In 2018, NHM London’s digitisation team started a project to digitise non-type herbarium material from the legume family. A recent data paper in the Biodiversity Data Journal reports on the outcomes.
You can find the original blog post by the Natural History Museum of London, reposted here with minor edits.
Legumes are a group of plants that include soybeans, peas, chickpeas, peanuts and lentils. They are a significant source of protein, fibre, carbohydrates, and minerals in our diet and some, like the cowpea, are resistant to droughts.
The project’s outcomes were published in a data paper in the Biodiversity Data Journal. Within the project, the digitisation team aimed to collectively digitise non-type herbarium material from the legume family. This includes rosewood trees (Dalbergia), padauk trees (Pterocarpus) and the Phaseolinae subtribe that contains many of the beans cultivated for human and animal food.
Guinea, Ethiopia, Sudan, Kenya, Uganda, Tanzania, Mozambique, Malawi and Madagascar
Asian
Bangladesh, Myanmar, Nepal, New Guinea and India
Southern and Central American
Guatemala, Honduras, El Salvador, Nicaragua, Bolivia, Argentina and Brazil
ODA-listed Countries
The legume groups: Dalbergia, Pterocarpus and Phaseolinae,were chosen for digitisation to support the development of dry beans as a sustainable and resilient crop, and to aid conservation and sustainable use of rosewood and padauk trees. Some of these beans, especially cow pea and pigeon pea, are sustainable and resilient crops, as they can be grown in poor-quality soils and are drought stress resistant. This makes them particularly suitable for agricultural production where the growing of other crops would be difficult.
While there have been collaborative efforts between herbaria in the past, these have tended to prioritise digitisation of type specimens: the example specimens for which a species is named.
Searching for beans
This collection was digitised by creating an inventory record for each specimen, attaching images of each herbarium sheet, and then transcribing more data and georeferencing the specimens, providing an accurate locality in space and time for their collection.
We originally had four months and three members of staff to digitise over 11,000 specimens. The Covid-19 lockdown was ironically rather lucky for this project as it enabled us to have more time to transcribe and georeference all of the records.
say the researchers behind the digitisation project.
“We were able to assign country-level data to 10,857 out of the total number of 11,222 records. We were also able to transcribe the collectors’ names from the majority of our specimen labels (10,879 out of 11,222). Only 770 out of the 2,226 individuals identified during this project collected their specimens in ODA listed countries. The highest contributors were: Richard Beddome (130 specimens), Charles Clarke (110), Hans Schlieben (98) and Nathaniel Wallich (79). The breakdown of records by ODA country can be seen in the chart below. “
From our data, we can see the peak decade of collection was the 1930s, with almost half (4,583 specimens or 49,43%) collected between 1900 and 1950 (Fig. 10).
This peak can be attributed to three of our most prolific collectors: Arthur Kerr, John Gossweiler and Georges Le Testu, all of whom were most active in the 1930s. The oldest specimen (BM013713473) was collected by Mark Catesby (1683-1749) in the Bahamas in 1726.
they explain.
Releasing Rosewoods
Both the Pterocarpus and Dalbergia genera include species that are used as expensive good quality timber that is prone to illegal logging. Many species such as Pterocarpus tinctorius are also listed on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. By releasing this new resource of information on all these plants from three of the biggest herbaria in the world, we can share this datа with the people who are taking care of biodiversity in these countries. The data can be used to identify hotspots, where the tree is naturally growing and protect these areas. These data would also allow much closer attention to be paid to areas that could be targets for illegal logging activity.
***
This dataset is now openly available on the Museum’s Data Portal and a data paper about this work has been released in the Biodiversity Data Journal.
***
Stay in touch with the Digitisation team by following us on Instagram and Twitter.
Don’t forget to also follow the Biodiversity Data Journal on Twitter and Facebook.
The Principe Scops-Owl, the eighth known bird species endemic to the island, has a unique call and lives in a restricted range in the Príncipe Obô Natural Park.
A new species of owl has just been described from Príncipe Island, part of the Democratic Republic of São Tomé and Príncipe in Central Africa. Scientists were first able to confirm its presence in 2016, although suspicions of its occurrence gained traction from 1998, and testimonies from local people suggesting its existence could be traced back as far as 1928.
The new owl species was described in the open-access journal ZooKeys based on multiple lines of evidence such as morphology, plumage colour and pattern, vocalisations, and genetics. Data was gathered and processed by an international team led by Martim Melo (CIBIO and Natural History and Science Museum of the University of Porto), Bárbara Freitas (CIBIO and the Spanish National Museum of Natural Sciences) and Angelica Crottini (CIBIO).
The bird is now officially known as the Principe Scops-Owl, or Otus bikegila.
“Otus” is the generic name given to a group of small owls sharing a common history, commonly called scops-owls. They are found across Eurasia and Africa and include such widespread species as the Eurasian Scops-Owl (Otus scops) and the African Scops-Owl (Otus senegalensis).
The scientists behind the discovery further explain that the species epithet “bikegila” was chosen in homage of Ceciliano do Bom Jesus, nicknamed Bikegila – a former parrot harvester from Príncipe Island and now a ranger of its natural park.
“The discovery of the Principe Scops-Owl was only possible thanks to the local knowledge shared by Bikegila and by his unflinching efforts to solve this long-time mystery,” the researchers say. “As such, the name is also meant as an acknowledgment to all locally-based field assistants who are crucial in advancing the knowledge on the biodiversity of the world.”
In the wild, the easiest way to recognise one would be its unique call – in fact, it was one of the main clues leading to its discovery.
“Otus bikegila‘s unique call is a short “tuu” note repeated at a fast rate of about one note per second, reminiscent of insect calls. It is often emitted in duets, almost as soon as the night has fallen,” Martim Melo explains.
The entire Principe Island was extensively surveyed to determine the distribution and population size of the new species. Results, published in the journal Bird Conservation International, show that the Principe Scops-Owl is found only in the remaining old-growth native forest of Príncipe in the uninhabited southern part of the island. There, it occupies an area of about 15 km2, apparently due to a preference for lower elevations. In this small area (about four times the size of Central Park), the densities of the owl are relatively high, with the population estimated at around 1000-1500 individuals.
Nevertheless, because all individuals of the species occur in this single and very small location (of which a part will be affected in the near future by the construction of a small hydro-electric dam), researchers have proposed that the species should be classified as ‘Critically Endangered’, the highest threat level on the IUCN Red List. This recommendation must still be evaluated by the International Union for Conservation of Nature.
