We ask. We listen. We innovate!

During the last months of 2016, we asked our users about their experience with the ARPHA Platform and its inbuilt ARPHA Writing Tool (AWT) that backends journals like Research Ideas and Outcomes (RIO Journal), Biodiversity Data Journal, One Ecosystem, and others. We got some fantastic feedback and have since been busy implementing some of the suggested features, while also improving existing ones.

In the very beginning of the new 2017, we are now happy to introduce some major improvements and additions to our writing tool.

  • First of all, we’ve updated our article templates, allowing users to modify them or to create a manuscript structure that best fits your needs. Most article types now also include blank document templates to be used at authors convenience. In the existing pre-defined templates, one can edit/change the majority of the (sub-)section titles or simply erase these from the manuscript.

arpha blog 2

  • Meanwhile, some new templates have also been developed to broaden the article types that users can pick from, these including R Package, Monitoring Schema, Ecosystem Inventory, Ecosystem Service Models, Ecosystem Service Mapping, Species Conservation Profile, Alien Species Profile, and others.

arpha blog 3

  • To improve user experience, commenting has now become even more intuitive by simplifying the comments interface and introducing a commenting button that floats next to the selected-for-revision text. The comments can now be filtered by user, date, and status; anchoring comments to commented texts is improved to a much more intuitive and user-friendly interface than before.

blog photo 4

  • Last but certainly not least, a dedicated and highly concise Step-By-Step Site Tour will now also guide users through the main features of the writing tool the first time a manuscript is opened, both as author or reviewer.

photo 1

At Pensoft we strive to continuously innovate and improve our products and services, and the ARPHA Platform and Writing Tool are no exception. That’s why we’ll take the opportunity to also share our plans for future improvements within this blog post. Here is what we have in store for the months to come:

  • Improving import of references and creating reference lists.
  • Extending table import and editing tool with new functionalities.
  • Restoring in a new improved format of the Track/Change mode for reviewers and coauthors.
  • Simultaneous collaborative writing and editing.

While thanking everyone who has already provided feedback and helped in this mission, we also invite our users to test the new features let us know what they think. We welcome any further feedback and comments at: info@arphahub.com

Twenty-five frogs added to the amphibian fauna of Mount Oku, Cameroon

 

While amphibians all over the world are undergoing a continuous decline, their status in certain regions, such as Central Africa, remains unknown due to incomplete information. New paper, published by two scientists in the open access journal ZooKeys, addresses the knowledge gap by providing an updated list of already 50 amphibian species living on Mount Oku, Cameroon.

Scientists Dr Thomas M. Doherty-Bone, Royal Zoological Society of Scotland, and Dr Václav Gvoždík, affiliated with both the Czech Academy of Sciences and the National Museum in Prague, have spent more than 10 years studying the Cameroonian mountain. As a result of their thorough surveys, literature review, and re-examination of museum specimens, there are now 50 species known from the locality, which doubles previous numbers. In their newly published checklist the researchers have listed 49 species of frogs and toads, as well as one caecilian species – a limbless, snake-like amphibian.

However, the number of threatened species seems to increase quite proportionally. Many of the newly recorded frogs, for instance, appear to be extremely endangered, yet they have not been assessed by the International Union for Conservation of Nature (IUCN). Therefore, the authors have used the IUCN criteria to propose conservation assessments for them. If the suggested statuses are approved, together with the updated declines of previously abundant in the area species, the proportion of the threatened would rise to nearly half (48%) of the Mount Oku’s entire amphibian fauna. Meanwhile, it is 42% of amphibians at risk of extinction globally.

In their study, the scientists also review the research and conservation undertaken at the mountain so far, including the work they have initiated themselves. Although Mount Oku’s forest turned out to be the best managed among the rest in the region, threats such as forest loss, encroachment and degradation are still largely present and increasing. Additional threats, including use of agrochemicals, climate change and diseases, have also been identified. However, conservation actions for the amphibians of Mount Oku are on the rise, considering both the population and the ecosystem-level perspectives.

