Plants cheat too: A new species of fungus-parasitizing orchid

Plants usually produce their own nutrients by using sun energy, but not all of them. A new ‘cheater’ species of orchid from Japan, lives off nutrients obtained via a special kind of symbiosis with fungi. The study was published in the open access journal PhytoKeys.

The new orchid species, named Lecanorchis tabugawaensis, is by far not on its own in its strange feeding habits. The so called mycoheterotrophic plants are found among all plant species groups.

Mycoheterotrophy is a term derived from Greek to describe the bizarre symbiotic relationship between some plants and fungi, where the plant gets nutrients parasitizing upon fungi, rather than using photosynthesis.

Considered a kind of a cheating relationship, these plants are sometimes informally referred to as “mycorrhizal cheaters”.

Having long attracted the curiosity of botanists and mycologists, a common feature of most mycoheterotrophic plants is their extreme scarcity and small size. In addition, most species are hiding in the dark understory of forests, only discoverable during the flowering and fruiting period when aboveground organs appear through the leaf litter.

%e3%82%bf%e3%83%96%e3%82%ac%e3%83%af%e3%83%a0%e3%83%a8%e3%82%a6%e3%83%a9%e3%83%b3008Despite it seems like these ‘cheating’ plants have it all easy for themselves, in reality they are highly dependent on the activities of both the fungi and the trees that sustain them. Such a strong dependency makes this fascinating plant group particularly sensitive to environmental destruction.

“Due to the sensitivity of mycoheterotrophic plants it has long been suggested that their species richness provides a useful indicator of the overall floral diversity of forest habitats. A detailed record of the distribution of these vulnerable plants therefore provides crucial data for the conservation of primary forests,” explains leading author Dr Kenji Suetsugu, Kobe University.

Just discovered, the new orchid species has been already assessed with an IUCN status – Critically Endangered. With a distribution restricted to only two locations along the Tabu and Onna Rivers, Yakushima Island, this fungus-eating cheater might need some conservation attention.

###

Original Source:

Suetsugu K, Fukunaga H (2016) Lecanorchis tabugawaensis (Orchidaceae, Vanilloideae), a new mycoheterotrophic plant from Yakushima Island, Japan. PhytoKeys 73: 125-135. doi: 10.3897/phytokeys.73.10019

Global change, ecosystem services and human well being: An assessment for Europe

Highly dependent on the different aspects of global change, variations in ecosystem services supply can also have direct impacts on human well being. A new article published in the open access journal One Ecosystem assesses the relationships between climate and land use change and ecosystem services supply in Europe, to pave the way on research connecting them to adaptation and human well being in a changing world.

Ecosystem services arise when ecological structures or functions contribute toward meeting a human demand. With global change impacting biodiversity and ecosystems properties, ecosystem services supply are also likely to be affected, consequently impacting various aspects of human well being.

In this context, assessing the possible bio-physical impacts of the ongoing and future changes in climate and land use becomes highly relevant for designing mitigation and adaptation policies.

While undergoing a comprehensive climate and land use impact assessment continues to be a demanding research challenge due to the large knowledge gaps, in their new paper, the team of scientists from the European Commission’s Joint Research Centre, Ispra, Italy and the Institute for Environmental Studies at the VU University Amsterdam, the Netherlands, present a first of its kind spatially explicit preliminary assessment of the changes in ecosystem services supply as a function of these global change drivers.

Carried out for the mainland of the 28 Member States of the European Union, the focus of this analysis is on regulating ecosystem services, due to their direct dependency on the proper functioning of ecosystems. Focusing on three regulating services: air quality regulation, soil erosion control, and water flow regulation, the new research presents an assessment of changes related to global change and their projected impacts, positive or negative, on human well being in the different European regions.

“Considering both land use projections and climate change scenarios in our research, in principle, enabled us to capture the main pressures acting on ecosystems and their services, thus enhancing the suitability of this approach to generate policy-relevant information,” explains the authors. “Yet, this study is only preliminary and a stepping stone for further research, needed not only to expand the analysis to other ES, but also to incorporate processes and scaling properties of the systems considered as they become available, and to account for spatial dependencies.”