Monitoring the population will be essential to get more precise estimates of its size and follow its trends. For this purpose, a survey protocol relying on the deployment of automatic recording units and AI to retrieve the data from these has been designed and successfully tested.
“The discovery of a new species that is immediately evaluated as highly threatened illustrates well the current biodiversity predicament”, the researchers say. “On a positive note, the area of occurrence of the Principe Scops-Owl is fully included within the Príncipe Obô Natural Park, which will hopefully help secure its protection.”
Thisis the eighth known species of bird endemic to Príncipe, further highlighting the unusually high level of bird endemism for this island of only 139 km2.
Even though a new species of scops-owl was just described from Príncipe, genetic data indicated that the island was, surprisingly, likely the first in the Gulf of Guinea to be colonised by a species of scops-owl.
“Although it may seem odd for a bird species to remain undiscovered for science for so long on such a small island, this is by no means an isolated case when it comes to owls,” the researchers state. “For example, the Anjouan Scops-Owl was rediscovered in 1992, 106 years after its last observation, on Anjouan Island (also known as Ndzuani) in the Comoro Archipelago, and the Flores Scops-Owl was rediscovered in 1994, 98 years after the previous report.”
“The discovery of a new bird species is always an occasion to celebrate and an opportunity to reach out to the general public on the subject of biodiversity,” says Martim Melo. “In this age of human-driven extinction, a major global effort should be undertaken to document what may soon not be anymore,” he and his team state in their paper.
“Birds are likely the best studied animal group. As such, the discovery of a new bird species in the 21st century underscores both the actuality of field-based explorations aiming at describing biodiversity, and how such curiosity-driven endeavour is more likely to succeed when coupled with local ecological knowledge, the participation of keen amateur naturalists, and persistence,” they add.
They believe that this “new wave of exploration, carried out by professionals and amateurs alike”, will help rekindle the link to the natural world, which will be essential to help revert the global biodiversity crisis.
Research article:
Melo M, Freitas B, Verbelen P, da Costa SR, Pereira H, Fuchs J, Sangster G, Correia MN, de Lima RF, Crottini A (2022) A new species of scops-owl (Aves, Strigiformes, Strigidae, Otus) from Príncipe Island (Gulf of Guinea, Africa) and novel insights into the systematic affinities within Otus. ZooKeys 1126: 1-54. https://doi.org/10.3897/zookeys.1126.87635
For the 37th time, experts from across the world to share and discuss the latest developments surrounding biodiversity data and how they are being gathered, used, shared and integrated across time, space and disciplines.
Between 17th and 21st October, about 400 scientists and experts took part in a hybrid meeting dedicated to the development, use and maintenance of biodiversity data, technologies, and standards across the world.
For the 37th time, the global scientific and educational association Biodiversity Information Standards (TDWG) brought together experts from all over the globe to share and discuss the latest developments surrounding biodiversity data and how they are being gathered, used, shared and integrated across time, space and disciplines.
This was the first time the event happened in a hybrid format. It was attended by 160 people on-site, while another 235 people joined online.
“It’s wonderful to be in the Balkans and Bulgaria for our Biodiversity Information and Standards (TDWG) 2022 conference! Everyone’s been so welcoming and thoughtfully engaged in conversations about biodiversity information and how we can all collaborate, contribute and benefit,”
“Our TDWG mission is to create, maintain and promote the use of open, community-driven standards to enable sharing and use of biodiversity data for all,”
she added.
“We are proud to have been selected to be the hosts of this year’s TDWG annual conference and are definitely happy to have joined and observed so many active experts network and share their know-how and future plans with each other, so that they can collaborate and make further progress in the way scientists and informaticians work with biodiversity information,”
said Pensoft’s founder and CEO Prof. Lyubomir Penev.
“As a publisher of multiple globally renowned scientific journals and books in the field of biodiversity and ecology, at Pensoft we assume it to be our responsibility to be amongst the first to implement those standards and good practices, and serve as an example in the scholarly publishing world. Let me remind you that it is the scientific publications that present the most reliable knowledge the world and science has, due to the scrutiny and rigour in the review process they undergo before seeing the light of day,”
he added.
***
In a nutshell, the main task and dedication of the TDWG association is to develop and maintain standards and data-sharing protocols that support the infrastructures (e.g., The Global Biodiversity Information Facility – GBIF), which aggregate and facilitate use of these data, in order to inform and expand humanity’s knowledge about life on Earth.
It is the goal of everyone volunteering their time and expertise to TDWG to enable the scientists interested in the world’s biodiversity to do their work efficiently and in a manner that can be understood, shared and reused by others. After all, biodiversity data underlie everything we know about the natural world.
If there are optimised and universal standards in the way researchers store and disseminate biodiversity data, all those biodiversity scientists will be able to find, access and use the knowledge in their own work much more easily. As a result, they will be much better positioned to contribute new knowledge that will later be used in nature and ecosystem conservation by key decision-makers.
On Monday, the event opened with welcoming speeches by Deborah Paul and Prof. Lyubomir Penev in their roles of the Chair of TDWG and the main host of this year’s conference, respectively.
The opening ceremony continued with a keynote speech by Prof. Pavel Stoev, Director of the Natural History Museum of Sofia and co-host of TDWG 2022.
He walked the participants through the fascinating biodiversity of Bulgaria, but also the worrying trends in the country associated with declining taxonomic expertise.
He finished his talk with a beam of hope by sharing about the recently established national unit of DiSSCo, whose aim – even if a tad too optimistic – is to digitise one million natural history items in four years, of which 250,000 with photographs. So far, one year into the project, the Bulgarian team has managed to digitise more than 32,000 specimens and provide images to 10,000 specimens.
The plenary session concluded with a keynote presentation by renowned ichthyologist and biodiversity data manager Dr. Richard L. Pyle, who is also a manager of ZooBank – the key international database for newly described species.
In his talk, he highlighted the gaps in the ways taxonomy is being used, thereby impeding biodiversity research and cutting off a lot of opportunities for timely scientific progress.
“But we do not have easy access to much of this information because the different databases are not well integrated. Taxonomy offers us the best opportunity to connect this information together, to answer important questions about biodiversity that we have never been able to answer before. The reason meetings like this are so important is that they bring people together to discuss ways of using modern informatics to greatly increase the power of the data we already have, and prioritise how we fill the gaps in data that exist. Taxonomy, and especially taxonomic data integration, is a very important part of the solution.”
Pyle also commented on the work in progress at ZooBank ten years into the platform’s existence and its role in the next (fifth) edition of the International Code of Zoological Nomenclature, which is currently being developed by the International Commission of Zoological Nomenclature (ICZN).
