh environments of the mountain. The establishment of Koytendag State Nature Reserve and the associated wildlife sanctuaries is a step in the right direction for the protection of this unique biota.”

###

Cover of the book, available as an open-access Advanced book from: https://doi.org/10.3897/ab.e37858.

Original source:

Welch G, Stoev P (2019) A report of RSPB-supported scientific research at Koytendag State Nature Reserve, East Turkmenistan. Advanced Books. https://doi.org/10.3897/ab.e37858

Additional information:

This work was carried out under the Memorandum of Understanding between the Ministry of Agriculture and Environment Protection of Turkmenistan and the RSPB, within the Project on “Improvement of the status of birds and other biodiversity in Turkmenistan”.

About Koytendag State Nature Reserve:

Koytendag State Nature Reserve was established in 1986 to protect and preserve the mountain ecosystem of the Koytendag region and maintain the ecological balance between the environment and the increasing anthropogenic activities. Of particular importance was the protection of rare species, such as the markhor; important habitats, including pistachio and juniper forests; and the impressive dinosaur trackways at Hojapil.

Advanced Books publishing by Pensoft:

Launched by Pensoft and powered by the scholarly publishing platform ARPHA, the Advanced Books approach aims to issue new books or re-issue books previously only available in print or PDF. In the Advanced Books format, the publications are semantically enhanced and available in HTML and XML as well, in order to accelerate open access, data publication, mining, sharing and reuse. The Advanced books builds on the novel approaches developed by the Pensoft’s journals.



Trendy on eight legs: Jumping spider named after fashion czar Karl Lagerfeld


Newly described ‘brushed’ jumping spider species Jotus karllagerfeldi and its famous namesake: fashion icon and designer, creative director, artist, photographer and caricaturist Karl Lagerfeld (1933-2019).
Photos by Mark Newton, CeNak (
Jotus karllagerfeldi, CC-BY 4.0) and
Siebbi (Karl Lagerfeld, CC-BY 3.0). Modified by CeNak.

New to science species of Australian jumping spider was named after Hamburg-born fashion icon Karl Lagerfeld (1933-2019) after the arachnid reminded its discoverers of the designer. Intrigued by its distinct ‘downplayed’ black-and-white colours, the Hamburg-Brisbane-Melbourne team likened the spider’s appearance to Lagerfeld’s trademark style: his white hair and Kent collar that contrasted with the black sunglasses and gloves.

New to science species of Australian jumping spider was named after Hamburg-born fashion icon Karl Lagerfeld (1933-2019) after the arachnid reminded its discoverers of the designer. Intrigued by its distinct ‘downplayed’ black-and-white colours, the Hamburg-Brisbane-Melbourne team likened the spider’s appearance to Lagerfeld’s trademark style: his white hair and Kent collar that contrasted with the black sunglasses and gloves.

Thus, the curious species, now officially listed under the name Jotus karllagerfeldi was described in the open-access journal Evolutionary Systematics by Dr Danilo Harms of the Center for Natural History of the University of Hamburg (CeNak), Dr Barbara Baehr, Queensland Museum (Brisbane, Australia) and Joseph Schubert, Monash University (Melbourne).

Typically, the members of the jumping spider genus Jotus demonstrate striking red and blue colours.
Photos by Robert Whyte (Jotus fortiniae sp. nov., top row) and Michael Doe (unidentified species, bottom row), CeNak.

When compared with other members in the ‘brushed’ jumping spider genus Jotus, the novel species clearly stands out due to its black-and-white legs and tactile organs (pedipalps), whereas the typical representative of this group demonstrates striking red or blue colours.

“The animal reminded us with its colours of the reduced style of Karl Lagerfeld. For example, we associate the black leg links with the gloves he always wore”, Danilo Harms explains.


Newly described ‘brushed’ jumping spider species Jotus karllagerfeldi.
Photo by Mark Newton, CeNak

In fact, what was to be now commonly referred to as Karl Lagerfeld’s Jumping Spider was identified amongst specimens in the Godeffroy Collection. Kept at CeNak, the historical collection was originally compiled by the inquisitive and wealthy tradesman from Hamburg Johann Cesar Godeffroy, who financed several expeditions to Australia back in the 19th century. Here, the research team identified another link between Australia, Godeffroy, Hamburg and Jotus karllagerfeldi.

