In a hole in a tunicate there lived a hobbit: New shrimp species named after Bilbo Baggins

Digital illustration by Franz Anthony.

Two new species of tiny symbiotic shrimps are described, illustrated and named by biology student at Leiden University Werner de Gier as part of his bachelor’s research project, supervised by Dr. Charles H. J. M. Fransen, shrimp researcher of Naturalis Biodiversity Center (Leiden, the Netherlands).

Inspired by the extremely hairy feet of one of the species, the authors decided that they should honour Middle Earth’s greatest halfling, Bilbo Baggins.

Aptly named Odontonia bagginsi, the new shrimp joins the lines of other species named after Tolkien’s characters such as the cave-dwelling harvestman Iandumoema smeagol, the golden lizard Liolaemus smaug and the two subterranean spiders Ochyrocera laracna and Ochyrocera ungoliant.

Photo by Charles Fransen.

The newly described shrimps were collected during the Ternate expedition to the Indonesian islands of Tidore and Ternate, organised by Naturalis Biodiversity Center and the Indonesian Institute of Sciences (LIPI) in 2009.

Typically for the Odontonia species, the new shrimps do not reach sizes above a centimetre in length, and were found inside tunicates. It is believed that these symbiotic crustaceans are fully adapted to live inside the cavities of their hosts, which explains their small-sized and smooth bodies.

Photo by Charles Fransen.

Unlike most Odontonia species, which live inside solitary tunicates, the new species Odontonia plurellicola was the first one to be associated with a colonial tunicate. These tunicates have even smaller internal cavities, which explains the tiny size of the new species.

To determine the placement of the new species in the tree of life, the scientists compared the shrimps’ anatomical features, including the legs, mouthparts and carapace. As a result, they were assigned to Odontonia. Further, the available genetic information and Scanning Electron Microscope (SEM) images of the unusual feet of the newly discovered shrimp provided a new updated identification key for all members of the species group.

“Being able to describe, draw and even name two new species in my bachelor years was a huge honour. Hopefully, we can show the world that there are many new species just waiting to be discovered, if you simply look close enough!” says Werner de Gier, who is currently writing his graduate thesis at Naturalis Biodiversity Center and working together with Dr. Charles Fransen on crustaceans.

###

Original source:

de Gier W, Fransen CHJM (2018) Odontonia plurellicola sp. n. and Odontonia bagginsi sp. n., two new ascidian-associated shrimp from Ternate and Tidore, Indonesia, with a phylogenetic reconstruction of the genus (Crustacea, Decapoda, Palaemonidae). ZooKeys 765: 123-160. https://doi.org/10.3897/zookeys.765.25277

Digital illustration by Franz Anthony.

What is a species? British bird expert develops a math formula to solve the problem

Two different kinds of Lachrymose Mountain-Tanager (Anisognathus lacrymosus) occurring in Colombia on different mountain ranges (left: Santa Marta; right: Yariguies). Their measurements and songs were as distinct as those in the group which co-occur. Therefore, they can therefore be treated as different species.

Nature is replete with examples of identifiable populations known from different continents, mountain ranges, islands or lowland regions. While, traditionally, many of these have been treated as subspecies of widely-ranging species, recent studies relying on molecular biology have shown that many former “subspecies” have in fact been isolated for millions of years, which is long enough for them to have evolved into separate species.

Being a controversial matter in taxonomy – the science of classification – the ability to tell apart different species from subspecies across faunal groups is crucial. Given limited resources for conservation, relevant authorities tend only to be concerned for threatened species, with their efforts rarely extending to subspecies.

Figuring out whether co-habiting populations belong to the same species is only as tough as testing if they can interbreed or produce fertile offspring. However, whenever distinct populations are geographically separated, it is often that taxonomists struggle to determine whether they represent different species or merely subspecies of a more widely ranging species.

British bird expert Thomas Donegan has dedicated much of his life to studying birds in South America, primarily Colombia. To address this age-long issue of “what is a species?”, he applied a variety of statistical tests, based on data derived from bird specimens and sound recordings, to measure differences across over 3000 pairwise comparisons of different variables between populations.

