The Oriental eye fly that transmits conjunctivitis newly recorded in China

The conjunctivitis-transmitting Oriental eye fly (Siphunculina funicola) has been recorded for the first time in China. In the same paper, published in the open access journal ZooKeys, a team of three scientists further describe three species of the same genus, which are new to science.

The studied flies in the genus Siphunculina present a number of curious insects, including the grass flies and the Oriental eye fly – a species that transmits conjunctivitis and other eye diseases to both humans and domestic animals. As the larvae feed on faeces or thrive in decaying flesh, they can usually be found in bird nests, excrement or carcasses.

The scientists Dr. Xiaoyan Liu, Huazhong Agricultural University, China, Dr. Ding Yang, China Agricultural University and Dr. Emilia P. Nartshuk, Russian Academy of Sciences, collected the Oriental eye fly in Hainan, the southernmost province of China.

Previously, the species had been known to inhabit other countries in eastern and southern Asia, where the flies amass around people and cattle, causing considerable annoyance and spreading eye diseases.

###

Original source:

Liu X-Y, Nartshuk EP, Yang D (2017) Three new species and one new record of the genus Siphunculina from China (Diptera, Chloropidae). ZooKeys 687: 73-88. https://doi.org/10.3897/zookeys.687.13156

The new yellow sea snake assumes an unusual ambush posture

Carrying its petite frame and all-yellow skin, the recently scrutinized sea snake populations from Golfo Dulce, Costa Rica, already seem different enough to be characterized as a new subspecies. However, their most extraordinary trait is only exposed at night when the serpents opportunistically feed on small fish by hanging upside down from the water surface, assuming a peculiar sinusoidal ambush posture.

The new yellow sea snake subspecies (Hydrophis platurus xanthos) is described by Brooke Bessesen, Phoenix Zoo, USA, and Dr. Gary Galbreath, Northwestern University and The Field Museum of Natural History, USA, in the open access journal ZooKeys.

Unlike its related species, the yellow-bellied sea snake (Hydrophis platurus), the yellow sea snake subspecies lives in a significantly more hostile environment – the waters in the gulf are warmer, often turbulent, and the dissolved oxygen in them occasionally drops to extremely low levels. The two snakes’ territories are separated by some 22 kilometers.

Likely as a result, the new reptile has evolved to hunt at night, while its lighter coloration plays role in thermoregulation.

Given the list of well-defined distinct traits, the new subspecies could eventually turn out to be a new species instead. As for the moment, however, the authors remain cautious until additional data are available.

Bessesen_fig2cMore importantly, the scientists call for conservation measures to be applied to the new serpent’s habitat. With its very restricted geographic range of about 320 km2 located in a currently unprotected area, the yellow sea snake is at a serious risk of extinction. Collectors have already been reported to remove specimens from the sea. Additionally, the reptiles are already living at the upper edge of the species’ temperature tolerance, which makes them particularly susceptible to climate change.

“Hopefully this globally unique population can continue to offer both scientists and conservation-conscious tourists a worthy subject of observation and study,” say the authors.

###

Original source:

Bessesen BL, Galbreath GJ (2017) A new subspecies of sea snake, Hydrophis platurus xanthos, from Golfo Dulce, Costa Rica. ZooKeys 686: 109-123. https://doi.org/10.3897/zookeys.686.12682

Behind Green Eyes: New species of deep-water hermit crab finds itself unusual shelters

‘Green-eyed hermit crab’ is the common name for a new species recently discovered off the West Coast of South Africa. Apart from its magnetic stare, however, there is a number of characteristic morphological traits and an unusual home preference that all make the crustacean unique.

Lara Atkinson_SAEON_offshore benthic ecologistFormally named after the University of Cape Town (UCT) alumnus Dr Lara Atkinson, the new hermit crab Paragiopagurus atkinsonaeis described by PhD candidate Jannes Landschoff, UCT, and Dr Rafael Lemaitre, Smithsonian Institution, USA, in the open access journal ZooKeys.

The Green-eyed hermit crab measures merely 70 mm in length and sports a coloration of mottled orange nuanced with cream to white. Among its distinct traits is the significant sexual dimorphism, where the males grow much larger right chelipeds in comparison to females.

Much like other hermit crabs in its family (Parapaguridae), the little crustacean does not use the shells of other molluscs to shelter its vulnerable body, but rather finds a home in the soft, polypy masses built from sand and material created by sea anemones which go on to live on the backs of these crabs in an amazing symbiosis.