###

Original Source:

Polce C, Maes J, Brander L, Cescatti A, Baranzelli C, Lavalle C, Zulian G (2016) Global change impacts on ecosystem services: a spatially explicit assessment for Europe. One Ecosystem 1: e9990. https://doi.org/10.3897/oneeco.1.e9990

The 5 Most Distinct Features of ARPHA

Authoring, Reviewing, Publishing, Hosting and Archiving, this is what stands behind the innovative and fully integrated journal publishing solution ARPHA. This end-to-end platform not only puts all stages of the publishing process in one place for the first time, but also allows users to choose from a full set of accompanying services.

But what makes it really stand out? Here are the five most distinct features which make ARPHA unique:

Feature 1
Two journal publishing workflows: ARPHA-XML & ARPHA-DOC

Aiming at flexibility, ARPHA gives a choice between two interconnected but independently functioning publishing workflows that journals and publishers can choose between or use in combination:

  • ARPHA-XML: Entirely XML- and Web-based collaborative authoring, peer review, production and publication workflow, made possible via the innovative ARPHA Writing Tool.
  • ARPHA-DOC: Document-based submission, peer review, production and publication workflow.

Not only do users have the freedom to choose what suits their needs best, but they also get the options to effortlessly upgrade to our XML, entirely web-based workflow at a later stage, due to the high integration and automatisation of processes within ARPHA.

picture1

Feature 2
No just a software platform, it comes with a full range of services to choose from

ARPHA is not just a software that you download! This highly integrated publishing solution offers its end-to-end platform, in combination with a full range of accompanying services that you can pick & mix to get a final product adjusted to your needs.

 

services

Feature 3
White-label publishing, all the benefits of ARPHA under your imprint

Developed and tested in-house by scientific publisher Pensoft, ARPHA now comes as a stand-alone brand and offers a completely white-label publishing option for journals and publishers. You can enjoy all the benefits of having ARPHA as the backbone of your journal or collection of journals, while at the same time continue publishing under your own imprint.

Moreover, switching to ARPHA guarantees you an upgrade of your visual identity by offering dedicated web-design and setup services for your new journal website or publishing platform. For example, having recently moved to ARPHA, the Lithuanian VGTU Press journal Business Theory and Practice enjoys a brand new, individually designed website. While the journal has the ARPHA Platform as its backbone, it remains a completely separate entity published on behalf of VGTU Press.

 

btp

Feature 4
High-level integration via web services & data exchange

ARPHA is fully integrated with all leading indexing and archiving services. Our partners include CrossRef, Zenodo, Open Ayre, PubMed Central and DOAJ, to name just a few.

The full automatisation of processes within ARPHA means that all content is directly exported upon publication and without any extra human effort. This means that publishers and Editors-in-Chief can sit back and relax after pressing the “publish-an-article button”, while ARPHA makes sure that all their content is safely archived and successfully disseminated.

partners

Feature 5
Flexibility at each step of tailoring your publishing model

One of the greatest assets of ARPHA is its flexibility, when it comes to tailoring the best service for each individual client. While deciding what suits their needs, publishers and Editors-in-Chief get to choose from a full range of options at each step of the publishing cycle.

Starting from the branding model and tailored web design, through input types, peer review options and publication outputs, and finishing with your preferred revenue model, ARPHA offers a number of possibilities at each step to let you customise a platform that works for your journals at an affordable price.

 

pub-models

 

ARPHA is a home to several flagship journals, such as Research Ideas and Outcomes (RIO) Journal (SPARC Innovation Award Winner for 2016), ZooKeys, Biodiversity Data Journal and others.You may also find some concise information about ARPHA in this flyer.

Would you be interested to set up a call for a brief demo? Please do not hesitate to contact us at info@arphahub.com if you wish to explore opportunities to use ARPHA as a new home for your journal!

Business: Theory and Practice journal moves to the ARPHA white label publishing platform

Vilnius Gediminas Technical University and Pensoft launch a new joint pilot project for the open access peer-reviewed journal BTP

In a new joint pilot project, the open access peer-reviewed journal Business: Theory and Practice (BTP), issued by VGTU Press since 2000, runs on the new journal publishing platform ARPHA, developed by Pensoft. ARPHA provides end-to-end technological solution for all peer-review stages starting from submission to fully functional dedicated new website. Publications are also available in semantically enriched HTML and XML formats, as well as the traditional PDF. The journal’s authors and editors enjoy easily manageable peer-review workflow in ARPHA.