Having analyzed the outcomes of these tests, he developed a new universal formula for determining what can be considered as a species. His study is published in the open-access journal ZooKeys.

Essentially, the equation works by measuring differences for multiple variables between two non-co-occurring populations, and then juxtaposing them to the same results for two related populations which do occur together and evidently belong to different “good” species. If the non-co-occurring pair’s differences exceed those of the good species pair, then the former can be ranked as species. If not, they are subspecies of the same species instead.

The formula builds on existing good taxonomic practices and borrows from optimal aspects of previously proposed mathematical models proposed for assessing species in particular groups, but brought together into a single coherent structure and formula that can be applied to any taxonomic group. It is, however, presented as a benchmark rather than a hard test, to be used together with other data, such as analyses of molecular data.

Thomas hopes that his mathematical formula for species rank assessments will help eliminate some of the subjectivity, regional bias and lumper-splitter conflicts which currently pervade the discipline of taxonomy.

“If this new approach is used, then it should introduce more objectivity to taxonomic science and ultimately mean that limited conservation resources are addressed towards threatened populations which are truly distinct and most deserving of our concern,” he says.

The problem with ranking populations that do not co-occur together was first identified back in 1904. Since then, most approaches to addressing such issues have been subjective or arbitrary or rely heavily upon expert opinion or historical momentum, rather than any objectively defensible or consistent framework.

For example, the American Herring Gull and the European Herring Gull are lumped by some current taxonomic committees into the same species (Herring Gull), or are split into two species by other committees dealing with different regions, simply because relevant experts at those committees have taken different views on the issue.

“For tropical faunas, there are thousands of distinctive populations currently treated as subspecies and which are broadly ignored in conservation activities,” explains Thomas. “Yet, some of these may be of conservation concern. This new framework should help us better to identify and prioritize those situations.”

Two different kinds of Three-striped Warblers (Basileuterus tristriatus) occurring in South America (left: East Andes of Colombia; right: a recently discovered population from the San Lucas mountains of Colombia). Note the differences in plumage coloration. While somewhat differing in voice, plumage and some measurements, the couple did not diverge as much as other related warblers that actually co-occur did. These are about as close as subspecies occurring on different mountain ranges could be. However, they marginally failed the proposed new benchmark for species rank.

###

Original source:

Donegan TM (2018) What is a species? A new universal method to measure differentiation and assess the taxonomic rank of allopatric populations, using continuous variables. ZooKeys 757: 1-67. https://doi.org/10.3897/zookeys.757.10965

Additional information:

Donegan’s proposals were first presented orally at a joint meeting for members of the Neotropical Bird ClubBritish Ornithologists’ Club and Natural History Museum in London.

Five new blanket-hermit crab species described 130 years later from the Pacific

A blanket-hermit crab grasping an anemone.
A blanket-hermit crab grasping an anemone.

Since 1888, a lone crab species living in an extraordinary symbiosis has been considered to be one of its kind

At the turn of the twentieth century, two independent marine scientists – JR Henderson in 1888, and A Alcock in 1899, described two unusual blanket-hermit crabs from the Indo-West Pacific.

Unlike other hermit crabs, these extraordinary crustaceans do not search for empty shells to settle in for protection. Instead, they have developed a symbiotic relationship with sea anemones to cover their soft bellies. To do this, the crabs use highly specialized chelipeds to pull back and forth the anemone’s tissue to cover their soft bodies and heads whenever necessary – much like hiding under a blanket.

Among the numerous specimens collected during the famous HMS Challenger Expedition in 1874, there were two hermit crab specimens obtained from the Philippines. They amazed Henderson with their unusual physical characters, including an abdomen bent on itself rather than spirally curved, and the lack of any trace of either a shell or other kind of protective structure for their body.