“We already know that ZooBank will play a more important role in the next edition of the Code than it has for these past ten years, so this is exactly the right time to be planning new services for ZooBank. Improvements at ZooBank will include things like better user-interfaces on the web to make it easier and faster to use ZooBank, better data services to make it easier for publishers to add content to ZooBank as part of their publication workflow, additional information about nomenclature and taxonomy that will both support the next edition of the Code, and also help taxonomists get their jobs done more efficiently and effectively. Conferences like the TDWG one are critical for helping to define what the next version of ZooBank will look like, and what it will do.”
***
During the week, the conference participants had the opportunity to enjoy a total of 140 presentations; as well as multiple social activities, including a field trip to Rila Monastery and a traditional Bulgarian dinner.
While going about the conference venue and field trip localities, the attendees were also actively uploading their species observations made during their stay in Bulgaria on iNaturalist in a TDWG2022-dedicated BioBlitz. The challenge concluded with a total of 635 observations and 228 successfully identified species.
“Biodiversity provides the support systems for all life on Earth. Yet the natural world is in peril, and we face biodiversity and climate emergencies. The consequences of these include accelerating extinction, increased risk from zoonotic disease, degradation of natural capital, loss of sustainable livelihoods in many of the poorest yet most biodiverse countries of the world, challenges with food security, water scarcity and natural disasters, and the associated challenges of mass migration and social conflicts.
Solutions to these problems can be found in the data associated with natural science collections. DiSSCo is a partnership of the institutions that digitise their collections to harness their potential. By bringing them together in a distributed, interoperable research infrastructure, we are making them physically and digitally open, accessible, and usable for all forms of research and innovation.
At present rates, digitising all of the UK collection – which holds more than 130 million specimens collected from across the globe and is being taken care of by over 90 institutions – is likely to take many decades, but new technologies like machine learning and computer vision are dramatically reducing the time it will take, and we are presently exploring how robotics can be applied to accelerate our work.”
In his turn, Dr Donat Agosti, CEO and Managing director at Plazi – a not-for-profit organisation supporting and promoting the development of persistent and openly accessible digital taxonomic literature – said:
***
At the closing plenary session, Gail Kampmeier – TDWG Executive member and one of the first zoologists to join TDWG in 1996 – joined via Zoom to walk the conference attendees through the 37-year history of the association, originally named the Taxonomic Databases Working Group, but later transformed to Biodiversity Information Standards, as it expanded its activities to the whole range of biodiversity data.
Then, in the final talk of the session, Deborah Paul took to the stage to present the progress and key achievements by the association from 2022.
Launched in 2017 on the Pensoft’s publishing platform ARPHA, the journal provides the quite unique and innovative opportunity to have both abstracts and full-length research papers published in a modern, technologically-advanced scholarly journal. In her speech, Deborah Paul reminded that BISS journal welcomes research articles that demonstrate the development or application of new methods and approaches in biodiversity informatics in the form of case studies.
Amongst the achievements of TDWG and its community, a special place was reserved for the Horizon 2020-funded BiCIKL project (abbreviation for Biodiversity Community Integrated Knowledge Library), involving many of the association’s members.
Having started in 2021, the 3-year project, coordinated by Pensoft, brings together 14 partnering institutions from 10 countries, and 15 biodiversity under the common goal to create a centralised place to connect all key biodiversity data by interlinking a total of 15 research infrastructures and their databases.
In fact, following the week-long TDWG 2022 conference in Sofia, a good many of the participants set off straight for another Bulgarian city and another event hosted by Pensoft. The Second General Assembly of BiCIKL took place between 22nd and 24th October in Plovdiv.
***
You can also explore highlights and live tweets from TDWG 2022 on Twitter via #TDWG2022.
The uncertainty about a person’s identity hampers research, hinders the discovery of expertise, and obstructs the ability to give attribution or credit for work performed.
Worldwide, natural history institutions house billions of physical objects in their collections, they create and maintain data about these items, and they share their data with aggregators such as the Global Biodiversity Information Facility (GBIF), the Integrated Digitized Biocollections (iDigBio), the Atlas of Living Australia (ALA), Genbank and the European Nucleotide Archive (ENA).
Even though these data often include the names of the people who collected or identified each object, such statements may be ambiguous, as the names frequently lack any globally unique, machine-readable concept of their shared identity.
Despite the data being available online, barriers exist to effectively use the information about who collects or provides the expertise to identify the collection objects. People have similar names, change their name over the course of their lifetime (e.g. through marriage), or there may be variability introduced through the label transcription process itself (e.g. local look-up lists).
As a result, researchers and collections staff often spend a lot of time deducing who is the person or people behind unknown collector strings while collating or tidying natural history data. The uncertainty about a person’s identity hampers research, hinders the discovery of expertise, and obstructs the ability to give attribution or credit for work performed.
Disambiguation activities: the act of churning strings into verifiable things using all available evidence – need not be done in isolation. In addition to presenting a workflow on how to disambiguate people in collections, we also make the case that working in collaboration with colleagues and the general public presents new opportunities and introduces new efficiencies. There is tacit knowledge everywhere.
More often than not, data about people involved in biodiversity research are scattered across different digital platforms. However, with linking information sources to each other by using person identifiers, we can better trace the connections in these networks, so that we can weave a more interoperable narrative about every actor.
That said, inconsistent naming conventions or lack of adequate accreditation often frustrate the realization of this vision. This sliver of natural history could be churned to gold with modest improvements in long-term funding for human resources, adjustments to digital infrastructure, space for the physical objects themselves alongside their associated documents, and sufficient training on how to disambiguate people’s names.
The process of properly disambiguating those who have contributed to natural history collections takes time.
The disambiguation process involves the extra challenge of trying to deduce “who is who” for legacy data, compared to undertaking this activity for people alive today. Retrospective disambiguation can require considerable detective work, especially for scarcely known people or if the community has a different naming convention. Provided the results of this effort are well-communicated and openly shared, mercifully, it need only be done once.
At the core of our research is the question of how to solve the issue of assigning proper credit.
In our recent Methods paper, we discuss several methods for this, as well as available routes for making records available online that include not only the names of people expressed as text, but additionally twinned with their unique, resolvable identifiers.
First and foremost, we should maintain our own public biographical data by making full use of ORCID. In addition to preserving our own scientific legacy and that of the institutions that employ us, we have a responsibility to avoid generating unnecessary disambiguation work for others.