Business: Theory and Practice publishes original research articles and reviews that integrate economic development and globalization, interpretations and consequences of entrepreneurship, strategic management and organizational behavior, theoretical questions and empirical questions of industrial organizations. It covers a variety of fields, including business environment, economic development and globalization, entrepreneurial finance, interpretations and consequences of entrepreneurship, strategic management, organizational behavior, theoretical questions and empirical questions of industrial organization, and case studies.

BTP has opted for the ARPHA-DOC publishing workflow, which provides an individually designed website under the imprint and logo of VGTU Press, a document-based article submission, as well as peer review, publication, hosting and dissemination. The manuscripts submitted to BTP will be subject to double-blind peer review.

“It is a great pleasure to work with the Pensoft team on establishing an innovative publishing platform for Business: Theory and Practice. I am sure the new platform will exceed the expectations of all – the authors, the editors and the readers,” says VGTU Press Director Eleonora Dagiene.

“Academic publishing is in a process of disruptive transition. As a result, small journal publishers and society journals are strongly affected and threatened with decline and even extinction. This is because access to high-level publishing technologies is not easy and, in most cases, not affordable. So, we developed ARPHA specially for them! ARPHA is not only an end-to-end journal publishing platform, covering the whole process from website design, authoring, editorial management and peer-review to publishing and dissemination – it also delivers a wide range of easily customizable end-to-end services, on the choice of the journal. I am glad to see Business: Theory and Practice published by VGTU Press as the first Lithuanian journal coming to the ARPHA platform and becoming a member of ARPHA’s growing family of international partners,” says Pensoft’s founder and CEO Prof. Lyubomir Penev.

The articles accepted for the current issue of 2016 in BTP, published via ARPHA, are already available on the journal’s new website.

ARPHA is open to journals looking for a technologically advanced publishing platform plus all associated services, which can be customized to the journal’s preferences.

LifeWatchGreece launches a Special Paper Collection for Greek biodiversity research

Developed in the 1990s and early 2000s, LifeWatch is one of the large-scale European Research Infrastructures (ESFRI) created to support biodiversity science and its developments. Its ultimate goal is to model Earth’s biodiversity based on large-scale data, to build a vast network of partners, and to liaise with other high-quality and viable research infrastructures (RI).

Being one of the founding LifeWatch member states, Greece has not only implemented LifeWatchGreece, but it is all set and ready to “fulfill the vision of the Greek LifeWatch RI and establish it as the biodiversity Centre of Excellence for South-eastern Europe”, according to the authors of the latest Biodiversity Data Journal‘s Editorial: Dr Christos Arvanitidis, Dr Eva Chatzinikolaou, Dr Vasilis Gerovasileiou, Emmanouela Panteri, Dr Nicolas Bailly, all affiliated with the Hellenic Centre for Marine Research (HCMR) and part of the LifeWatchGreece Core Team, together with Nikos Minadakis, Foundation for Research and Technology Hellas (FORTH), Alex Hardisty, Cardiff University, and Dr Wouter Los, University of Amsterdam.

lwg-presentationMaking use of the technologically advanced open access Biodiversity Data Journal and its Collections feature, the LifeWatchGreece team is publishing a vast collection of peer-reviewed scientific outputs, including software descriptions, data papers, taxonomic checklists and research articles, along with the accompanying datasets and supporting material. Their intention is to demonstrate the availability and applicability of the developed e-Services and Virtual Laboratories (vLabs) to both the scientific community, as well as the broader domain of biodiversity management.

The LifeWatchGreece Special Collection is now available in Biodiversity Data Journal, with a series of articles highlighting key contributions to the large-scale European LifeWatch RI. The Software Description papers explain the LifeWatchGreece Portal, where all the e-Services and the vLabs provided by LifeWatchGreece RI are hosted; the Data Services based on semantic web technologies, which provide detailed and specialized search paths to facilitate data mining; the R vLab which can be used for a series of statistical analyses in ecology, based on an integrated and optimized online R environment; and the Micro-CT vLab, which allows the online exploration, dissemination and interactive manipulation of micro-tomography datasets.