As a result, in 1888, JR Henderson established a brand new genus and new species for it as Paguropsis typicus. The ending of the species name was subsequently grammatically corrected to Paguropsis typica.

image 1

A decade later, unaware of the previous discovery, A Alcock stumbled upon hundreds of hermit crab specimens off southern India, which exhibited quite spectacular behaviour. Having observed their symbiotic relations with sea anemones, the researcher also formally described in 1899 a new species and a new genus for his specimens.

However, shortly thereafter and upon learning of JR Henderson’s earlier work, A Alcock concluded that his hermit crab specimens and those of JR Henderson must be one and the same species, so the two scientific names were officially synonymized in 1901 in a publication with his colleague AF McArdle, with JR Henderson’s name taking precedence as required by the principle of priority set forth in the International Code of Zoological Nomenclature.

Now, 130 years later, an international team of scientists, led by invertebrate zoologist Dr Rafael Lemaitre of the National Museum of Natural HistorySmithsonian Institution, USA, not only found that A Alcock’s Indian specimens were indeed a separate species, leading to the resurrection of its name as Paguropsis andersoni, but that blanket-hermit crabs are not as rare as previously thought.

In their recent publication in the open access journal ZooKeys, the biologists described a total of five new species and a new genus of closely related blanket-hermit crabs. Furthermore, they expect that other species are to be discovered, since there are many vast marine shelf areas and deep-sea habitats spread across the Indo-West Pacific yet to be sampled.

To develop their exceptional symbiosis with sea anemones, the blanket-hermit crabs have obviously needed just as extraordinary evolutionary adaptations. Perhaps the most remarkable of these are their specialized chelate fourth legs that allow for the crustaceans to effectively grab and stretch the thin-walled body of the anemones to cover themselves. For five of the species, the scientists report and unusual grasping shape for this cheliped that is reminiscent of bear claws, while in the other two the shape resembles ice-block tongs.

Unfortunately, the identity of the sea anemone species involved in the symbiotic relationship with any of the studied blanket-hermit crabs is currently uncertain, and their biology remains unknown.

A blanket-hermit crab 'wearing' an anemone.
A blanket-hermit crab ‘wearing’ an anemone.

So far, the genus described by JR Henderson as Paguropsis, contains five species distributed in the subtropical and tropical Indo-West Pacific, and living at depths ranging from 30 to 1125 m. These include the two species discovered in the 19th century, and three new species, one of which, Paguropsis gigas, is the largest known blanket-hermit crab that reaches a body size of 15 cm when fully stretched (a large size by hermit crab standards).

For two of the newly discovered hermit crabs, the new genus Paguropsina is erected to reflect the numerous similarities between the two species and their Paguropsis relatives. The Latin suffix -ina refers to the comparatively smaller size of the two species. Both blanket-hermit species of Paguropsina are found in the subtropical and tropical western Pacific at depth between 52 and 849 m.

“Here there is no shell to play the part of ‘Sir Pandarus of Troy,’ but the sea-anemone settles upon the hinder part of the young hermit-crab’s tail, and the two animals grow up together, in such a way that the spreading zoophytes form a blanket which the hermit can either draw completely forwards over its head or throw half-back, as it pleases,” Alcock once eloquently described his marine discovery.

###

Original source:

Lemaitre R, Rahayu DL, Komai T (2018) A revision of “blanket-hermit crabs” of the genus Paguropsis Henderson, 1888, with the description of a new genus and five new species (Crustacea, Anomura, Diogenidae). ZooKeys 752: 17-97. https://doi.org/10.3897/zookeys.752.23712

Audit finds biodiversity data aggregators ‘lose and confuse’ data

In an effort to improve the quality of biodiversity records, the Atlas of Living Australia (ALA) and the Global Biodiversity Information Facility (GBIF) use automated data processing to check individual data items. The records are provided to the ALA and GBIF by museums, herbaria and other biodiversity data sources.

However, an independent analysis of such records reports that ALA and GBIF data processing also leads to data loss and unjustified changes in scientific names.

