End of an era: New sixth volume Research on Chrysomelidae the last with its original editors

The new and sixth volume of Research on Chrysomelidae consists of five research articles devoted to the latest findings about the amazing family of over 37,000 leaf beetle species from more than 2,500 genera. Among the studies, conducted by authors from all around the world, there is a new species of potentially dangerous legume-feeding pest, as well as new information regarding the life cycle,ecological interactions, species richness factors and taxonomy of some leaf beetles.

The latest volume devoted to one of the most intriguing beetle families also marks a turning point for the entomologists sharing special fondness for the leaf beetles. While the “spiritus rector” of the Chrysomelidae research community, Prof Pierre Jolivet resigned from his position last year, now Dr Jorge Santiago-Blay is also stepping down from the editorial board.

The third of the original trio, Prof Michael Schmitt, Ernst-Moritz-Arndt-Universität, takes the opportunity to look back to the beginning of the community and pay tribute to his long-year colleagues in his Editorial. He also confirms that the series, by now traditionally published in the open access journal ZooKeys, is far from over.

“I thank Jorge Santiago-Blay from the bottom of my heart for his tireless engagement in fostering leaf beetle research and his friendship, and wish him All the Best for whatever he may entertain in the future,” read his words.

In his short publication accompanying the five-piece issue, Prof Michael Schmitt recalls the very beginning of his team’s existence, started in 2001. He does not omit to note the numerous obstacles surrounding the first issues. At a point, having completed the enormous book “The green book – New Developments in the Biology of the Chrysomelidae”, comprising 62 chapters by 111 authors, as well as the first two volumes of Research on Chrysomelidae, they were made to drop the series due to unsatisfying selling numbers.

However, everything changed after the conversation Prof Pierre Jolivet and Prof Lyubomir Penev, Pensoft Publishers, had at the 9th European Congress of Entomology, held in Hungary in 2010. There they agreed to publish the next Research on Chrysomelidae volume as a special issue in ZooKeys, one of Pensoft’s journals.

Shortly after, the collaboration turned out so successful that it is now resulting in a fourth consecutive special issue. In the meantime, last December, the 30th anniversary of Symposia on Chysomelidae was celebrated in another leaf beetle-themed ZooKeys issue. Moreover, the next issue is already planned. It will cover the proceedings of the 9th International Symposium on Chrysomelidae and will be edited by Prof Michael Schmitt and Dr Caroline Chaboo, University of Nebraska State Museum, USA.

“The present volume is the fourth, but certainly not the last, published by Pensoft. Although the pullout of Pierre Jolivet and Jorge Santiago-Blay marks a crucial cut in the history of Research on Chrysomelidae, I understand the reasons of their decision to step down,” concludes Prof Michael Schmitt. “I hope and wish that the series will prosper and remain accepted as a forum of leaf beetle research by the community of Chrysomelidae enthusiasts all over the world.”

###

Research on Chrysomelidae 6 Special Issue is available to read and order from here.

Original source:

Schmitt M (2016) Editorial. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 1-2. doi: 10.3897/zookeys.597.8618

The first long-horned beetle giving birth to live young discovered in Borneo

A remarkably high diversity of the wingless long-horned beetles in the mountains of northern Borneo is reported by three Czech researchers from the Palacký University, Olomouc, Czech Republic. Apart from the genera and species new to science, the entomologists report the first case of reproduction by live birth in this rarely collected group of beetles. The study was published in the open access journal ZooKeys.

Generally, insects are oviparous, which means that their females lay eggs and the embryonic development occurs outside the female’s body. On the other hand, ovoviviparous species retain their eggs in their genital tracts until the larvae are ready to hatch. Such mode of reproduction is a relatively rare phenomenon in insects and even rarer within beetles, where it has been reported for a few unrelated families only.

The long-horned beetles are a family, called Cerambycidae, comprising about 35,000 known species and forming one of the largest beetle groups.

“We studied the diversity of the rarely collected wingless long-horned beetles from Borneo, which is one of the major biodiversity hotspots in the world,” says main author and PhD student Radim Gabriš. “The mountains of northern Borneo, in particular, host a large number of endemic organisms.”