The LifeWatchGreece Special Collection also includes a series of taxonomic checklists (preliminary, updated and/or annotated); a series of data papers presenting historical and original datasets; and a selection of research articles reporting on the outcomes, methodologies and citizen science initiatives developed by collaborating research projects, which have shared human, hardware and software resources with LifeWatchGreece RI.

LifeWatchGreece relies on a multidisciplinary approach, involving several subsidiary initiatives; collaborations with Greek, European and World scientific communities; specialised staff, responsible for continuous updates and developments; and, of course, innovative online tools and already established IT infrastructure.

###

Original source:

Arvanitidis C, Chatzinikolaou E, Gerovasileiou V, Panteri E, Bailly N, Minadakis N, Hardisty A, Los W (2016) LifeWatchGreece: Construction and operation of the National Research Infrastructure (ESFRI). Biodiversity Data Journal 4: e10791. https://doi.org/10.3897/BDJ.4.e10791

Additional information:

This work has been supported by the LifeWatchGreece infrastructure (MIS 384676), funded by the Greek Government under the General Secretariat of Research and Technology (GSRT), ESFRI Projects, National Strategic Reference Framework (NSRF).

35 years of work: More than 1000 leaf-mining pygmy moths classified & catalogued

The leaf-mining pygmy moths (family Nepticulidae) and the white eyecap moths (family Opostegidae) are among the smallest moths in the world with a wingspan of just a few millimetres. Their caterpillars make characteristic patterns in leaves: leaf mines. For the first time, the evolutionary relationships of the more than 1000 species have been analysed on the basis of DNA, resulting in a new classification.

Today, a team of scientists, led by Dr Erik J. van Nieukerken and Dr. Camiel Doorenweerd, Naturalis Biodiversity Center, Leiden, The Netherlands, published three inter-linked scientific publications in the journal Systematic Entomology and the open access journal ZooKeys, together with two online databases, providing a catalogue with the names of all species involved.image-2

The evolutionary study, forming part of the PhD thesis of Doorenweerd, used DNA methods to show that the group is ancient and was already diverse in the early Cretaceous, ca. 100 million years ago, partly based on the occurrence of leaf mines in fossil leaves. The moths are all specialised on some species of flowering plants, also called angiosperms, and could therefore diversify when the angiosperms diversified and largely replaced ecologically other groups of plants in the Cretaceous. The study lead to the discovery of three new genera occurring in South and Central America, which are described in one of the two ZooKeys papers, stressing the peculiar character and vastly undescribed diversity of the Neotropic fauna.

Changing a classification requires a change in many species names, which prompted the authors to simultaneously publish a full catalogue of all 1072 valid species names that are known worldwide and the many synonymic names from the literature from the past 150 years.

Creating such a large and comprehensive overview became possible from the moths and leaf-mine collections of the world’s natural history museums, and culminates the past 35 years of research that van Nieukerken has spent on this group. However, a small, but not trivial, note in one of the publications indicates that we can expect at least another 1000 species of pygmy leafminer moths that are yet undiscovered.image-3

###

Original sources:

Doorenweerd C, Nieukerken EJ van, Hoare RJB (2016) Phylogeny, classification and divergence times of pygmy leafmining moths (Lepidoptera: Nepticulidae): the earliest lepidopteran radiation on Angiosperms? Systematic Entomology, Early View. doi: 10.1111/syen.1221.

Nieukerken EJ van, Doorenweerd C, Nishida K, Snyers C (2016) New taxa, including three new genera show uniqueness of Neotropical Nepticulidae (Lepidoptera). ZooKeys 628: 1-63. doi: 10.3897/zookeys.628.9805.

Nieukerken EJ van, Doorenweerd C, Hoare RJB, Davis DR (2016) Revised classification and catalogue of global Nepticulidae and Opostegidae (Lepidoptera: Nepticuloidea). ZooKeys 628: 65-246. doi: 10.3897/zookeys.628.9799.

Nieukerken EJ van (ed) (2016) Nepticulidae and Opostegidae of the world, version 2.0. Scratchpads, biodiversity online.