The study was carried out by Dr Robert Mesibov, an Australian millipede specialist who also works as a data auditor. Dr Mesibov checked around 800,000 records retrieved from the Australian MuseumMuseums Victoria and the New Zealand Arthropod Collection. His results are published in the open access journal ZooKeys, and also archived in a public data repository.

“I was mainly interested in changes made by the aggregators to the genus and species names in the records,” said Dr Mesibov.

“I found that names in up to 1 in 5 records were changed, often because the aggregator couldn’t find the name in the look-up table it used.”

data_auditAnother worrying result concerned type specimens – the reference specimens upon which scientific names are based. On a number of occasions, the aggregators were found to have replaced the name of a type specimen with a name tied to an entirely different type specimen.

The biggest surprise, according to Dr Mesibov, was the major disagreement on names between aggregators.

“There was very little agreement,” he explained. “One aggregator would change a name and the other wouldn’t, or would change it in a different way.”

Furthermore, dates, names and locality information were sometimes lost from records, mainly due to programming errors in the software used by aggregators to check data items. In some data fields the loss reached 100%, with no original data items surviving the processing.

“The lesson from this audit is that biodiversity data aggregation isn’t harmless,” said Dr Mesibov. “It can lose and confuse perfectly good data.”

“Users of aggregated data should always download both original and processed data items, and should check for data loss or modification, and for replacement of names,” he concluded.

###

Original source:

Mesibov R (2018) An audit of some filtering effects in aggregated occurrence records. ZooKeys 751: 129-146. https://doi.org/10.3897/zookeys.751.24791

Dispatch from the field II: Students describe an elusive spider while stationed in Borneo

A mystery has long shrouded the orb-weaving spider genus Opadometa, where males and females belonging to one and the same species look nothing alike. Furthermore, the males appear to be so elusive that scientists still doubt whether both sexes are correctly linked to each other even in the best-known species.

Such is the case for Opadometa sarawakensis – a species known only from female specimens. While remarkable with their striking red and blue colors and large size, the females could not give the slightest hint about the likely appearance of the male Opadometa sarawakensis.

The red and blue female Opadometa sarawakensis
The red and blue female Opadometa sarawakensis

Nevertheless, students taking part in a recent two-week tropical ecology field course organized by the Naturalis Biodiversity Center and Leiden University, and hosted by the Danau Girang Field Centre (DGFC) on the island of Borneo, Malaysia, found a mature male spider hanging on the web of a red and blue female, later identified as Opadometa sarawakensis. Still quite striking, the male was colored in a blend of orange, gray, black, and silver.

At the brink of a long-awaited discovery and eager to describe the male, the students along with their lecturers and the field station scientific staff encountered a peril – with problematic species like the studied orb weaver they were in need for strong evidence to prove that it matched the female from the web. Furthermore, molecular DNA-based analysis was not an option at the time, since the necessary equipment was not available at DGFC.

On the other hand, being at the center of the action turned out to have advantages no less persuasive than DNA evidence. Having conducted thorough field surveys in the area, the team has concluded that the male’s observation on that particular female’s web in addition to the fact that no other Opadometa species were found in the area, was enough to prove they were indeed representatives of the same spider.

Adapting to the quite basic conditions at the DGFC laboratory, the students and their mentors put in use various items they had on hand, including smartphones paired up with headlights mounted on gooseneck clips in place of sophisticated cameras.

In the end, they gathered all the necessary data to prepare the formal description of the newly identified male.

Once they had the observations and the data, there was only one question left to answer. How could they proceed with the submission of a manuscript to a scholarly journal, so that their finding is formally announced and recognised?

submitting

Thanks to the elaborated and highly automated workflow available at the peer-reviewed open access Biodiversity Data Journal and its underlying ARPHA Writing Tool, the researchers managed to successfully compile their manuscript, including all underlying data, such as geolocations, and submit it from the field station. All in all, the authoring, peer review and publication – each step taking place within the ARPHA Platform‘s singular environment – took less than a month to complete. In fact, the paper was published within few days after being submitted.