For legacy data, where the people connected to the collections are deceased, Wikidata can be used to openly document rich bibliographic and demographic data, each statement with one or more verifiable references. Wikidata can also act as a bridge to link other sources of authority such as VIAF or ORCID identifiers. It has many tools and services to bulk import, export, and to query information, making it well-suited as a universal democratiser of information about people often walled-off in collection management systems (CMS).
Once unique identifiers for people are integrated in collection management systems, these may be shared with the global collections and research community using the new Darwin Core terms, recordedByID or identifiedByID along with the well-known, yet text-based terms, recordedBy or identifiedBy.
Approximately 120 datasets published through GBIF now make use of these identifier-based terms, which are additionally resolved in Bionomia every few weeks alongside co-curated attributions newly made there. This roundtrip of data – emerging as ambiguous strings of text from the source, affixed with resolvable identifiers elsewhere, absorbed into the source as new digital annotations, and then re-emerging with these fresh, identifier-based enhancements – is an exciting approach to co-manage collections data.
Disambiguation work is particularly important in recognising contributors who have been historically marginalized. For example, gender bias in specimen data can be seen in the case of Wilmatte Porter Cockerell, a prolific collector of botanical, entomological and fossil specimens. Cockerell’s collections are often attributed to her husband as he was also a prolific collector and the two frequently collected together.
On some labels, her identity is further obscured as she is simply recorded as “& wife” (see example on GBIF). Since Wilmatte Cockerell was her husband’s second wife, it can take some effort to confirm if a specimen can be attributed to her and not her husband’s first wife, who was also involved in collecting specimens. By ensuring that Cockerell is disambiguated and her contributions are appropriately attributed, the impact of her work becomes more visible enabling her work to be properly and fairly credited.
Thus, disambiguation work helps to not only give credit where credit is due, thereby making data about people and their biodiversity collections more findable, but it also creates an inclusive and representative narrative of the landscape of people involved with scientific knowledge creation, identification, and preservation.
A future – once thought to be a dream – where the complete scientific output of a person is connected as Linked Open Data (LOD) is now.
Both the tools and infrastructure are at our disposal and the demand is palpable. All institutions can contribute to this movement by sharing data that include unique identifiers for the people in their collections. We recommend that institutions develop a strategy, perhaps starting with employees and curatorial staff, people of local significance, or those who have been marginalized, and to additionally capitalize on existing disambiguation activities elsewhere. This will have local utility and will make a significant, long-term impact.
The more we participate in these activities, the greater chance we will uncover positive feedback loops, which will act to lighten the workload for all involved, including our future selves!
The disambiguation of people in collections is an ongoing process, but it becomes easier with practice. We also encourage collections staff to consider modifying their existing workflows and policies to include identifiers for people at the outset, when new data are generated or when new specimens are acquired.
There is more work required at the global level to define, update, and ratify standards and best practices to help accelerate data exchange or roundtrips of this information; there is room for all contributions. Thankfully, there is a diverse, welcoming, energetic, and international community involved in these activities.
We see a bright future for you, our collections, and our research products – well within reach – when the identities of people play a pivotal role in the construction of a knowledge graph of life.
A good start is also to check Bionomia to find out what metrics exist now for your institution or collection and affiliated people.
The next steps for collections: 7 objectives that can help to disambiguate your institutions’ collection:
***
Methods publication:
Groom Q, Bräuchler C, Cubey RWN, Dillen M, Huybrechts P, Kearney N, Klazenga N, Leachman S, Paul DL, Rogers H, Santos J, Shorthouse DP, Vaughan A, von Mering S, Haston EM (2022) The disambiguation of people names in biological collections. Biodiversity Data Journal 10: e86089. https://doi.org/10.3897/BDJ.10.e86089
Soil and its macrofauna are an integral part of many ecosystems, playing an important role in decomposition and nutrient recycling. However, soil biodiversity remains understudied globally.
To help fill this gap and reveal the diversity of soil fauna in Hong Kong, a team of scientists from The Chinese University of Hong Kong initiated a citizen science project involving universities, non-governmental organisations and secondary school students and teachers.
“Involving citizens as part of the new knowledge generation process is important in promoting the understanding of biodiversity. Training younger-generation citizens to learn about biodiversity is of utmost importance and crucial to conservation engagement”
– say the researchers in their study, which was published in the open-access Biodiversity Data Journal.
Working side by side with university academics, taxonomists and non-governmental organisation members, students from 21 schools/institutes were recruited to collect soil animals near their campusesfor a year and record their observations.
Between October 2019 and October 2020, they monitored and sampled species across 21 sites of urban and semi-natural habitats in Hong Kong, collecting a total of 3,588 individual samples. Their efforts yielded 150 soil macrofaunal species, identified as arthropods (including insects, spiders, centipedes and millipedes), worms, and snails.
Most often, the students found millipedes (23 out of 150 species). They even helped identify two millipede species that are new to Hong Kong’s fauna: Monographis queenslandica and Alloproctoides remyi. The former is usually found in Australia – the researchers suggest it might have been introduced to the area many decades ago from Queensland or vice versa – and the latter has been observed in Reunion and Mauritius.
Millipedes like these two species can accelerate litter decomposition and regulate the soil carbon and phosphorus cycling, while earthworms can modify the soil structure and regulate water and organic matter cycling.
“Before the beginning of this project, the understanding of soil biodiversity in Hong Kong, including the understanding of its contained millipede species, was inadequate”
the researchers write in their paper.
Now, they believe that the identified macrofauna species and their 646 DNA barcodes have established a solid foundation for further research in soil biodiversity in the area.
Their project also serves an additional purpose. Unlike most conventional scientific studies, which are usually carried out by the government, non-governmental organisations or academics in universities alone, this study utilised a citizen science approach through creating a big community engaged with biodiversity. In doing so, it helped educate the public and raise awareness on the use of basic science techniques in understanding local biodiversity.
So, it may have inspired a new generation of future scientists: some students started millipede cultures in their own schools, and one school used the millipede breeding model to participate in a science and technology competition.
This study is a proof that local institutes and high schools can unite together with research teams at universities and perform scientific work, the study’s authors believe.
It “has raised public awareness and potentially opens up opportunities for the general public to engage in scientific research in the future.”
The team hopes that their approach could inspire future biodiversity sampling and monitoring studies to engage more citizen scientists.