“So, when you hold it [the hermit crab], it’s just organic material glued together with some sand,” explains Jannes in the UCT’s announcement about their discovery.

“Even more curiously, parapagurids start off in the usual way, occupying a tiny gastropod shell. But these eventually become deposited within this non-calcified ‘amalgam’ created by the anemones. As the hermit crab grows, its live ‘shell’, or carcinoecia, grows with it.”

2017-07-11-Sympagurus_dimorphus

The new species was discovered during a three-week survey back in 2013, conducted by the Department of Forestry and Fisheries and the South African Environmental Observation Network in the shallower deep waters (199 m to 277 m) off the West Coast of South Africa. Lara was on board one of the vessels when an unusual green-eyed crab turned up among the numerous specimens collected in one of the trawls. It was at that moment that she noticed that there was something peculiar about it and sent it for identification.

Restricted to a surprisingly small area for no obvious reason, the new species might be just bringing up some very important conservation messages.

“The area isn’t noticeably biologically or oceanographically distinct, but more detailed sampling from the area will tell us more about the habitat conditions. Future studies need to take this into account and give the area more research attention. If there’s something unusual about the site, you’d want to be careful, especially with mining operations along the West Coast,” says Jannes.

“Incidents like these are flags for future protection. The bottom line is we know so little about these offshore habitats from an ecological point of view. And if you’re planning for a marine protected area, you have to know what it is you’re protecting in that area.”

###

Original source:

Landschoff J, Lemaitre R (2017) Differentiation of three common deep-water hermit crabs (Crustacea, Decapoda, Anomura, Parapaguridae) from the South African demersal abundance surveys, including the description of a new species of Paragiopagurus Lemaitre, 1996. ZooKeys676: 21-45. https://doi.org/10.3897/zookeys.676.12987

Gender dictates camouflage strategy in this newly identified praying mantis group

Adult females and males in a newly identified genus of Latin American praying mantises have evolved sharply different camouflage strategies, according to a Cleveland Museum of Natural History-led study published in the journal ZooKeys.

Adult males of the new genus retain the stubby, stick-like body configuration and brown coloration they have used as nymphs, whereas adult females, whose bodies grow to be considerably larger to maximize egg production, transform their appearance to mimic a leaf. They change to green, while their forewings become larger and more rounded compared to the male’s, with veins that simulate a leaf structure.

Image 1 Adult Female

Although adult females are nearly two inches long, the members of this new mantis genus had escaped scientific recognition until recently, in part because the disparity in camouflage tactics made classification difficult.

This shrewdness inspired the name for the new mantis species: Hondurantemna chespiritoi. The genus name (Hondurantemna) derives from Honduras, where the first female specimen was found, in combination with Antemna, a Neotropical mantis to which the new lineage is closely related.

Meanwhile, the species name, chespiritoi, is a nod to the late Mexican comedian Roberto Gómez Bolaños, known as Chespirito, or Little Shakespeare. One of Bolaños’ TV characters, a goofy superhero called the Red Grasshopper, was fond of saying “¡No contaban con mi astucia!” — Spanish for “They didn’t count on my cleverness!” — when he defeated bad guys.

“I grew up watching that TV show in Brazil”, says the study’s lead author, Cleveland Museum of Natural History entomologist and Case Western Reserve University biology Ph.D. candidate Henrique Rodrigues.

“The first male specimen of the new mantis species was from Mexico, like Bolaños,” he explains. “And the signature line of Bolaños’ Red Grasshopper character kind of reminded me of the fact that you had this pretty large species of praying mantis that no one had found for many years.”Image 2 Adult Male dorsal view Credit Henrique Rodrigues

Adult female and male specimens of the mantis species were in separate museum collections in Paris, France and San Francisco, California, but had remained unidentified and their relationship unrecognized for more than two decades because of their dissimilar appearances.

Entomologist Julio Rivera, Ph.D., spotted the large green female mantis in the Muséum national d’Histoire naturelle, Paris and brought it to the attention of Cleveland Museum of Natural History Curator of Invertebrate Zoology Gavin Svenson, Ph.D., an international expert on praying mantises. Dr. Svenson later saw the small brown male mantis in the California Academy of Sciences and noted that the two insects, though dissimilar in color and size, had body features that hinted they might be members of the same Antemninae sub-family.

Yet, adaptation to similar environments can cause unrelated organisms to develop similar features. This phenomenon, called convergent evolution, can complicate the process of sorting out connections on the praying mantis family tree.