“Our paper provides a foundation for continuously improving amphibian conservation at Mount Oku, as well as other mountains in Cameroon,” conclude the authors.   

 

Original source:

Doherty-Bone TM, Gvoždík V (2017) The Amphibians of Mount Oku, Cameroon: an updated species inventory and conservation review. ZooKeys 643: 19-139. https://doi.org/10.3897/zookeys.643.9422

New species of ground beetle described from a 147-year-old specimen

While new species are most commonly described based on recent field collections, undertaken at poorly explored places, some are identified in museum collections, where they have spent decades before being recognised as new to science. Such is the case of an unusually large and likely extinct ground beetle found at the Muséum national d’Histoire naturelle, Paris, whose story began in the distant 1860s with Dr. Eduard Graeffe’s trip to Samoa. Now, a century and a half later, the beetle is finally described by Dr. James K. Liebherr, Cornell University, USA, in the open access journal Zoosystematics and Evolution.

Much like the rest of the species within the genus, the beetle now going under the name Bryanites graeffi showed vestigial flight wings and other traits associated with flight-wing loss. However, at length of 16.2 mm it is the largest for the taxonomic group it is now assigned to. Although this may seem way too obvious for taxonomists to overlook, the beetle’s relatives are just as obscure. The Bryanites genus was previously known from two species represented by two specimens only, collected in 1924 from Savai?i Island by Edwin H. Bryan, Jr., Bernice P. Bishop Museum in Honolulu, during the Bishop Museum’s Whitney South Seas Expedition.

As a result, we now have three species representing an evolutionary radiation in Samoa, all known from single specimens collected long ago. The phylogenetics of these three species link them to other groups from Fiji and New Zealand.

What is the advantage of knowledge about species that existed some 90-150 years ago, but no longer? It might actually point us to the actual level of impact mankind has on natural ecosystems. The cause of the likely extermination of Bryanites graeffi might never be known with certainty, however, the colonization of many Pacific islands by the Polynesian rat has always been followed by the diminution or elimination of native insect species. Thus, we can add another likely victim to the list of species that have been adversely impacted by mankind’s commensal voyagers.

The species bears the name of its original collector to pay tribute to Dr. Graeffe and his hard work while collecting insects in the rain forest of Samoa well over a century ago .

###

Original source:

Liebherr JK (2017) Bryanites graeffii sp. n. (Coleoptera, Carabidae): museum rediscovery of a relict species from Samoa. Zoosystematics and Evolution 93(1): 1-11. https://doi.org/10.3897/zse.93.10802

Hidden diversity: 3 new species of land flatworms from the Brazilian Araucaria forest

A huge invertebrate diversity is hidden on the forest floor in areas of the Araucaria moist forest, Brazil. Land flatworms constitute a numerous group among these invertebrates occurring in the Neotropical region. Flatworms are considered to be top predators within the soil ecosystem, preying on other invertebrates.

fig_1_c_aureomaculataThe Araucaria moist forest is part of the Brazilian Atlantic Rain Forest and is considered a hotspot of land flatworm diversity, harboring many yet undescribed species. Study recently published in the open access journal ZooKeys describes three new species from areas covered by Araucaria moist forest in South Brazil, which belong to the Neotropical genus Cratera.

Land flatworms lack a water retention mechanism and have a low tolerance to intense changes in temperature and humidity. Their low vagility leads to the existence of a high number of endemic species. Thus, they are considered good bioindicators of the degree of impact on their habitat.

The new species are named after characteristics of their color pattern and are probably endemic for the study areas. Besides differing from each other, as well as from other species of the genus, by their characteristic color pattern, they also show other distinguishing features in the reproductive system. The study provides an identification key to the species of the genus.