This is the second publication in the series “Dispatch from the field”, resulting from an initiative led by spider taxonomist Dr Jeremy Miller. In 2014, another team of students and their mentors described a new species of curious one-millimetre-long spider from the Danau Girang Field Center. Both papers serve to showcase the feasibility of publication and sharing of easy to find, access and re-use biodiversity data.

“This has been a unique educational experience for the students,” says Jeremy. “They got to experience how tropical field biologists work, which is often from remote locations and without sophisticated equipment. This means that creativity and persistence are necessary to solve problems and complete a research objective. The fact that the students got to participate in advancing knowledge about this remarkable spider species by contributing to a manuscript was really exciting.”

###

Original source:

Miller J, Freund C, Rambonnet L, Koets L, Barth N, van der Linden C, Geml J, Schilthuizen M, Burger R, Goossens B (2018) Dispatch from the field II: the mystery of the red and blue Opadometa male (Araneae, Tetragnathidae, Opadometa sarawakensis). Biodiversity Data Journal6: e24777. https://doi.org/10.3897/BDJ.6.e24777

One species described multiple times: How taxonomists contribute to biodiversity discovery

While working on a rare little known group of Oriental wasps that most likely parasitise the eggs of grasshoppers, locusts or crickets, not only did a team of four entomologists discover four previously unknown species, but they also found that another four species within the same genus (Habroteleia) were in fact all one and the same – a fifth species discovered more than a century ago.

Their study, published in the open access journal Zookeys, comes as a fine example illustrating the important role played by taxonomists in puzzling out the Earth’s biodiversity.

The research was conducted by doctorate candidate Huayan Chen and Dr. Norman F. Johnson, both affiliated with The Ohio State University, USA, Dr. Elijah J. Talamas, Florida Department of Agriculture and Consumer Services, USA, and Dr. Lubomír Masner, Agriculture and Agri-Food Canada.

Prior to their study, there were only nine species known in the genus that had been described over the last 113 years from India, Japan and the Philippines.

However, following careful analyses, most of those species turned out to be synonyms of another one discovered in distant 1905, H. flavipes. Because of this species having been described and named five times in total through the years, the richness of the genus has been greatly inflated.

In their turn, having identified four new species belonging to the same genus after studying additional material collected from Madagascar, Papua New Guinea, and the Fijian archipelago, the scientists have maintained the species number in the group intact.

Additionally, the team provides a detailed illustrated identification key to all members of the genus in their paper. This list of characteristic features is set to prevent similar taxonomic confusion in the future.

In conclusion, Chen and colleagues have significantly advanced our understanding of the diversity and biogeography of the rare parasitoids, amongst which there might be some that will eventually prove to be helpful in pest management.

“Taxonomic revisions are essential for the fundamental understanding of biodiversity and its conservation. Taxonomists play a critical role in this process,” explains the lead author.

###

Original source:

Chen H-y, Talamas EJ, Masner L, Johnson NF (2018) Revision of the world species of the genus Habroteleia Kieffer (Hymenoptera, Platygastridae, Scelioninae). ZooKeys 730: 87-122. https://doi.org/10.3897/zookeys.730.21846

The Alps are home to more than 3,000 lichens

Historically, the Alps have always played an emblematic role, being one of the largest continuous natural areas in Europe. With its numerous habitats, the mountain system is easily one of the richest biodiversity hotspots in Europe.

Lichens are curious organisms comprising a stable symbiosis between a fungus and one or more photosynthetic organisms, for example green algae and/or cyanobacteria. Once the symbiosis is established, the new composite organism starts to function as a whole new one, which can now convert sunlight into essential nutrients and resist ultraviolet light at the same time.

A common fruticose lichen in the Alps (Flavocetraria nivalis). Photo: Dr Peter O. Bilovitz
A common fruticose lichen in the Alps (Flavocetraria nivalis).
Photo: Dr Peter O. Bilovitz

Being able to grow on a wide range of surfaces – from tree bark to soil and rock, lichens are extremely useful as biomonitors of air quality, forest health and climate change.