Dr. Svenson is leading a research project to more accurately reclassify the massive praying mantis family tree using DNA testing and insights from the insects’ body form and features – their morphology. He has consolidated many of the country’s major mantis collections at the Cleveland museum, thus building the Western Hemisphere’s largest assemblage of the insects to aid this effort.

The final pieces of the puzzle that allowed the Cleveland researchers to identify the new mantis lineage arrived by chance. Neil Reid, Ph.D., a lecturer at Queen’s University in Belfast, Northern Ireland, contacted Dr. Svenson, wondering if he wanted to examine a group of unknown praying mantises that Dr. Reid had gathered in a Honduran cloud forest.

The specimens Dr. Reid provided included two adult females and some male and female nymphs in various stages of development. The adult females looked the same as the female from the Paris museum. The male nymphs closely resembled the adult male from San Francisco. Having the nymphs let the researchers see the separate camouflage strategies the male and female mantises adopted as they matured.

Blog

Rodrigues conducted DNA tests that confirmed the mantises all represented the same genus and species, which had not been recognized before. The analysis also showed where this new mantis group, or taxon, fit on the complex mantis family tree: verifying that it belonged in the Antemninae subfamily.

“The recognition of H. chespiritoi shows the important role genetics can play in classifying insect relationships. It also highlights the value of museum collections,” Dr. Svenson says.

“When people ask us, ‘Why do you collect things?’, it’s because we still have a shockingly small concept of the biodiversity that’s out there,” Dr. Svenson says. “Museums are the places that hold that biological knowledge, and we’re pulling information out of them all the time.”

 

Original Source

Rodrigues HR, Rivera J, Reid N, Svenson GJ (2017) An elusive Neotropical giant, Hondurantemna chespiritoi gen. n. & sp. n. (Antemninae, Mantidae): a new lineage of mantises exhibiting an ontogenetic change in cryptic strategy. ZooKeys 680: 73-104. https://doi.org/10.3897/zookeys.680.11162

New species of frog from the Neotropics carries its heart on its skin

In the Neotropics, there is a whole group of so-called glassfrogs that amaze with their transparent skin covering their bellies and showing their organs underneath. A recently discovered new species from Amazonian Ecuador, however, goes a step further to fully expose its heart thanks to the transparent skin stretching all over its chest as well as tummy.

The new amphibian is described by a team of scientists led by Dr. Juan M. Guayasamin, Universidad San Francisco de Quito, Ecuador, in the open access journal ZooKeys.

It can also be distinguished by the relatively large dark green spots at the back of its head and the foremost part of the body. Additionally, the species has a characteristic long call.

The new frog is named Hyalinobatrachium yaku, where the species name (yaku) translates to ‘water’ in the local language Kichwa. Water and, more specifically, slow-flowing streams are crucial for the reproduction of all known glassfrogs.

The reproductive behaviour is also quite unusual in this species. Males are often reported to call from the underside of leaves and look after the egg clutches.

Having identified individuals of the new species at three localities, the researchers note some behavioural differences between the populations. Two of them, spotted in the riverine vegetation of an intact forest in Kallana, have been calling from the underside of leaves a few metres above slow-flowing, relatively narrow and shallow streams. Another frog of the species has been observed in an area covered by secondary forests in the Ecuadorian village of Ahuano. Similarly, the amphibian was found on the underside of a leaf one metre above a slow-flowing, narrow and shallow stream.

oo_135330However, at the third locality – a disturbed secondary forest in San José de Payamino – the studied frogs have been perching on leaves of small shrubs, ferns, and grasses some 30 to 150 cm above the ground. Surprisingly, each of them has been at a distance greater than 30 metres from the nearest stream.

The researchers note that, given the geographic distance of approximately 110 km between the localities where the new species has been found, it is likely that the new species has a broader distribution, including areas in neighbouring Peru.

The uncertainty about its distributional range comes from a number of reasons. Firstly, the species’ tiny size of about 2 cm makes it tough to spot from underneath the leaves. Then, even if specimens of the species have been previously collected, they would be almost impossible to identify from museum collection, as many of the characteristic traits, such as the dark green marks, are getting lost after preservation. This is why the conservation status of the species has been listed as Data Deficient, according to the IUCN Red List criteria.

Nevertheless, the scientists identify the major threats to the species, including oil extraction in the region and the related water pollution, road development, habitat degradation and isolation.