The work was conducted by the south Brazilian research group on triclads, led by Dr. Ana Leal-Zanchet, of the Universidade do Vale do Rio dos Sinos (UNISINOS), in southern Brazil. The study was supported by the Brazilian Research Council (CNPq).fig_2_c_nigrimarginata

###

Original source:

Rossi, I, Leal-Zanchet, A. (2017) Three new species of Cratera Carbayo et al., 2013 from Araucaria forests with a key to species of the genus (Platyhelminthes, Continenticola). ZooKeys 643 (2017): 1-32. doi: 10.3897/zookeys.643.11093

New plant named to honor the peace-making efforts of the Colombian President

Named to honour the peace-making efforts of the Colombian President Juan Manuel Santos, recently awarded with the Nobel Peace Prize, a new species of the sunflower family genus Espeletia is described from the Páramo de Presidente. The study was published in the open access journal PhytoKeys.

Located 28 km south from the closest city Chitagá, the Colombian Páramo de Presidente has been considered unsafe for decades due to the country’s turbulent history. Like in many dangerous areas around Colombia, the flora of this páramo has not been studied well yet.

Closed to researchers for decades, the peace agreement opened this and other places for fruitful botanical explorations during the post-conflict times in Colombia. The new species was collected during an expedition of the authors in 2009, in which they met with left-wing armed members.

img_5013“Thanks to the President of Colombia, Juan Manuel Santos Calderón, and his persistent efforts to achieve peace with the guerillas FARC in Colombia, after 52 years of conflict, we are now able to explore previously unreachable areas,” comments the lead author, Mauricio Diazgranados, research leader at Kew Gardens, Ardingly, UK.

“Naming our species to honour his peace efforts, we hope that this publication will further inspire the President to continue with more actions for the preservation of Colombian biodiversity.”

The new species is endemic to Colombia and is only known from the Páramo de Presidente, at elevations of 3400-3600 m. Although a large population of several hundreds of individuals growing in the grasslands of the páramo was observed, this particular area is not under any sort of protection, and there are signs of grazing activity. In addition, the proximity of extensive potato plantations suggests that the species is probably Critically Endangered.

###

Original Source:

Diazgranados M, Sánchez LR (2017) Espeletia praesidentis, a new species of Espeletiinae (Millerieae, Asteraceae) from northeastern Colombia. PhytoKeys 76: 1-12. https://doi.org/10.3897/phytokeys.76.11220

A colorful yet little known snout moth genus from China with 5 new species

A group of beautiful snout moths from China was revised by three scientists from the Institute of Zoology at the Chinese Academy of Sciences.

In their study, recently published in the open access journal Zookeys, entomologists Dr. Mingqiang Wang, Dr. Fuqiang Chen and Prof. Chunsheng Wu describe five new species and two newly recorded for the country.

Despite being morphologically interesting, the snout moth genus Lista remains little known. Usually, its members have bright-coloured wings, often pink, orange, or yellow, which makes them strikingly different from the rest in their subfamily (Epipaschiinae). In fact, it is because of the beautiful coloration that these moths are sometimes favourably compared to butterflies. However, these moths are indifferentiable from one another on the outside.

image-1As a result of the present study, there are now ten species of Lista snout moths known from China, with their world fauna amounting to thirteen. Mostly distributed in the south the East-Asian country, the genus likely originates from there.

###

Original source:

Wang M, Chen F, Wu C (2017) A review of Lista Walker, 1859 in China, with descriptions of five new species (Lepidoptera, Pyralidae, Epipaschiinae). ZooKeys 642: 97-113. 10.3897/zookeys.642.7157

Long-distance survival: Effects of storage time and environmental exposure on soil bugs

Contaminated soil frequently arrives at the borders through transported items, and is widely recognised as a vector for non-native species, potentially threatening the local agriculture, horticulture and natural ecosystems. However, although soil is the target of management practices that aim to minimise the spread of invasive alien species, crucial knowledge of the biosecurity hazards that can accompany transported soil is currently lacking. While not much is known about the relative survival rates of the transported soil organisms, nor about their establishment probabilities, this information is essential to support optimal policy and management decisions.

soil-trays-on-top-of-research-sea-containersA recent study, led by Mark McNeill from AgResearch’s Biosecurity and Biocontrol team at Lincoln, New Zealand, and published in the open access journal NeoBiota, shows that biosecurity risks from soil organisms are to increase with declining transport duration and increasing protection from environmental extremes. The scientists sought the answer of a simple question – are soil organisms still risky after a year in the sun?