Besides the tiny (4 to 5 mm) arachnid, whose pedipalps resemble a white Kent collar, the scientists describe another seven new to science species and add them to the same genus. Two of those, Jotus fortiniae and Jotus newtoni, were also named after inspirational figures for their hard work and creativity: educator, molecular biologist and science communicator Dr Ellen Fortini (Perth College, Western Australia) and keen naturalist and photographer Mark Newton. All novel species were found either in the Godeffroy Collection or amongst the jumping spiders housed at Queensland Museum.

Surprisingly, even though the genus Jotus comprises numerous species found all over Australia, there is not much known about these spiders. An interesting feature, according to the scientists behind the present study, are the huge telescopic eyes, which allow for spatial vision. The Jotus species need this ability in foraging, since they do not weave webs, but rather hunt in the open. Thus, they have evolved into extremely fast and agile hunters, capable of jumping short distances.

Curiously, back in 2017, the team of Barbara and Danilo, joined by Dr Robert Raven from Queensland Museum, described another previously unknown, yet fascinating species: a water-adapted spider, whose sudden emergence at the coastline of Australia’s “Sunshine State” of Queensland during low tide in January brought up the association with reggae legend Bob Marley and his song “High Tide or Low Tide”. The species, scientifically known as Desis bobmarleyi, was also published in Evolutionary Systematics.

Female individual of the marine spider Desis bobmarleyi, named after reggae legend
Bob Marley. The species was also described in the open-access Evolutionary Systematics in 2017 by the team of Barbara and Danilo.
Photo by R. Raven.

###

Find an interview (in German) with co-author Dr Danilo Harms on the University of Hamburg’s website.

###

Original source:

Baehr BC, Schubert J, Harms D (2019) The Brushed Jumping Spiders (Araneae, Salticidae, Jotus L. Koch, 1881) from Eastern Australia. Evolutionary Systematics 3(1): 53-73. https://doi.org/10.3897/evolsyst.3.34496

New to science New Zealand moths link mythological deities to James Cameron’s films

In an unexpected discovery from New Zealand, two species of narrowly distributed moths were described as new species. Interestingly, both Arctesthes titanica and Arctesthes avatar were named after mythological deities and top-grossing blockbusters by famous filmmaker James Cameron: Titanic and Avatar, respectively.


The newly described moth species Arctesthes avatar in its natural habitat (South Island, New Zealand). Photo by Brian Patrick.

In an unexpected discovery from the South Island (New Zealand), two species of narrowly distributed macro-moths were described as new species. Interestingly, both Arctesthes titanica and Arctesthes avatar were named after mythological deities and top-grossing blockbusters by famous filmmaker James Cameron: Titanic and Avatar, respectively.

Each of the newly described species are believed to be restricted to only a couple of subalpine/alpine localities. Therefore, they are particularly vulnerable to extinction and need to be “considered of very high priority for conservation”, point out New Zealand scientists Brian Patrick (Wildland Consultants Ltd), Hamish Patrick (Lincoln University) and Dr Robert Hoare (Manaaki Whenua-Landcare Researchin their paper in the open-access journal Alpine Entomology.


Male (left) and female (right) specimens of the newly described moth species Arctesthes titanica. Photo by Birgit Rhode.

Because of its relatively large size, one of the new discoveries: A. titanica, was named in reference to the Titans: the elderly gods in Greek mythology and the legendary, if ill-fated, record-breaking passenger ship ‘Titanic’, which became the subject of the famous 1997 American epic romance and disaster film of the same name. Unfortunately, the moth’s small wetland habitat is located in an area that is currently facing a range of damaging farming practices, such as over-sowing, grazing, stock trampling and vehicle damage.

On the other hand, A. avatar received its name after Forest & Bird, the New Zealand conservation organisation that was behind the 2012 BioBlitz at which the new species was collected, ran a public competition where “the avatar moth” turned up as the winning entry. The reference is to the indigenous people and fauna in Avatar. Just like them, the newly described moth is especially vulnerable to habitat change and destruction. In addition, the study’s authors note that the original avatars came from Hindu mythology, where they are the incarnations of deities, including Vishnu, for example, who would transform into Varaha the boar.

In conclusion, the scientists point out that future studies to monitor and further understand the fauna of New Zealand are of crucial importance for its preservation:

“Quantitative studies as well as work on life histories and ecology are particularly needed. Already one formerly common endemic geometrid species, Xanthorhoe bulbulata, has declined drastically and is feared possibly extinct: its life history and host-plant have never been discovered. Without further intensive study of the fauna of modified and threatened New Zealand environments, we will be unable to prevent other species slipping away.”