Nieukerken EJ van (ed) (2016). Nepticuloidea: Nepticulidae and Opostegidae of the World (Oct 2016 version). In: Species 2000 & ITIS Catalogue of Life, 31st October 2016 (Roskov Y., Abucay L., Orrell T., Nicolson D., Flann C., Bailly N., Kirk P., Bourgoin T., DeWalt R.E., Decock W., De Wever A., eds). Digital resource at http://www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858. http://www.catalogueoflife.org/col/details/database/id/172

Underwater mushrooms: Curious lake fungi under every turned over stone

While fungi are well known for being essential in cycling carbon and nutrients, there are only about 100,000 described species in contrast to the 1.5 to 3 millions, assumed to exist on Earth. Of these, barely 3000 fungi belong to aquatic habitats. In fact, freshwater fungi have been researched so little, it is only now that an international research team provide the first lake-wide fungal diversity estimate in the open access journal MycoKeys.

Over the spring and the early summer of 2010, a large team of scientists, led by Dr Christian Wurzbacher and Dr Norman Warthmann, affiliated with the Leibniz-Institute of Freshwater Ecology and Inland Fisheries and the Berlin Center for Genomics in Biodiversity Research, Germany (currently at University of Gothenburg, Sweden, and the Australian National University, Australia, respectively), collected a total of 216 samples from 54 locations, encompassing eight different habitats within Lake Stechlin in North-East Germany.image-1

Having recovered samples on three occasions over the course of the study, their aim was to test how habitat specificity affects the fungal community and whether fungal groups would reflect the availability of particulate organic matter as substrate. Unlike previous studies of aquatic fungi that compared water samples among different lakes or seasons, theirs would compare the diversity among habitats within a single lake. This included the study of fungi living in the water and the sediments, as well as fungi living on the surfaces of plants and other animals.

As a result, the scientists concluded that every type of habitat, i.e. sediments, biofilms, and submerged macrophytes (large aquatic plants), has a specific fungal community that varies more than initially expected. Of these, lake biofilms, representing a group of microorganisms, whose cells stick to each other, and cling together to a surface, turned out to be the hotspots for aquatic fungi.

“Our study provides the first estimate of lake-wide fungal diversity and highlights the important contribution of habitat heterogeneity to overall diversity and community composition,” the scientists summarise. “Habitat diversity should be considered in any sampling strategy aiming to assess the fungal diversity of a water body.”

###

Original source:

Wurzbacher C, Warthmann N, Bourne EC, Attermeyer K, Allgaier M, Powell JR, Detering H, Mbedi S, Grossart H-P, Monaghan MT (2016) High habitat-specificity in fungal communities in oligo-mesotrophic, temperate Lake Stechlin (North-East Germany). MycoKeys 16: 17-44. https://doi.org/10.3897/mycokeys.16.9646

Family of scaffold web spiders increased with ~20% following discovery of 43 new species

Recent study into spider specimens collected from across China, Indonesia, Philippines, Singapore, Thailand, Vietnam and Madagascar over the past 15 years, revealed the striking number of 43 scaffold web spiders that have stayed hidden from science until now. By describing the new species in a paper published in the open access journal ZooKeys, scientists from Sichuan University and the Chinese Academy of Sciences increase the number of a scaffold web spider family (Nesticidae), known from around the world, with about twenty percents.

The studied family of scaffold web spiders is a relatively small group of arachnids, which can be found at almost any locality, apart from Siberia, Central Asia, Northern and Southern Africa and places at high latitude. Prior to the study of Drs Yucheng Lin, Francesco Ballarin and Shuqiang Li, the species counted 245 in total, 12 of which are extinct and known from fossils only. A curious peculiarity in these spiders is their comb of serrated bristles, located on their rear legs, used to pull silk bands for their webs.

Although large-scale taxonomic surveys of scaffold web spiders have long remained scarce, recently the interest towards spider research in China and Southeast Asia has seen a significant rise. Thus, over the last 15 years, Chinese, American and European arachnologists have carried out several surveys, ending up with precious samples. As a result, Dr Yucheng Lin and his team followed with deeper morphological and molecular studies to discover remarkable diversity.