To find out, Mark and his team collected soil from both a native forest and an orchard and stored it on, in and under sea containers, as well as in cupboards. They tested it after three, six and twelve months for bacteria, fungi, nematodes and seeds.

“Soil can carry unwanted microbes, insects and plants, and this study showed that some died faster when exposed, than when protected in a cupboard. This work shows some of the risks presented by soil contamination,” Mark says.

“The results showed that viability of certain bacteria, nematodes and plants declined over 12 months, irrespective of soil source and where the soil was stored. But mortality of most organisms was higher when exposed to sunlight, moisture and desiccation than when protected,” he explains. “However, bacterial and fungal numbers were higher in exposed environments, possibly due to ongoing colonisation of exposed soil by airborne propagules.”

“The results were consistent with previous observations that organisms in soil intercepted from seaports tend to carry less bugs than soil found on footwear,” McNeill notes.

img-1-real-world_contaminated-footwear-2“The research also raised wider questions, because some results were unexpected, including trying to understand why the microbe numbers went up and down like they did in the soil sitting on the sea containers when everything else died off. Was it the circle of life or just new microbe migrants creating new populations?

“We hope that the work will be useful for plant quarantine authorities to assess the risk presented by transported soil based partly on where the soil is found and the age of the soil. This would help authorities to optimally allocate management resources according to pathway-specific risks. Importantly, the study will assist in the development of recommendations for increasing management efficiency and efficacy at national borders.”

###

 

Original source:

McNeill MR, Phillips CB, Robinson AP, Aalders L, Richards N, Young S, Dowsett C, James T, Bell N (2017) Defining the biosecurity risk posed by transported soil: Effects of storage time and environmental exposure on survival of soil biota. NeoBiota 32: 65-88. https://doi.org/10.3897/neobiota.32.9784

It’s a girl! Tweaking the names of a pest fanworm group

The largest group of fanworm species with rigid chalky (calcareous) tubes belong to the Hydroides genus, and are easily recognised thanks to the shape of their beautifully ornate tube plugs. Hydroides is economically important as its members have the potential to cover immersed marine structures with massive nuisance settlements of chalky biofouling. The best-known example is Hydroides elegans, which settles on boat hulls so readily that colonies of it are perpetually in transit around the world, hitch-hiking to new places.

Latin names of animals mostly do not change over the decades because they are kept stable by a code book of naming rules. However, a mistake has recently been discovered regarding Hydroides. It turns out that it is a feminine genus rather than masculine, thus requiring each of the 107 Hydroides species names, described since 1768, to be re-examined so that the appropriate spelling, determined by the derivation of each name, can be used consistently by all biologists in future.

Scientists Geoffrey Read, National Institute of Water and Atmospheric Research, New Zealand, Harry ten Hove, Naturalis Biodiversity Center, the Netherlands, Yanan Sun and Elena Kupriyanova, Australian Museum, have carefully compiled the data on original Hydroides names, and published a checklist paper in the open access journal ZooKeys.

‘Detective’ work has often been required to get the details, as early biologists have been remarkably vague about the names they created and where their worms had come from. Fortunately, the Biodiversity Heritage Library has digitised many of the legacy taxonomic works required and it was possible to find out some unexpected information such as that species H. floridana actually did not come from Florida, although its name suggests it did.

three_hydroidesminaxSome Hydroides names have a descriptive basis that fits how the worms look, such as H. bulbosa, H. elegantula and H. longispinosa, others are named after people or places, for example, H. dafnii (after its collector, Yaacob Dafni) and H. sanctaecrucis (after Saint Croix Island). Yet, there are others, whose names are of quite tricky origin. It turns out that H. dianthus was actually named after a group of popular garden flowers, and H. euplaeana and H. stoichadon commemorate the long-forgotten names of tiny Mediterranean islands.