###

Original source:

Patrick BH, Patrick HJH, Hoare RJB (2019) Review of the endemic New Zealand genus Arctesthes Meyrick (Lepidoptera, Geometridae, Larentiinae), with descriptions of two new range-restricted species. Alpine Entomology 3: 121-136. https://doi.org/10.3897/alpento.3.33944

New species of fish parasite named after Xena, the warrior princess

A study of parasitic crustaceans attaching themselves inside the branchial cavities (the gills) of their fish hosts was recently conducted in order to reveal potentially unrecognised diversity of the genus Elthusa in South Africa.

While there had only been one species known from the country, a new article published in the open-access journal ZooKeys adds another three to the list.

For one of them, the research team from North-West University (South Africa): Serita van der Wal, Prof Nico Smit and Dr Kerry Hadfield, chose the name of the fictional character Xena, the warrior princess. The reason was that the females appeared particularly tough with their characteristic elongated and ovoid bodies. Additionally, the holotype (the first specimen used for the identification and description of the previously unknown species) is an egg-carrying female.

Formally recognised as Elthusa xena, this new to science species is so far only known from the mouth of the Orange River, Alexander Bay, South Africa (Atlantic Ocean). It is also the only Elthusa species known to parasitise the intertidal Super klipfish (Clinus supercilious). In fact, this is the first time an Elthusa species has been recorded from any klipfish (genus Clinus).

To describe the new species, the scientists loaned all South African specimens identified as, or appearing to belong to the genus Elthusa from both the French National Museum of Natural History (Paris) and the Iziko South African Museum (Cape Town).

###

Original source:

van der Wal S, Smit NJ, Hadfield KA (2019) Review of the fish parasitic genus Elthusa Schioedte & Meinert, 1884 (Crustacea, Isopoda, Cymothoidae) from South Africa, including the description of three new species. ZooKeys 841: 1-37. https://doi.org/10.3897/zookeys.841.32364

Dwarfs under dinosaur legs: 99-million-year-old millipede discovered in Burmese amber

A 3D reconstruction of the fossil allowed for the description of an entirely new suborder


The newly described millipede (Burmanopetalum inexpectatum) rendered using 3D X-ray microscopy. Image by Leif Moritz.

Even though we are led to believe that during the Cretaceous the Earth used to be an exclusive home for fearsome giants, including carnivorous velociraptors and arthropods larger than a modern adult human, it turns out that there was still room for harmless minute invertebrates measuring only several millimetres.

Such is the case of a tiny millipede of only 8.2 mm in length, recently found in 99-million-year-old amber in Myanmar. Using the latest research technologies, the scientists concluded that not only were they handling the first fossil millipede of the order (Callipodida) and also the smallest amongst its contemporary relatives, but that its morphology was so unusual that it drastically deviated from its contemporary relatives.

As a result, Prof. Pavel Stoev of the National Museum of Natural History (Bulgaria) together with his colleagues Dr. Thomas Wesener and Leif Moritz of the Zoological Research Museum Alexander Koenig (Germany) had to revise the current millipede classification and introduce a new suborder. To put it in perspective, there have only been a handful of millipede suborders erected in the last 50 years. The findings are published in the open-access journal ZooKeys.

To analyse the species and confirm its novelty, the scientists used 3D X-ray microscopy to ‘slice’ through the Cretaceous specimen and look into tiny details of its anatomy, which would normally not be preserved in fossils. The identification of the millipede also presents the first clue about the age of the order Callipodida, suggesting that this millipede group evolved at least some 100 million years ago. A 3D model of the animal is also available in the research article.

Curiously, the studied arthropod was far from the only one discovered in this particular amber deposit. On the contrary, it was found amongst as many as 529 millipede specimens, yet it was the sole representative of its order. This is why the scientists named it Burmanopetalum inexpectatum, where “inexpectatum” means “unexpected” in Latin, while the generic epithet (Burmanopetalum) refers to the country of discovery (Myanmar, formerly Burma).

Lead author Prof. Pavel Stoev says:

We were so lucky to find this specimen so well preserved in amber! With the next-generation micro-computer tomography (micro-CT) and the associated image rendering and processing software, we are now able to reconstruct the whole animal and observe the tiniest morphological traits which are rarely preserved in fossils. This makes us confident that we have successfully compared its morphology with those of the extant millipedes. It came as a great surprise to us that this animal cannot be placed in the current millipede classification. Even though their general appearance have remained unchanged in the last 100 million years, as our planet underwent dramatic changes several times in this period, some morphological traits in Callipodida lineage have evolved significantly.


The newly described millipede seen in amber. Image by Leif Moritz.