***
Research article:
So WL, Ting KW, Lai SY, Huang EYY, Ma Y, Chong TK, Yip HY, Lee HT, Cheung BCT, Chan MK, Consortium HKSB, Nong W, Law MMS, Lai DYF, Hui JHL (2022) Revealing the millipede and other soil-macrofaunal biodiversity in Hong Kong using a citizen science approach. Biodiversity Data Journal 10: e82518. https://doi.org/10.3897/BDJ.10.e82518
The new snakes, which are small and cylindrical, were named in honor of institutions or people supporting the exploration of remote cloud forests in the tropics.
A group of scientists led by Alejandro Arteaga, grantee of The Explorers Club Discovery Expeditions and researcher at Khamai Foundation, discovered three new cryptozoic (living underground) snakes hidden under graveyards and churches in remote towns in the Andes of Ecuador. The discovery was made official in a study published in the journal ZooKeys. The new snakes, which are small, cylindrical, and rather archaic-looking, were named in honor of institutions or people supporting the exploration and conservation of remote cloud forests in the tropics.
Believe or not, graveyards are also land of the living. In the Andes of Ecuador, they are inhabited by a fossorial group of snakes belonging to the genus Atractus. These ground snakes are the most species-rich snake genus in the world (there are now 150 species known globally), but few people have seen one or even heard about their existence. This is probably because these serpents are shy and generally rare, and they remain hidden throughout most of their lives. Additionally, most of them inhabit remote cloud forests and live buried underground or in deep crevices. In this particular case, however, the new ground snakes where found living among crypts.
The discovery of the three new species took place rather fortuitously and in places where one would probably not expect to find these animals. The Discovery Ground Snake (Atractus discovery) was found hidden underground in a small graveyard in a remote cloud forest town in southeastern Ecuador, whereas the two other new species were found besides an old church and in a small school. All of this seems to suggest that, at least in the Andes, new species of snakes might be lurking just around the corner.
Unfortunately, the coexistence of ground snakes and villagers in the same town is generally bad news for the snakes. The study by Arteaga reports that the majority of the native habitat of the new snakes has already been destroyed. As a result of the retreating forest line, the ground snakes find themselves in the need to take refuge in spaces used by humans (both dead and alive), where they are usually killed on sight.
Diego Piñán, a teacher of the town where one of the new reptiles was found, says: “when I first arrived at El Chaco in 2013, I used to see many dead snakes on the road; others where hit by machetes or with stones. Now, after years of talking about the importance of snakes, both kids and their parents, while still wary of snakes, now appreciate them and protect them.” Fortunately, Diego never threw away the dead snakes he found: he preserved them in alcohol-filled jars and these were later used by Arteaga to describe the species as new to science.
In addition to teaching about the importance of snakes, the process of naming species is important to create awareness about the existence of a new animal and its risk of extinction. In this particular case, two of the new snakes are considered to be facing a high risk of extinction in the near future.
The discovery process also provides an opportunity to recognize and honor the work of the people and institutions fighting to protect wildlife.
Atractus discovery was named to honor The Explorers Club Discovery Expedition Grants initiative, a program seeking to foster scientific understanding for the betterment of humanity and all life on Earth and beyond. The grant program supports researchers and explorers from around the world in their quest to mitigate climate change, prevent the extinction of species and cultures, and ensure the health of the Earth and its inhabitants.
Atractus zgap was named in honor of the Zoological Society for the Conservation of Species and Populations (ZGAP), a program seeking to conserve unknown but highly endangered species and their natural habitats throughout the world. The ZGAP grant program supports the fieldwork of young scientists who are eager to implement and start conservation projects in their home countries.
Atractus michaelsabini was named in honor of a young nature lover, Michael Sabin, grandson of American philanthropist and conservationist Andrew “Andy” Sabin. Through the conservation organization Re:wild, the Sabin family has supported field research of threatened reptiles and has protected thousands of acres of critical habitat throughout the world.
“Naming species is at the core of biology”, says Dr. Juan M. Guayasamin, co-author of the study and a professor at Universidad San Francisco de Quito. “Not a single study is really complete if it is not attached to the name of the species, and most species that share the planet with us are not described.”
“The discovery of these new snakes is only the first step towards a much larger conservation project,” says Arteaga. “Now, thanks to the encouragement of ZGAP, we have already started the process of establishing a nature reserve to protect the ground snakes. This action would not have been possible without first unveiling the existence of these unique and cryptic reptiles, even if it meant momentarily disturbing the peace of the dead in the graveyard where the lived.”
Research article:
Arteaga A, Quezada A, Vieira J, Guayasamin JM (2022) Leaving no stone unturned: three additional new species of Atractus ground snakes (Serpentes, Colubridae) from Ecuador discovered using a biogeographical approach. ZooKeys 1121: 175-210. https://doi.org/10.3897/zookeys.1121.89539
“This is why Mikolji’s Oscar is a highly appreciated species in the aquarium hobby. It is more than just a fish in an aquarium when it is considered a true pet.”
In this last part, we talked with ichthyologist Oscar Miguel Lasso-Alcalá about what makesAstronotus mikoljii – a new to science cichlid species that he recently described in ZooKeys – so special.
What makes this species so charismatic and loved by aquarists and ichthyologists?
I already spoke about my experience as an aquarist from an early age, where the qualities of the species of the Astronotus genus, known as Oscars are highlighted.
Different varieties and color patterns have been obtained from them through selective breeding, or genetic manipulation, which are called living modified organisms (LMOs) or genetically modified organisms (GMOs).
However, the true lovers of nature, the aquarians of the “Biotope Aquarium” movement and the like, prefer pure specimens to manipulated or artificially modified ones. This is why Mikolji’s Oscar is a highly appreciated species in the aquarium hobby. It is more than just a fish in an aquarium since it is considered a true pet.
For ichthyologists, it is remarkably interesting and at the same time very challenging to study a genus like Astronotus, which already has only three described species (Astronotus ocellatus, A. cassiprinnis and A. mikoljii).
This is an unusual situation, which, as we have reported, requires an integrative approach and the work and experience of different specialists for its study. With all certainty, as in the case of Mikolji’s Oscar, other species of the genus Astronotus remain to be studied and described, and we hope that we will have the fortune to participate with our experience in these new works.
Local people have long known this species. What role does it have in their lives?
It is important to clarify that Astronotus mikoljii is a new species for science, but it is not a “new species” for people who already knew it locally under the name of Pavona, Vieja, or Cupaneca in Venezuela or Pavo Real, Carabazú, Mojarra and Mojarra Negra in Colombia. Nor for the aquarium trade, where it was known by the common name of Oscar and scientific name of Astronotus ocellatus, or, to a lesser degree, as Astronotus cassiprinnis.