Nevertheless, while the Alps are one of the best studied parts of the world in terms of their biogeography, no overview of the Alpine lichens had been provided up until recently, when an international team of lichenologists, led by Prof. Pier Luigi Nimis, University of Trieste, Italy, concluded their 15-year study with a publication in the open access journal MycoKeys.

Sunrise in the Julian Alps. Photo: Dr Pier Luigi Nimis
Sunrise in the Julian Alps.
Photo: Dr Pier Luigi Nimis

The scientists’ joint efforts produced the first ever checklist to provide a complete critical catalogue of all lichens hitherto reported from the Alps. It comprises a total of 3,138 entries, based on data collected from eight countries – Austria, France, Germany, Italy, Liechtenstein, Monaco, Slovenia and Switzerland. In their research paper, the authors have also included notes on the lichens’ ecology and taxonomy.

A common lichen in the Alps (Xanthoria elegans). Photo: Dr Tomi Trilar
A common lichen in the Alps (Xanthoria elegans).
Photo: Dr Tomi Trilar

They point out that such catalogue has been missing for far too long, hampering research all over the world. The scientists point out that this has been “particularly annoying”, since the data from the Alps could have been extremely useful for comparisons between mountainous lichen populations from around the globe. It turns out that many lichens originally described from the Alps have been later identified in other parts of the world.

It was a long and painstaking work, which lasted almost 15 years, revealing a surprisingly high number of yet to be resolved taxonomic problems that will hopefully trigger further research in the coming years,” say the authors.

We think that the best criterion to judge whether a checklist has accomplished its task for the scientific community is the speed of it becoming outdated,” they conclude paradoxically.

The new checklist is expected to serve as a valuable tool for retrieving and accessing the enormous amount of information on the lichens of the Alps

A widespread alpine lichen (Thamnolia vermicularis). Photo: Dr Peter O. Bilovitz
A widespread alpine lichen (Thamnolia vermicularis).
Photo: Dr Peter O. Bilovitz

that has accumulated over centuries of research. It offers a basis for specimen revisions, critical re-appraisal of poorly-known species and further exploration of under-explored areas. Thus, it could become a catalyst for new, more intensive investigations and turn into a benchmark for comparisons between mountains systems worldwide.

###

Original source:

Nimis PL, Hafellner J, Roux C, Clerc P, Mayrhofer H, Martellos S, Bilovitz PO (2018) The lichens of the Alps – an annotated checklist. MycoKeys 31: 1-634. https://doi.org/10.3897/mycokeys.31.23568

Lichenologists at work in the Carnic Alps. Photo: Dr Pier Luigi Nimis
Lichenologists at work in the Carnic Alps.
Photo: Dr Pier Luigi Nimis

Life in the fast flow: Tadpoles of new species rely on ‘suction cups’ to keep up

The frogs living in the rainforest of Sumatra also represent a new genus

Indonesia, a megadiverse country spanning over 17,000 islands located between Australia and mainland Asia, is home to more than 16% of the world’s known amphibian and reptile species, with almost half of the amphibians found nowhere else in the world. Unsurprisingly, biodiversity scientists have been feverishly discovering and describing fascinating new animals from the exotic island in recent years.

Sumatran forest

Such is the case of an international team from the University of Hamburg, Germany, University of Texas at Arlington, USA, University of Bern, Switzerland and Bandung Institute of Technology, Indonesia, who came across a curious tadpole while collecting amphibian larvae from fast-flowing streams as part of an arduous expedition in the remote forests on the island of Sumatra.

To the amazement of the scientists, it turned out that the tadpoles possess a peculiar cup-like structure on their bellies, in addition to the regular oral disk found in typical tadpoles. As a result, the team described two new species and a genus in the open access journal Zoosystematics and Evolution. A previously known, but misplaced in an unsuitable genus, frog was also added to the group, after it was proved that it takes advantage of the same modification.