Co-author Dr. Thomas Wesener adds:

“We are grateful to Patrick Müller, who let us study his private collection of animals found in Burmese amber and dated from the Age of Dinosaurs. His is the largest European and the third largest in the world collection of the kind. We had the opportunity to examine over 400 amber stones that contain millipedes. Many of them are now deposited at the Museum Koenig in Bonn, so that scientists from all over the world can study them. Additionally, in our paper, we provide a high-resolution computer-tomography images of the newly described millipede. They are made public through MorphBank, which means anyone can now freely access and re-use our data without even leaving the desk.”

Leading expert in the study of fossil arthropods Dr. Greg Edgecombe (Natural History Museum, London) comments:

“The entire Mesozoic Era – a span of 185 million years – has until now only been sampled for a dozen species of millipedes, but new findings from Burmese amber are rapidly changing the picture. In the past few years, nearly all of the 16 living orders of millipedes have been identified in this 99-million-year-old amber. The beautiful anatomical data presented by Stoev et al. show that Callipodida now join the club.”

###

Original source:

Stoev P, Moritz L, Wesener T (2019) Dwarfs under dinosaur legs: a new millipede of the order Callipodida (Diplopoda) from Cretaceous amber of Burma. ZooKeys 841: 79-96. https://doi.org/10.3897/zookeys.841.34991

Living room conservation: Gaming & virtual reality for insect and ecosystem conservation

Gaming and virtual reality could bridge the gap between urban societies and nature, thereby paving the way to insect conservation by the means of education and participation. This is what an interdisciplinary team at Florida International University strive to achieve by developing a virtual reality game (desktop version also available) dedicated to insect and plant species. Focused on imperiled butterflies, their innovative idea: Butterfly World 1.0, is described in the open-access journal Rethinking Ecology.

Participant playing the virtual reality version of Butterfly World 1.0.
Photo by Jaeson Clayborn.

Players explore and search for butterflies using knowledge gained through gameplay

Gaming and virtual reality (VR) could bridge the gap between urban societies and nature, thereby paving the way to insect conservation by the means of education, curiosity and life-like participation.

This is what Florida International University‘s team of computer scientist Alban Delamarre and biologist Dr Jaeson Clayborn strive to achieve by developing a VR game (desktop version also available) dedicated to insect and plant species. Focused on imperiled butterflies, their innovative idea: Butterfly World 1.0, is described in the open-access journal Rethinking Ecology.


When playing, information about each butterfly species is accessed on the player’s game tablet. Image by
Alban Delamarre and Dr Jaeson Clayborn.

Butterfly World 1.0 is an adventure game designed to engage its users in simulated exploration and education. Set in the subtropical dry forest of the Florida Keys (an archipelago situated off the southern coast of Florida, USA), Butterfly World draws the players into an immersive virtual environment where they learn about relationships between butterflies, plants, and invasive species. While exploring the set, they interact with and learn about the federally endangered Schaus’ swallowtail butterfly, the invasive graceful twig ant, native and exotic plants, and several other butterflies inhabiting the dry forest ecosystem. Other nature-related VR experiences, including conservation awareness and educational programs, rely on passive observations with minimal direct interactions between participants and the virtual environment.

According to the authors, virtual reality and serious gaming are “the new frontiers in environmental education” and “present a unique opportunity to interact with and learn about different species and ecosystems”.


In the real world, Spanish needles (Bidens alba) is considered a weed in South Florida. However, it is an excellent nectar source for butterflies.
Photo by Alban Delamarre.

The major advantage is that this type of interactive, computer-generated experience allows for people to observe phenomena otherwise impossible or difficult to witness, such as forest succession over long periods of time, rare butterflies in tropical dry forests, or the effects of invasive species against native wildlife.

“Imagine if, instead of opening a textbook, students could open their eyes to a virtual world. We live in a time where experiential learning and stories about different species matter, because how we feel about and connect with these species will determine their continued existence in the present and future. While technology cannot replace actual exposure to the environment, it can provide similar, near-realistic experiences when appropriately implemented,” say the scientists.

In conclusion, Delamarre and Clayborn note that the purpose of Butterfly World is to build knowledge, reawaken latent curiosity, and cultivate empathy for insect and ecosystem conservation.

###

The game is accessible online at: https://ocelot.aul.fiu.edu/~adela177/ButterflyWorld/.

Original source:

Clayborn J, Delamarre A (2019) Living room conservation: a virtual way to engage participants in insect conservation. Rethinking Ecology 4: 31-43. https://doi.org/10.3897/rethinkingecology.4.32763