The scientists focused on the group which nobody had studied in detail for more than 60 years. They found surprisingly high morphological diversity in this lineage, which resulted in the descriptions of three genera and four species new to science.

“During a dissection of female genitalia in specimens belonging to the one of the newly described genera, named Borneostyrax, we found out that two females contained large larvae inside their bodies,” recalls Radim Gabriš. “This phenomenon have been known in a few lineages of the related leaf beetles, but this is the first case for the long-horned beetles.”

However, according to the authors, the modes of reproduction remain unknown for many beetle lineages besides Cerambycidae, so the ovoviviparity might be, in fact, much more common. Further detailed studies are needed for better understanding of the reproductive strategy in this group.

###

Original source:

Gabriš R, Kundrata R, Trnka F (2016) Review of Dolichostyrax Aurivillius (Cerambycidae,Lamiinae) in Borneo, with descriptions of three new genera and the first case of (ovo)viviparity in the long-horned beetles. ZooKeys 587: 49-75. doi: 10.3897/zookeys.587.7961

Flightless survivors: Incredible invertebrate diversity in Los Angeles metropolitan area

Urban wildlife is surprisingly understudied. We tend to know more about animals in exotic places than about those that live in our cities.

This is why researchers Emile Fiesler, president of Bioveyda Biological Inventories, Surveys, and Biodiversity Assessments, USA, and Tracy Drake, manager of the Madrona Marsh Preserve, looked into the fauna of the Madrona Marsh Preserve, California, a small nature preserve in one of the world’s largest metropolitan areas.

Consequently, they published the astonishing number of 689 species of invertebrates, which have managed to survive decades of farming and oil exploration, followed by development pressures, in the open access Biodiversity Data Journal. The study was minimally invasive as the live animals have been recorded with macro-photography.

Even though it is the insects that first developed the ability to fly, long before the dinosaurs became birds, the latter have always received the most of our attention. This major evolutionary breakthrough, which has occurred more than once in the past, is also a reason why insects are currently the most diverse animals on earth in terms of number of species.

“Insects and other invertebrates have filled all ecological niches and all corners of our planet,” explain the authors. “No surprise that these small creatures conquered our cities and invaded our homes as well.”

Most of the urban dwellers, however, have been introduced – accidentally or deliberately – by humans.

“The remainder – native ‘wild’ species – are able to survive in the city mainly due to their adaptivity,” they point out. “It is therefore surprising to find a number of flightless species in a small area surrounded by urbanization.”

The Madrona Marsh Preserve is located in Torrance, which is part of the Los Angeles metropolitan area. The greater Los Angeles Metropolitan area is one of the world’s largest, with a human population of more than 17 million.

Figure 2 = Bradynobaenid Wasp Fiesler-2016The Madrona Marsh Preserve, boasting seasonal wetlands, is well known as a birdwatchers’ paradise. Besides birds, its other vertebrates (mammals, reptiles, amphibians, and fishes), as well as its flowering plants, are relatively well known. The invertebrate fauna of the Preserve, on the other hand, aside from butterflies and dragonflies, was virtually unknown.

Interestingly, night surveys revealed the presence of a ‘second shift’ diversity, or creatures seemingly complementary to those active during the day.

Among the long-time survivors are wingless camel crickets as well as velvet ants, which are wasps whose flightless females look like furry ants. Another curiosity that intrigued the researchers is an obscure flightless female bradynobaenid wasp.

The researchers were especially surprised by their encounter with a large Solifugid [image 3] – also known as Camel Spider or Wind Scorpion. Solifugids are little-known arachnids that are neither spiders, nor scorpions, and can grow up to 15 cm (6 in). Their order’s name Solifugae translates from Latin as “those that flee from the sun”.Figure 3 = Solifugid Fiesler-2016

All in all, the biodiversity study resulted in 689 species without a backbone, belonging to 13 classes, 39 orders, and 222 families, found on this island surrounded by urbanization.

“Not unlike the moas and dodos, these ‘island’ inhabitants stayed grounded through the ages,” acknowledge the researchers.