This phenomenon where tadpoles display ‘belly suckers’ is known as gastromyzophory and, albeit not unheard of, is a rare adaptation that is only found in certain toads in the Americas and frogs in Asia,” explains lead author Umilaela Arifin.

The abdominal sucker, it is hypothesized, helps these tadpoles to exploit a very special niche – fast-flowing streams – where the water would otherwise be too turbulent and rapid to hang around. Gastromyzophorous species, however, rely on the suction provided by their modified bellies to secure an exclusive access to plentiful food, such as algae, while the less adapted are simply washed away.

When the scientists took a closer look at the peculiar tadpoles and their adult forms, using a powerful combination of molecular and morphological data, they realized that they had not only stumbled upon a rare amphibian trait, but had also discovered two brand new species of frogs in the process.

Sumaterana crassiovis

Moreover, the animals turned out so distinct in their evolutionary makeup, compared to all other frogs, that the scientists had to create a whole new genus to accommodate them. Formally named Sumaterana, the genus is to be commonly referred to as Sumatran Cascade Frogs.

We decided to call the new genus Sumaterana after Sumatra, to reflect the fact that these new species, with their rare evolutionary adaptation are endemic to Sumatra’s rainforests and, in a sense, are emblematic of the exceptional diversity of animals and plants on the island,” says co-author Dr. Utpal Smart. “Tragically, all of them are in peril today, given the current rate of deforestation.

The authors agree that much more taxonomic work is still needed to determine and describe Sumatra’s herpetofaunal diversity, some of which they fear, could be irreversibly lost well before biologists have the chance to discover it.

###

Original source:

Arifin U, Smart U, Hertwig ST, Smith EN, Iskandar DT, Haas A (2018) Molecular phylogenetic analysis of a taxonomically unstable ranid from Sumatra, Indonesia, reveals a new genus with gastromyzophorous tadpoles and two new species. Zoosystematics and Evolution 94(1): 163-193. https://doi.org/10.3897/zse.94.22120

Two new species of stone centipedes found hiding in larch forests in China

Scientists described two species of previously unknown stone centipedes from China. Now housed at the Hengshui University, China, where all members of the team work, the studied specimens were all collected in the leaf litter or under rocks in larch forests.

Having conducted their research across China, researchers Dr Sujian Pei, Yanmin Lu, Haipeng Liu, Dr Xiaojie Hou and Dr Huiqin Ma announced the two new species – Lithobius (Ezembius) tetraspinus and Hessebius luculentus – in two articles published in the open access journal ZooKeys.

Stone centipedes are the species which belong to the order Lithobiomorpha. These centipedes are anamorphic, meaning that they grow additional pair of legs as they moult and develop additional body segments. By the time they are fully grown, these count 15 in total. Unlike earlier predecessors, stone centipedes do not have the compound eyes we know from insects. Instead, stone centipedes see through simple eyes, sometimes a group of simple eyes, or, if living exclusively underground, they might have no eyes at all.19980 New centipede China L. tetraspinus

One of the newly discovered species, Lithobius (Ezembius) tetraspinus, is recorded from Hami City, Xinjiang Autonomous Region, northwestern China. The studied specimens were collected from moderately moist larch forest habitats at altitude of 950 to 1000. There, the small predominantly brown centipedes, measuring no more than about 13 mm in body length, were hiding under rodeside stones and leaf litter.

The second previously unknown centipede, Hessebius luculentus, discovered in Shandan County, Qinghai-Tibet Plateau, is slightly larger – reaching up to 20 mm. Its colours are a mix of yellow and brown with the odd grey or red hue. While it has the same preference for relatively moist habitats, this species lives at greater altitude. It has been reported from forest floor at about 1400 m above sea level.

In both papers, the authors point out that while the myriapod fauna of China remains generally poorly known, even less attention has been given to the order of stone centipedes.

The research articles are included in the special issue “Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand”. The congress, organised by Prof. Somsak Panha, Chulalongkorn University, Bangkok, was held in July 2017.