This species has been of great food importance for thousands of years for at least nine indigenous ethnic groups.
Much less is it a new species for the nine thousand-year-old indigenous ethnic groups that share their world with the habitat of this fish, who baptized it with some 14 different names, known in their languages as mijsho (Kariña), boisikuajaba (Warao), hácho (Pumé = Yaruro), phadeewa, jadaewa (Ye’Kuana = Makiritare), perewa, parawa (Eñepá = Panare), yawirra (Kúrrim = Kurripako), kohukohurimï, kohokohorimï, owënawë kohoromï” (Yanomami = Yanomamï), eba (Puinave), Itapukunda (Kurripako), uan (Tucano).
Hence, the importance of scientific names, since the same species can have multiple common names, in the same language or in multiple languages.
It is important to note that very few studies that describe new species for science include the common names of the species, as given by the indigenous ethnic groups or natives of the regions, where the species live.
This species has been of great food importance for thousands of years for at least nine indigenous ethnic groups, and for more than 500 years to the hundreds of human communities of locals who inhabit the Orinoco River basin in Venezuela and Colombia. In our studies, in the plains of Orinoco from 30 years ago, we were able to verify its consumption, as well as high gastronomic value, due to its pleasant taste and enhanced texture.
However, due to my imprint as an aquarist, I have not wanted to consume it on the different occasions that it was offered to me, because it is very difficult to eat the beloved pets that we had in our childhood.
Why is this fish important to people and to ecosystems?
It is especially important to highlight that the Astronotus mikoljii species plays a very important role in the ecosystem, due to its biological and ecological background.
Although it can feed from different sources, it is a fundamentally carnivorous species, and therefore, it “controls” other species in the ecosystem.
Without Mikolji’s Oscar, the aquatic ecosystem would lose one of its fundamental links and the delicate balance of its functioning, because the species it feeds on could increase their populations uncontrollably, becoming veritable pests. This would put in great danger the entire future of the aquatic ecosystem of the Orinoco River basin and the permanence of other species of ecological importance.
In addition, it would surely affect other species used by man, both those of commercial importance (sold as food or as ornamental species), and for the subsistence fishing of native and indigenous inhabitants.
Mikolji’s Oscar, although a carnivorous species, also has its natural predators, for example piranhas and other predatory fish. For this reason, it evolved with an ocellus, or false eye, at the base of the caudal fin, to confuse its predators and guarantee its survival. Obviously, this species will be compromised if we don’t learn about it, use its populations wisely and preserve it in the long term.
***
Photos by Ivan Mikolji.
***
You can find Part 1 and Part 2 of the interview with Oscar.
“Working in science in a country under these conditions, and getting to publish the results of the investigations in high-level scientific journals such as ZooKeys, is an act of “true heroism”.
Oscar Miguel Lasso-Alcalá, MSc. is a Spanish-Venezuelan ichthyologist. This summer, his team described a new species of Oscar fish in the journal ZooKeys.
In this second part of his interview, he tells us about the challenges in his work and shares the story behind the new cichlid’s name.You can find Part 1 of the interview.
What did you find to be the biggest challenge?
Throughout the past seven years, the description of this species has been a real challenge. Our group of researchers knew from the beginning that it was going to be a difficult job. However, we never imagined the magnitude of the problems or challenges we would encounter.
We had to study the specimens from the Orinoco River basin in Venezuela and Colombia, and rivers from the hydrographic basin of the Gulf of Paria in Venezuela, which were within our reach, in the main scientific collections of fishes in Venezuela. Similarly, we studied the specimens from the Amazon River basin in one of the main collections in Brazil. We studied the traditional external morphology (morphometric characters, or the body, and meristic measurements, or the number of structures or parts such as scales, fins, etc.) and their coloration, as well as their internal morphology, that is, the study of structures of their skeleton, with the use of high-definition radiographs, where we found the main differences with other species.
A novel technique was the study of the shape of the otoliths, or “ear stones”, a technique not used before in the study of this group of fish. That is why I mentioned before that we also made some great scientific discoveries.
In addition to the long and meticulous laboratory work, we also had to conduct field work, not only to capture new specimens for the morphological study, but also for the genetic and molecular study, a new methodology that has become popular in recent years as a way to support taxonomy and systematics in the description and classification of species.
For this latest work, we also relied on a recent study in this area of research, carried out by the genetics specialists on our work team. This means our research was based on what is currently called “integrative taxonomy”, which is the sum of different techniques, methods, and technologies, at the service of achieving our goal: the description of a new species for science and for the world.
Many other difficulties came up along the way, which is why this research took over seven years to be published. Normally, researchers cannot focus 100% of their time on one single research, and workloads fluctuate. Sometimes we think that a greater number of specialists would help distribute the workload evenly or that getting input from others with different fields of experience, sometimes specialized, would help enrich the work, but that also makes it more difficult to reach agreement. Reaching perfection is never possible, and it took a long time for us to reach a level of results that was both acceptable to all and well accepted in the field of taxonomy and systematics.
One of the biggest challenges was purely financial. While we had some funds from Brazilian research support organizations and two universities, this was not the case in Venezuela, a country plunged in a serious political, social, economic, and humanitarian crisis.
Working in science in a country under these conditions, and being able to publish your results in high-level scientific journals, including ZooKeys, is an act of “true heroism”, as my brother José Antonio often says when cheering on my publication.
How come you named it after Ivan Mikolji?
People who do not know about the great work carried out by river explorer Ivan Mikolji might wonder about that, but the thousands of people, connoisseurs and followers of his work are absolutely clear on the justification for this appointment.
In addition to being an excellent professional explorer, author, underwater photographer, audiovisual producer and even plastic artist, he is a tireless and enthusiastic disseminator of the biodiversity and natural history of freshwater fish in Venezuela and Colombia.
His work has contributed greatly to the knowledge and conservation of the aquatic ecosystems of both countries. His motto is: “You cannot preserve something that you don’t know exists.”
He has made dozens of photography and art exhibitions in Venezuela, Mexico and the United States, as well as award-winning documentaries on the Orinoco River and its biodiversity that have acquired millions of views.
Mikolji has also inspired thousands of “conservationist” aquarists, as a judge in a worldwide movement called “Biotope Aquariums,” where people try to simulate, as much as possible, the ecosystems and aquatic biodiversity of their places of origin, for the conservation of their local biodiversity.
In addition, his educational work further includes the “Wild Aquarium”, a new movement and methodology, where he recreates in the same place (in situ), a “Biotope aquarium”, helping local communities (children and adults) learn about local aquatic ecosystems and biodiversity and their conservation.