OLYMPUS DIGITAL CAMERA

In their work, the researchers have also established a new genus (Speleoticus) for five previously known, but misplaced species, which spend a lot of their time taking shelter in caves.

The majority of scaffold web spiders occur in temperate areas of the Holarctic realm, where the species tend to be medium-sized, long-legged, and prefer cave-like environments. The species found in the tropical and subtropical areas are, on the other hand, usually smaller, with shorter legs, and can be quite often spotted outside, where they crawl in forest litter, on grass, and under stones.

 

Original source:

Lin Y, Ballarin F, Li S (2016) A survey of the spider family Nesticidae (Arachnida, Araneae) in Asia and Madagascar, with the description of forty-three new species. ZooKeys 627: 1-168. https://doi.org/10.3897/zookeys.627.8629

New species of pea-size crab parasitizing a date mussel has a name of a Roman god

Tiny crabs, the size of a pea, dwell inside the mantles of various bivalves, living off the food filtered by their hosts. A new species of these curious crustaceans has recently been reported from the Solomon Islands, where an individual was found to parasitise a large date mussel.

Because of the new pea crab’s characteristic large additional plate, covering its upper carapace, giving it the illusion of having two faces, it has been named after Janus, the Roman two-faced god. Discoverers Dr Peter Ng, National University of Singapore, and Dr Christopher Meyer, U.S. National Museum of Natural History, Smithsonian Institution, have their findings published in the open access journal ZooKeys.

Being only the second species in the genus (the first was from Malaysia), the new pea crab Serenotheres janus can be distinguished by its broader carapace and other features. It is cream-yellow in colour.oo_106009

Both representatives of the genus are unique in having an additional large plate covering the upper side of the carapace. However, its purpose is still unknown. The two pea crabs are also the only known parasites of the rock-boring bivalves of the mytilid subfamily Lithophaginae.

###

Original source:

Ng PKL, Meyer C (2016) A new species of pea crab of the genus Serenotheres Ahyong & Ng, 2005 (Crustacea, Brachyura, Pinnotheridae) from the date mussel Leiosolenus Carpenter, 1857 (Mollusca, Bivalvia, Mytilidae, Lithophaginae) from the Solomon Islands. ZooKeys 623: 31-41. doi: 10.3897/zookeys.623.10272

New species of extremely leggy millipede discovered in a cave in California

Along with many spiders, pseudoscorpions, and flies discovered and catalogued by the cave explorers, a tiny threadlike millipede was found in the unexplored dark marble caves in Sequoia National Park.

The enigmatic millipede was sent to diplopodologists (scientists who specialize in the study of millipedes) Bill Shear and Paul Marek, who immediately recognized its significance as evolutionary cousin of the leggiest animal on the planet, Illacme plenipes. The new species may possess “only” 414 legs, compared to its relative’s 750, yet, it has a similar complement of bizarre anatomical features, including a body armed with 200 poison glands, silk-secreting hairs, and 4 penises. The study was published in the open access journal ZooKeys.image-3

This new millipede, named Illacme tobini after cave biologist Ben Tobin of the National Park Service, is described by its discoverer Jean Krejca, at Zara Environmental LLC, and millipede taxonomists Paul Marek at Virginia Tech and Bill Shear, Hampden-Sydney College.

“I never would have expected that a second species of the leggiest animal on the planet would be discovered in a cave 150 miles away,” says Paul Marek, Assistant Professor in the Entomology Department at Virginia Tech. It’s closest relative lives under giant sandstone boulders outside of San Juan Bautista, California.

In addition to the new millipede’s legginess, it also has bizarre-looking mouthparts of a mysterious function, four legs that are modified into penises, a body covered in long silk-secreting hairs, and paired nozzles on each of its over 100 segments that squirt a defense chemical of an unknown nature.

In conclusion, the authors note that by exploring our world and documenting the biodiversity of this planet we can prevent anonymous extinction, a process in which a species goes extinct before we know of its role in the ecosystem, potential benefit to humanity, or its beauty.

###

Original source:

Marek PE, Krejca JK, Shear WA (2016) A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). ZooKeys 626: 1-43. doi: 10.3897/zookeys.626.9681