###

Original source:

Pei S, Lu Y, Liu H, Hou X, Ma H (2018) Lithobius (Ezembius) tetraspinus, a new species of centipede from northwest China (Lithobiomorpha, Lithobiidae). In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 203-217. https://doi.org/10.3897/zookeys.741.19980

Ma H, Lu Y, Liu H, Hou X, Pei S (2018) Hessebius luculentus, a new species of the genus Hessebius Verhoeff, 1941 from China (Lithobiomorpha, Lithobiidae). In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 193-202. https://doi.org/10.3897/zookeys.741.20061

Double trouble: Invasive insect species overlooked as a result of a shared name

An invasive leaf-mining moth, feeding on cornelian cherry, has been gradually expanding its distributional range from its native Central Europe northwards for a period likely longer than 60 years. During that period, it has remained under the cover of a taxonomic confusion, while going by a name shared with another species that feeds on common dogwood.

To reproduce, this group of leaf-mining moths lay their eggs in specific plants, where the larvae make tunnels or ‘mines’, in the leaves. At the end of these burrows, they bite off an oval section, in which they can later pupate. These cutouts are also termed ‘shields’, prompting the common name of the family, the shield-bearer moths.

During a routine study into the DNA of leaf-mining moths, Erik van Nieukerken, researcher at Naturalis Biodiversity Center, Leiden, the Netherlands, discovered that the DNA barcodes of the species feeding on common dogwood and cornelian cherry were in fact so different that they could only arise from two separate species. As a result, Erik teamed up with several other scientists and amateur entomologists to initiate a more in-depth taxonomic study.

Curiously, it turned out that the two species had been first identified on their own as early as in 1899, before being described in detail by a Polish scientist in the 50s. Ironically, it was another Polish study, published in the 70s, that regarded the evidence listed in that description as insufficient and synonymised the two leaf-miners under a common name (Antispila treitschkiella).

Now, as a result of the recent study undertaken by van Nieukerken and his collaborators, the two moth species – Antispila treitschkiella and Antispila petryi – have their diagnostic features listed in a research article published in the open access journal Nota Lepidopterologica.

“We now establish that the species feeding on common dogwood, A. petryi, does not differ only in its DNA barcode, but also in characters of the larva, genitalia and life history,” explains Erik van Nieukerken. “A. petryi has a single annual generation, with larvae found from August to November, whereas A. treitschkiella, which feeds on cornelian cherry, has two generations, with larvae occurring in June-July and once again between September and November.”

While van Nieukerken and his team were working on the taxonomy of the moths, David C. Lees of the Natural History Museum, London, spotted a female leaf-miner in the Wildlife Garden of the museum. Following consultation with van Nieukerken, it turned out that the specimen in question was the first genuine A. treitschkiella ever to be found in Britain. Subsequently, the research groups decided to join forces, leading to the present discovery.

Despite the lack of data for the British Isles, it is already known that, in continental Europe, the cornelian cherry-feeding species had established in the Netherlands and much of Germany in the 1990s.

0.6 x 1.0

With common dogwood being widely planted, it is now suspected that A. petryi has recently reached Sweden and Estonia, even though there was no previous evidence of the leaf-miner expanding its range.

“This discovery should provoke the attention of gardeners and other members of the public alike to the invasive leafminers attacking some of our much admired trees and shrubs, as we have demonstrated for the cornelian cherry – a species well-known for its showy red berries in the autumn,” says David Lees.

“Especially in Britain, we hope that they check their photos for the conspicuous leaf mines, recognisable by those oval cutouts, to see if they can solve the mystery of when the invasion, which is now prominent on cornels around London, actually started, and how fast it progresses. Citizen scientists can help.”

###

Original source:

van Nieukerken EJ, Lees DC, Doorenweerd C, Koster S(JC), Bryner R, Schreurs A, Timmermans MJTN, Sattler K (2018) Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): an unjustified synonymy and overlooked range expansion. Nota Lepidopterologica 41(1): 39-86. https://doi.org/10.3897/nl.41.22264