In addition to his great artistic, informative, and educational work, with the enormous data accumulated in more than 15 years of work and field observations, in the recent years, he has participated in different research projects, publishing books and numerous scientific articles, some of them with us. For this reason, in 2020, he was appointed Associate Researcher of the Museo de Historia Natural La Salle (Caracas) of the Fundación La Salle de Ciencias Naturales, in Venezuela. By the way, we are planning research that we hope to announce soon in various publications.
Regarding Astronotus mikoljii, our good friend and now colleague Ivan Mikolji, was the one who initially proposed that we describe this species that he loves so much. He selflessly supported all the authors throughout the study in diverse ways, even in the field work in Venezuela. Ivan helped us in the search for equipment and materials, in the search for information, in the photographic work, and now in the dissemination of this study. For this reason, the article, in just one week, achieved more than 4,500 downloads, both on ZooKeys and ResearchGate web platforms, a true record for a study of this type.
Most importantly, throughout these years, Ivan has always encouraged us not to lose our course and objective, even in the most difficult moments. After years of knowing him, we have cultivated an excellent friendship. This is why we decided that it was just and necessary to recognize his work, help, companionship, and friendship, naming this beautiful and beloved species in his honor.
Oscar Miguel Lasso-Alcalá, MSc., is a Spanish-Venezuelan ichthyologist with undergraduate studies in Oceanography, Fishing Technology and Aquaculture, and Postgraduate studies in Agricultural Zoology and Estuary Ecology. He has worked in diverse areas such as taxonomy, biology, ecology, freshwater, estuarine, and marine fisheries and management. For 33 years, he has participated in more than 70 research projects and published over 250 studies. He has made more than 250 scientific expeditions to different regions of Venezuela and six other countries in America. He has dedicated much of his work to studying, educating, and managing introduced species and their invasions.
This summer, Oscar’s team described a new species of cichlid fish from northern South America in our journal ZooKeys. We spoke to him to find out how they came to the discovery and what it means to him.
When did you discover the new species?
Although some taxonomists have specimens that they believe, or have preliminarily diagnosed, to correspond to different, undescribed or new-to-science species (in my case I know of around 15 species I’ve diagnosed as new), Astronotus mikoljii was different. We did not discover that it was a new species overnight.
Normally, the process of discovering a new species takes a long time and a lot of work. It is not an easy task. First, you need to analyze the external and internal morphology. You study the color pattern and other characteristics and compare them to those of known, described species that are akin or similar to the one being studied, looking for the main differences. It is also very important to carry out exhaustive documentary and bibliographical research, to learn about all related species that have been previously described. Then, if there is complete certainty that it’s a different species that has not been previously described and published, there’s an entire process of formal description of the new species.
Did you immediately recognize it as a new species?
Absolutely not. Mikolji’s Oscar is difficult to differentiate externally. The first researcher who evidenced the main differences of Astronotus ocellatus (a binomial as it was previously known) from the Orinoco River basin, was the Swedish ichthyologist Sven Oscar Kullander, curator at the Swedish Museum of Natural History in Stockholm. He is one of the greatest specialists in the world on species of the Cichlidae family, to which the species we were studying belongs. This was first published in 1981, followed by his 1983, 1986, and 1989 studies (including his Ph.D. thesis) and later in other studies of his published in 2003 (all cited in our recent article published in the ZooKeys journal).
Likewise, my brother, the Spanish and Venezuelan ichthyologist Carlos Andrés Lasso, currently a researcher at the Instituto de Recursos Biológicos Alexander von Humboldt of Colombia, with more than 40 years of experience, also recognized this species from the Orinoco River as different from the one present in the Amazon River basin. In 18 different studies carried out in Venezuela and Colombia (all cited in our article), he records this species as Astronotus cf ocellatus (“cf” means the species name is yet to be confirmed), or directly as Astronotus sp., already assuring that it was a different species and new to science.
We are letting the world know a defined and individual species exists.
With this background, we responsibly acknowledge that it was Sven and Carlos who discovered Mikolji’s Oscar, and not us. Our credit and recognition are given for the process of describing the new species and for its publication. It is very important to clarify here that the discovery of a new-to-science species and its description (and publication) are two different facts, situations, and processes. However, in our study, we discovered some very important morphological characteristics, as well as genetic information, that allowed the differentiation of this species from those already known.
What was most exciting about this finding?
As an ichthyologist, I feel pride in collaborating and contributing to science, nationally, regionally, and globally. I feel satisfaction every time I share my research results at a scientific event or meeting (congress, symposium), or publish them in a scientific book (or part of it) or in a popular journal. This is not just an ordinary job for me, since I really like to investigate, and almost always have a lot of fun with this activity. As I have said in many of the interviews that I have had throughout my over 30-year career: to me, it’s not a job, it’s a way of living.
It fills me with great satisfaction to have the opportunity, more than 40 years after first meeting these Oscars, to be able to study them, describe them, and give them the name and place they deserve in science, and in the world.
The description of a species which is new to science is something really special, not only for me and my colleagues in this study, but for the vast majority of taxonomists. This is not only due to the fact that our last names will always appear next to the scientific name, but also to the fact that we are letting the world know a defined and individual species exists. By adding another species, we increase the known biodiversity of a country, a region, and the world, and therefore, we demonstrate that biodiversity must be studied, managed, conserved, and used rationally and independently.
Astronotus mikoljii is a very charismatic species, highly appreciated, valued, and loved in the aquarium hobby.
I remember that as a kid (between 7 and 13 years old), in the aquariums built at home by two of my older brothers, José Antonio and Carlos, to whom I largely owe being an ichthyologist today, we had some specimens of Oscars from Orinoco. We bought them in a local aquarium store in Caracas and took care of them, loved them like little children. I remember that in addition to feeling happily identified with the name (Oscar), they felt like real pets. They “got excited” when they saw us, took food directly from our hands without biting our fingers, and even let themselves be caressed, as if they were docile puppies or kittens. They were my favorite fish.
Years later, as an adult, beginning my research years, in the late 80’s and early 90’s, even with aquariums in our house (I had more than 20 in my good time as an aquarist), we had new specimens of these Oscars. This time, they were specimens captured by my brother and me, in the floodplains of the Orinoco River (Llanos de Apure), where for more than five years we studied the biology and ecology of some 200 local fish species, many of them unique in the world just like Mikolji’s Oscar. From that field study came the doctoral thesis of my brother Carlos, and the undergraduate theses of half a dozen other researchers, including mine.