“Glassfrogs presumably require continuous tracts of forest to interact with nearby populations, and roads potentially act as barriers to dispersal for transient individuals,” explain the authors.

###

Original source:

Guayasamin JM, Cisneros-Heredia DF, Maynard RJ, Lynch RL, Culebras J, Hamilton PS (2017) A marvelous new glassfrog (Centrolenidae, Hyalinobatrachium) from Amazonian Ecuador. ZooKeys 673: 1-20. https://doi.org/10.3897/zookeys.673.12108

Three new mini thorn snails described from Georgia (USA), Belize and Panama

Although computer tomography (CT) is widely used in medicine, its application in micro snail identification is still at the pioneering stage.

However, Dr Adrienne Jochum from the Naturhistorisches Museum der Burgergemeinde Bern (NMBE), Switzerland and her interdisciplinary team of German and Swiss scientists (Dr. Alexander M. Weigand, University of Duisburg-Essen, Estee Bochud and Thomas Inäbnit, NMBE and the University of Bern, Dorian D. Dörge, Goethe University, Frankfurt, Dr. Bernhard Ruthensteiner, Zoologische Staatssammlung Muenchen, Dr. Adrien Favre, Leipzig University, Gunhild Martels and Dr. Marian Kampschulte, Justus-Liebig University Giessen) have recently applied it in their research, now published in the journal ZooKeys.

CT SCAN C. hardieiAs a result of their revolutionary approach, the scientists report three new thorn snail species – tiny, colourless and highly fragile creatures that measure less than 2 mm and belong to the genus Carychium.

Much like X-rays showing the degree of damage in broken bones, CT scans provide access to snail shells. Differences, such as the degree of sinuosity of the potato chip-like wedge (lamella), elegantly gliding along the spindle-like columella, become visible. These structures provide stability and surface area to exert muscular traction while manoeuvring the unwieldy shell into tight cavities. The alignment and degree of undulation of the lamella on the columella is also used by malacologists (mollusc specialists) to identify different thorn snail species.

Conventionally, examination of this signatory character requires cutting a hole in the shell with a fine needle under the microscope. This tedious method requires a much patience and dexterity and, all too often, the shell cracks open or disintegrates into dust under pressure. By exposing the delicate lamella to non-manipulative CT scans, Dr. Jochum and her team have found the best method to differentiate not only thorn snails but also many other micro creatures.

Together with G. Martels and Dr. M. Kampschulte, Dr. Jochum described new micro snails for the first time using CT in East Asian hypselostomatid snails in 2014. The first subterranean Asian relative of the thorn snails (Koreozospeum nodongense), was also described by Dr. Jochum thanks to CT scans in 2015.

The scientists studied and compared thorn snails collected from Mexico, Florida (USA) and Costa Rica.

Curiously, the new species Carychium hardiei was discovered by accident by Dr. Jochum en route to the Atlanta Airport during a rest stop in Georgia (USA). The snail is named after the American naturalist and field biologist Frank Hardie. Another species, Carychium belizeense, was found in the Bladen Nature Reserve in Belize and is named after its country of origin. The third, Carychium zarzaae from Panama, is named after Eugenia Zarza, collector of material for this study, including this species.

In total, there are fourteen species of thorn snails known in North and Central America. Their distribution ranges from as far north as northern Ontario, Canada through North America (including Bermuda and Jamaica) and south through Central America to Costa Rica. Thorn snails also live as far north as northern Sweden and as far south as sub-equatorial Java. Worldwide, this genus spans the Nearctic, Palearctic and Indomalayan biogeographic realms.

Thorn snails live in tropical and temperate forests, meadows and riparian zones, where they comprise the decomposer community in leaf litter of ecologically stable environments.

###

Original Source:

Jochum A, Weigand AM, Bochud E, Inäbnit T, Dörge DD, Ruthensteiner B, Favre A, Martels G, Kampschulte M (2017) Three new species of Carychium O.F. Müller, 1773 from the Southeastern USA, Belize and Panama are described using computer tomography (CT) (Eupulmonata, Ellobioidea, Carychiidae). ZooKeys 675: 97-127. https://doi.org/10.3897/zookeys.675.12453

Herpetologists describe an elf frog from the elfin forests in southern Vietnam

Deep in the foggy, moss-covered forests of Southern Vietnam, herpetologists uncovered one of the smallest species of horned mountain toads.

The name of the new amphibian (Ophryophryne elfina) derives from European mythology and translates to “elfish eyebrow toad”. Despite being recently discovered, the new species is already considered to be endangered. Having remained hidden in the highlands of Langbian Plateau, it is now described in the open access journal ZooKeys.