A few 19th century Hydroides descriptions are so bad that taxonomists have given up on using the names. However, one of these discarded names was revived last century by American biologists and was then used in often-cited research on sperm biology. Now, we can only guess what the actual species was.

Hydroides itself is a very old name, but it arose in a somewhat accidental and misleading way (in a letter to Linnaeus), because the worms have absolutely no connection to true hydroids, the well-known group of colonial animals related to corals.

The Hydroides species original descriptions are mostly accessible via the checklist because one third of the reports cited in the checklist are linked to the open access Biodiversity Heritage Library, and a large proportion are matched to an online source. While in the past one could only expect to find recorded the geolocations (the latitudes and longitudes) of worms collected during ship voyages, now the original localities of all the Hydroides are finally mapped. Further information on the taxonomy of all Hydroides, including many now regarded as synonyms, is available via links to the World Register of Marine Species Polychaeta web pages.

###

Original source:

Read GB, ten Hove HA, Yanan Sun Y, Kupriyanova EK (2017) Hydroides Gunnerus, 1768 (Annelida, Serpulidae) is feminine: a nomenclatural checklist of updated names. ZooKeys 642: 1-52. https://doi.org/10.3897/zookeys.642.10443

Biodiversity project in Azores delivers detailed abundance data for 286 arthropod species

In 1999, a long-term biodiversity project started at the Azores Islands (Portugal, Atlantic Ocean), the Biodiversity of Arthropods from the Laurisilva of the Azores (BALA) project (1999-2004). Its aim was to obtain detailed distributional and abundance data for a large fraction of arthropod fauna, living in all remaining native forests at seven of the Azores Islands.

After the first successful sampling of 100 sites at 18 native forest fragments over those five years, a second survey was accomplished in 2010-2011, where two sites per fragment were re-sampled. Now, Dr Paulo A.V. Borges and colleagues publish the complete list of the 286 species identified, including many species described as new to science in the open access journal Biodiversity Data Journal. They have also added detailed information on their distribution and abundance.

The resulting database has inspired the publication of many studies in the last ten years, including macroecological studies evaluating the abundance, spatial variance and occupancy of arthropods, the effects of disturbance and biotic integrity of the native forests on arthropod assemblages and the performance of species richness estimators.

image-2Moreover, these data allowed the ranking of conservation priorities for the fauna of the Azores, and allowed the estimation of extinction debt (the species likely to be wiped out because of past events) in the Azores. The present study has also inspired the development of the Azorean Biodiversity Portal and the Azores Island Lab.

The study stresses the need to expand the approaches applied in these projects to other habitats in the Azores, and, more importantly, to other less thoroughly surveyed taxonomic groups (e.g. Diptera and Hymenoptera).

“These steps are fundamental for getting a more accurate assessment of the biodiversity in the Azores archipelago, and we hope that can inspire similar biodiversity surveys at other islands,” say the authors.

###

Original source:

Borges P, Gaspar C, Crespo L, Rigal F, Cardoso P, Pereira F, Rego C, Amorim I, Melo C, Aguiar C, André G, Mendonça E, Ribeiro S, Hortal J, Santos A, Barcelos L, Enghoff H, Mahnert V, Pita M, Ribes J, Baz A, Sousa A, Vieira V, Wunderlich J, Parmakelis A, Whittaker R, Quartau J, Serrano A, Triantis K (2016) New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests. Biodiversity Data Journal 4: e10948. https://doi.org/10.3897/BDJ.4.e10948

Hawaii’s newest species named in honor of President Obama

The new species is the only coral-reef fish that lives exclusively within the marine protected area, which was recently expanded by the President

Scientists from the Bishop Museum, NOAA, and the Association for Marine Exploration published the description of a new species of coral-reef fish that they named in honor of President Barack Obama. The fish, which now bears the formal scientific name Tosanoides obama, was discovered during a June 2016 NOAA expedition to Papahānaumokuākea Marine National Monument in the remote Northwestern Hawaiian Islands. The study is published in the open-access scientific journal ZooKeys.