It fills me with great satisfaction to have the opportunity, more than 40 years after first meeting these Oscars, to be able to study them, describe them, and give them the name and place they deserve in science, and in the world. It also fills me with deep satisfaction, having the opportunity to describe a “large-sized” species that was apparently already known, both locally and nationally (for its importance in fishing), as well as internationally in the world of aquarism. That is why, as I shared our study and finding on social media, I wrote: “Oscar describes the Oscar: Mikolji’s Oscar.“
We are also extremely grateful to the many people who helped us and collaborated with us in this study, by collecting new specimens in the field, reviewing fish collections under their care, taking X-rays, searching for specialized bibliographies, studying the native or indigenous names, and even editing and publishing the article in Zookeys journal.
Likewise, it was exciting to share this research experience with colleagues from Brazil (co-authors of this study, just like me), who trusted us and our meticulous work.
In the world of biodiversity science, 2022 started with some great discoveries and a lot of hope. Here at Pensoft, we get to see a new species (or more!) make an appearance into the scientific world almost every day. The diversity is impressive, but what is even more amazing is how much more remains undiscovered.
With the first half of the year already behind us, here are the stellar new species that took the world by storm as soon as we published them.
The magical fairy wrasse
This rainbow-coloured fish is called Cirrhilabrus finifenmaa, or Rose-Veiled Fairy Wrasse, and it was found in the Maldives’ reefs. It can live 160 to 500 feet beneath the ocean’s surface in unexplored coral ecosystems dubbed “the twilight zone”.
“Nobody knows these waters better than the Maldivian people,” says senior author and Academy Curator of Ichthyology Luiz Rocha. “Our research is stronger when it’s done in collaboration with local researchers and divers.”
Media attention for our new species isn't slowing down, so I'll keep promoting it! Did you know that in addition to looking incredible in life, the new C. finifenmaa is also fluorescent!? Here's an unreleased photo taken by T. Gerlach and J. Theobald. https://t.co/EVwOtCvRc3pic.twitter.com/aqCNFvbzja
Apart from its striking appearance, Cirrhilabrus finifenmaa also gained popularity as the first new-to-science species to be described by a Maldivian scientist.
“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists, says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb. “This time it is different.”
It is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.
This beautiful fish is already being exploited through the aquarium hobbyist trade, a fact described as “unsettling” by the people who discovered it.
How often is it that a millipede makes top news headlines? Well, Nannaria swiftaesure did.
Scientists Derek Hennen, Jackson Means, and Paul Marek, at Virginia Tech, U.S., described the new species in April, naming it after singer-songwriter Taylor Swift. “Her music helped me get through the highs and lows of graduate school, so naming a new millipede species after her is my way of saying thanks,” Derek Hennen says, admitting he has been her fan for years.
N. swiftae joins 16 other new species of twisted-claw millipedes described from the Appalachian Mountains of the United States. To find them, researchers traveled to 17 US states, checking under leaf litter, rocks, and logs. They then sequenced the DNA of the species they found and described them scientifically. They looked at over 1800 specimens collected on their field study or taken from university and museum collections!
These little-known invertebrates are somewhat tricky to catch, because they tend to remain buried in the soil, sometimes staying completely beneath the surface.
Most twisted-claw millipedes live on the forest floor, where they feed on decaying leaves and other plant matter. They also have a valuable role as decomposers: breaking down leaf litter, they release their nutrients into the ecosystem.
Swedish climate activist Greta Thunberg has been namesakes with a frog for half a year now. In 2018, Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for some new-to-science species, including Pristimantis gretathunbergae, a black-eyed rainfrog from in eastern Panama.
The undisclosed auction winner wanted to name the frog in honor of Thunberg and her work in highlighting the urgency in preventing climate change. She has impressed global leaders and her work is drawing others to action for the climate.
The international team that discovered the new rainfrog was led by Abel Batista, Ph.D. (Panama) and Konrad Mebert, Ph.D. (Switzerland). They found the frog on Mount Chucanti, a sky island surrounded by lowland tropical rainforest in eastern Panama. Reaching its habitat in the cloud forest required access via horseback through muddy trails, hiking up steep slopes, by-passing two helicopters that crashed decades ago, and camping above 1000 m elevation.
Unfortunately, the frog’s remaining habitat is severely fragmented and highly threatened by rapid deforestation for plantations and cattle pasture. Rising temperatures are another threat as they could destroy its small mountain habitat. The Mount Chucanti region already has lost more than 30% of its forest cover over the past 10 years, and the scientists insist that conservation of the remaining habitat is critical to ensure the survival of the frog.
Instantly gaining popularity as Chocolate Frog, Synapturanus danta is a curious little frog that was recently discovered in the Peruvian Amazon. Local people had long known about this tiny, burrowing frog with a long snout; one local name for it is rana danta, “tapir frog”, for its resemblance to the large-nosed Amazonian mammal.
“These frogs are really hard to find, and that leads to them being understudied,” says Michelle Thompson, a researcher in the Keller Science Action Center at Chicago’s Field Museum and one of the authors of the study describing the frog. “It’s an example of the Amazon’s hidden diversity, and it’s important to document it to understand how important the ecosystem functions.”
While the frogs are hard to see, they’re not hard to hear. “We just kept hearing this beep-beep-beep coming from underground, and we suspected it could be a new species of burrowing frog,” says Thompson. “But how do we get to it?”
Local guides who were familiar with the frogs led the researchers to peatland areas– wetlands carpeted with nutrient-rich turf made of decaying plant matter. “After 15 to 20 minutes of digging and looking for them, I heard Michelle screaming, and to me that could only mean that she and David had found the first adult,” says Germán Chávez, a researcher at Peru’s Instituto Peruano de Herpetología and the study’s first author.
The researchers used the physical specimens of the frogs, along with the recordings of their calls and an analysis of the frogs’ DNA, to confirm that they were a new species. They named them Synapturanus danta – Synapturanus is the name of the genus they belong to, and danta is the local word for “tapir.”
This magnificent non-venomous snake, previously unknown to science, was discovered in Paraguay. It belongs to the genus Phalotris, a group of snakes from central South America noted for their striking coloration with red, black, and yellow patterns.
Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery, naming the new snake Phalotris shawnella.
The species name recognizes two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.
🐍 This lovely #snake is the latest addition to the #herpetofauna of Paraguay. The team that discovered it, however, worries that this beautiful and highly endemic #NewSpecies is not well protected.
This new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots.
Only known from three individuals, this species is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its extreme rarity led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.