The unique species name “elfina” derives from the English word “elf”. In German and Celtic folklore, elves are described as small, supernatural creatures usually dwelling deep in the forests of magical hills. The frogs were named after them primarily because of their small size of around 3 cm, which makes them the smallest known species of the genus – as well as their fascinating appearance – they have small horn-like projections above their eyes.

The unique habitat of the amphibians also inspired their species name. The Elfin mountain toad lives in the highland wet subtropical evergreen forest. There it can only be found on mountain summits higher than 1800 m, or on the slopes of the eastern side of Langbian Plateau, where the rainfall is high because of the sea nearby. Both the rocks and the dwarf curbed trees are covered with a heavy layer of moss, whilst a thick misty fog is constantly lingering amongst the trees. This is why such wet mountain ecosystems are known as elfin forests.

The Elfin mountain toad is one of the three known species in the genus Ophryophryne that inhabit Langbian Plateau. Curiously, all three of them share the same habitat, but can be easily distinguished by their advertisement calls resembling whistling birds.

###

Original source:

Poyarkov Jr NA, Duong TV, Orlov NL, Gogoleva SS, Vassilieva AB, Nguyen LT, Nguyen VDH, Nguyen SN, Che J, Mahony S (2017) Molecular, morphological and acoustic assessment of the genus Ophryophryne (Anura, Megophryidae) from Langbian Plateau, southern Vietnam, with description of a new species. ZooKeys 672: 49-120. https://doi.org/10.3897/zookeys.672.10624

Dig it! Two new shrimp species found in burrows at the bottom of the Gulf of California

Although the Santa María-La Reforma lagoon complex in the Gulf of California is one of the most important areas for shrimp fishery, little is known about the crustacean species that live in the burrows dug in the bottom.

In addition to presenting two species new to science, researchers Drs. José Salgado-Barragán, Universidad Nacional Autónoma de México, Manuel Ayón-Parente and Pilar Zamora-Tavares, both affiliated with Universidad de Guadalajara, México collaborated to build on the knowledge of small shrimp species living there. The study is published in the open access journal ZooKeys.

Over the span of about two years – between 2013 and 2015, the scientists conducted series of surveys of the bottom-dwelling crustaceans in Bahía Santa María-La Reforma lagoon, located in the southwest Gulf of California. Following a thorough examination of the collected specimens, they recorded five shrimp species of three genera, inhabiting burrows dug into either mud, sand, or sandy-mud. Two of these species turned out to be previously unknown.

One of the new species is named Alpheus margaritae after Dr. Margarita Hermoso-Salazar, a caridean shrimp expert who helped the authors with the identification of the species. This new crustacean lives in the intertidal zone, where it hides in soft mud and gravel of shells and rocks. So far, it is known exclusively from the coastal lagoon Bahía Santa María-La Reforma, Sinaloa, Mexico. Among its characteristic traits are creamy-white colouration splashed with sparse olive green to light brown patches.

The second new species, Leptalpheus melendezensis, is reported to live in the fine sand of the beach. It is named after the Melendez island – the only locality the species has been identified from. Unlike the rest seven members of its genus (Leptalpheus), its major cheliped lacks adhesive disks.

###

Original source:

Salgado-Barragán J, Ayón-Parente M, Zamora-Tavares P (2017) New records and description of two new species of carideans shrimps from Bahía Santa María-La Reforma lagoon, Gulf of California, Mexico (Crustacea, Caridea, Alpheidae and Processidae). ZooKeys 671: 131-153. https://doi.org/10.3897/zookeys.671.9081

How bears bulk up ahead of the summer: A study into the Asiatic black bear’s spring diet

Much like gym enthusiasts, every year Asiatic black bears seem to be on the lookout for protein-rich food ahead of the summer, so that they can bulk up on lean muscle mass in place of the fat tissue formed last year prior to hibernation. This was concluded in a study by Dr. Shino Furusaka, Tokyo University of Agriculture and Technology and his team, based on direct observations on bears living across an area of about 60 km2 in Japan. The study is published in the open access journal ZooKeys.

In order to determine the bears’ food preferences and habits, the scientists followed a large number of animals in the Ashio area of the Ashio-Nikko Mountains in Japan from April to July in both 2013 and 2014. To avoid unnecessary intrusion, they stayed at a distance of at least 200 metres using video cameras with telescopic lenses to document the sightings. Having documented the plant species the bears consumed, the researchers studied their nutritional content and made conclusions about the nutrients needed for the species after hibernation.