“We decided to name this fish after President Obama to recognize his efforts to protect and preserve the natural environment, including the expansion of Papahānaumokuākea,” said Richard Pyle, Bishop Museum scientist and lead author of the study. “This expansion adds a layer of protection to one of the last great wilderness areas on Earth.” The Museum is currently showcasing the exhibit Journeys: Heritage of the Northwestern Hawaiian Islands, featuring the Northwestern Hawaiian Islands and the Monument.

figure04On August 26 of this year, at the urging of Sen. Brian Schatz (D-Hawaii), conservationists, and many marine scientists, President Obama expanded Papahānaumokuākea Marine National Monument. At 582,578 square miles, it is the largest permanent marine protected area on Earth. On September 1, during his trip to Midway Atoll within the Monument, legendary scientist, conservationist and deep ocean explorer Dr. Sylvia Earle gave the President a photograph of the fish that now bears his name. The exchange will be featured in the National Geographic global broadcast special, “Sea Of Hope” scheduled to be released on January 15, 2017.

The small pink and yellow fish is a kind of basslet, a group that includes many colorful reef fishes popular in the marine aquarium fish trade. There are two other species in the genus Tosanoides, both from the tropical northwestern Pacific Ocean. Males of the new species have a distinctive spot on the dorsal fin near the tail, which is blue around the edge and red with yellow stripes in the center. “The spot on the males is reminiscent of President Obama’s campaign logo,” said Pyle. “It seemed especially appropriate for a fish named in honor of the president.”

“The new fish is special because it is the only known species of coral-reef fish endemic to the Monument (meaning that the species is found nowhere else on Earth). Our research has documented the highest rate of fish endemism in the world — 100% — living on the deep reefs where we found this new species,” said NOAA scientist Randall Kosaki, chief scientist of the research cruise, and co-author on the paper. However, unlike all the other Hawaiian endemic species, which also occur in the main Hawaiian Islands, this new species is special because it is the only one that is limited to within the Monument itself. “Endemic species are unique contributions to global biodiversity,” Kosaki added. “With the onslaught of climate change, we are at risk of losing some of these undiscovered species before we even know they exist.”

The new fish was first discovered and collected on a dive to 300 feet at Kure Atoll, 1200 miles northwest of Honolulu. Kure is the northernmost of the Hawaiian Islands, and is the highest latitude coral atoll in the world. Deep coral reefs at depths of 150 to 500 feet, in the so-called “Twilight Zone” (also known as mesophotic coral ecosystems), are among the most poorly explored of all marine ecosystems. Located deeper than divers using conventional scuba gear can safely venture, these reefs represent a new frontier for coral-reef research. Pyle and co-authors Brian Greene and Randall Kosaki pioneered the use of advanced mixed-gas diving systems known as closed-circuit rebreathers for Twilight Zone research, and have been documenting the previously unexplored deep reefs throughout Hawai’i and the broader Pacific for the past three decades.

“These deep coral reefs are home to an incredible diversity of fishes, corals, and other marine invertebrates,” said Brian Greene, an experienced deep diver and researcher with the Association for Marine Exploration, and co-author of the paper. “There are many new species still waiting to be discovered down there.”

This is the second new species of fish from Papahānaumokuākea named this year. In August, Pyle and Kosaki published the description of a new species of butterflyfish (Prognathodes basabei) based on specimens collected on deep reefs at Pearl and Hermes Atoll earlier this year. President Obama also has several species from other locales named after him: a trapdoor spider, a speckled freshwater darter (fish), a parasitic hairworm, and an extinct lizard.

###

 

Original source:

Citation: Pyle RL, Greene RD, Kosaki RK (2016) Tosanoides obama, a new basslet (Perciformes, Percoidei, Serranidae) from deep coral reefs in the Northwestern Hawaiian Islands. ZooKeys 641: 165-181. https://doi.org/10.3897/zookeys.641.11500