While heavily dependent on food availability, generally the bears were noted to prefer food which is high in protein, but poor in fibre — likely because their stomachs and intestines were unable to efficiently digest the latter. Furthermore, the protein-rich diet ensures that the muscle mass is rebuilt to replace the lost winter fat.

Interestingly, the bears were observed to change their food preferences as spring progressed and that seemed to be linked to the shifts in the nutritional value of the available food.

Starting with their observations at the beginning of April, the scientists did not record any feeding behaviour until the end of the month. As leaf flush was yet to occur, the animals were active and feeding on overwintered grass. However, in early May, the bears began consuming newly emerged leaves, grass and, later in the month, they added flowers to their menu.

A shift in behaviour occurred in the following months. In June and July, the bears were seen to feed mainly on ants, with a small portion of their food intake consisting of grasses, sika deer carcasses and bees. Curiously, when the scientists looked into the nutritional content of the same plants which the animals sought only a few weeks ago, they found out that now they were significantly poorer in protein and richer in fibre.

Another finding showed that the calories in the different items were not related to the choice of food which likely proves that the key factor is none other than the amount of protein, provided that the fibre value is low enough for good digestibility.

Understanding the food preferences and habits of animals, as well as the reasons behind them, is essential for the development and revision of habitat management plans. However, previous knowledge of the feeding behaviour of Asiatic black bears has been based solely on faecal analyses which has not provided sufficient details on which nutritional factors influence the use of particular foods.

###

Original source:

Furusaka S, Kozakai C, Nemoto Y, Umemura Y, Naganuma T, Yamazaki K, Koike S (2017) The selection by the Asiatic black bear (Ursus thibetanus) of spring plant food items according to their nutritional values. ZooKeys 672: 121-133. https://doi.org/10.3897/zookeys.672.10078

The Radiohead ant: A new species of ‘silky’ ant grows fungus gardens for food

The ants of the genus Sericomyrmex – literally translated as ‘silky ants’ – belong to the fungus-farming ants, a group of ants that have figured out how to farm their own food. The silky ants are the less well-known relatives of the famous leaf-cutter ants – well-studied, photogenic model organisms that you simply cannot avoid if you take a trip to the Neotropics.

For their study, now published in ZooKeys, Ana Ješovnik and Ted R. Schultz from the Smithsonian Institution‘s Ant Lab in Washington, D.C., collected silky ants from across their entire range in Central and South America, and revised the genus based on DNA sequence data and morphology. In the end, they turned out to have discovered three new species.

One of those species, Sericomyrmex radioheadi, collected in the Venezuelan Amazon, was named after the famous British music band Radiohead.

Image3“We wanted to honor their music” one of the authors, Ana Ješovnik, says. “But more importantly, we wanted to acknowledge the conservation efforts of the band members, especially in raising climate-change awareness. ”

Using a scanning electron microscope, the authors found that the bodies of the ants are covered with a white, crystal-like layer. Curiously, this previously unknown layer is present in female ants (both workers and queens), but is entirely absent in males. Both the chemical composition and the function of this layer are unclear.

One possibility is that the layer is microbial in origin and that it has a role in protecting the ants and their gardens from parasites. This is interesting, because most of the fungus-farming ants cultivate antibiotic-producing bacteria on their bodies to protect their gardens from microbial weeds. In the meantime, in Sericomyrmex these bacteria are absent, yet their gardens are also parasite-free. Figuring out if this crystal-like layer has a role in protecting these ants’ fungus gardens might provide clues for managing diseases in human agriculture and medicine.

At only four million years, Sericomyrmex is an evolutionary youngster, the most recently evolved genus of fungus-farming ants, and an example of rapid radiation – comparable to other fast-evolving groups, such as the freshwater fishes in Africa, or the Hawaiian fruit flies.

Rapid radiation is a process in which organisms diversify quickly into a multitude of forms, making these ants good candidates for studies into speciation and evolution. In the present article, the authors acknowledge that some of the species they describe might, in fact, be multiple species that look alike, but because the ants are in the early stages of speciation, this is hard to detect.

###

Original source:

Ješovnik A, Schultz TR (2017) Revision of the fungus-farming ant genus Sericomyrmex Mayr(Hymenoptera, Formicidae, Myrmicinae). ZooKeys 670: 1-109. https://doi.org/10.3897/zookeys.670.11839