###

Original source:

Fiesler E, Drake T (2016) Macro-invertebrate Biodiversity of a Coastal Prairie with Vernal Pool Habitat. Biodiversity Data Journal 4: e6732. doi: 10.3897/BDJ.4.e6732

 

About the authors:

Emile Fiesler is president of Bioveyda Biodiversity Inventories, Surveys, and Studies, and Tracy Drake is manager of the Madrona Marsh Preserve.

Tracing the ancestry of dung beetles

One of the largest and most important groups of dung beetles in the world evolved from a single common ancestor and relationships among the various lineages are now known, according to new research by an entomologist from Western Kentucky University.

The study by Dr T. Keith Philips, recently published in the open access journal ZooKeys, provides important insights into the evolution and diversity of these dung beetles, which make up about half of the world’s dung beetle fauna.

The two tribes studied, the onthophagines and oniticellines, evolved from a single common ancestor and are found worldwide, except for Antarctica. These dung beetles make up the vast majority of species and dung beetle biomass in many ecosystems, feeding on mammal dung.

Dung beetles are well known to many people because many species are colorful and active in the daytime. Additionally, many taxa have unusual behaviors, such as making and rolling balls of dung away from a dung pile. Often thought of as nature’s garbage collectors, the important ecosystem service offered by dung beetle helps recycle nutrients, reduces parasites, and can even help seeds germinate.

While the two tribes studied do not have species that create balls, they instead have evolved many other diverse behaviors. This includes species that do not feed on dung but specialize on fungi, carrion, and dead millipedes. Many species that evolved from the same common ancestor even live in close association with termites and ants, where they might be feeding on nest debris.

“This is one of the most important groups of dung beetles that finally has a hypothesis on how they evolved and diversified on earth,” Philips notes. “The evolutionary scenario can now be tested and refined in the future with more data.” Although relatively well known, this group still may have as many as 1,000 undiscovered species left for scientists to document.

###

Original source:

Philips TK (2016) Phylogeny of the Oniticellini and Onthophagini dung beetles (Scarabaeidae, Scarabaeinae) from morphological evidence. ZooKeys 579: 9-57. doi: 10.3897/zookeys.579.6183.

Rediscovering an interesting group of ant-loving beetles

Case-bearer leaf beetles, scientifically called Cryptocephalinae, live a secretive life.

While the adults hide their heads inside their torso, like a cloaked, mysterious figure, their eggs stay hidden inside a case, carefully constructed by their mothers, using fecal pellets. Having already hatched, the larvae and, later, the pupae keep this initial case and build on forming a protective ‘fortress’ that their enemies can mistake for a plant twig or caterpillar frass.

The studied Cryptocephalines genus, like most of the 40,000 known species of leaf beetles, feed on leaves, fruits, flowers, roots and stems. Indeed, some species of leaf beetles are some of the biggest threats to our crops.

A study published in ZooKeys, led by Dr. Federico Agrain, an Argentinian researcher of CONICET, and his colleagues in the USA and Germany, has unveiled some remarkable new patterns in the secretive life of a specific group within the leaf beetle genus that live within ant nests.

Their research highlights that these myrmecophilic (literally, ‘ant-loving’) leaf beetles live mainly among species of the ant families Formicinae and Myrmecinae.

“Living with ants might offer these beetles multiple advantages, and it might have aided the colonization of xeric environments,” hypothesised Dr. Agrain.

“Ants are notoriously territorial and aggressive, sniffing out and killing enemies that try to enter the ant nests. We suspect that these beetles sneak inside the ant nests by mimicking the scent and behavioral profiles of the ants,” suggests Dr. Caroline Chaboo, a leaf beetle expert at the University of Kansas and co-author of the paper. “How else could the beetles get the ants to pick them up outside the nest and take them into the nest where they can live undetected and with an endless food supply?”

These hypotheses need to be tested in future research. In addition to these novel aspects and hypotheses. “Specialized natural enemies, especially parasitoid Hymenoptera (the insect order where ants belong), exploit cryptocephaline beetles inside the ant nests,” says Dr. Matthew Buffington, a research entomologist at the ARS-Systematic Entomology Laboratory in Washington DC, and co-author of the present study.

Key evolutionary steps, needed to be taken by these leaf beetles, so that they are able to form an association with ants, are also discussed by Dr Federico Agrain and his colleagues. How does a leaf beetle find a host ant, enter the nest, survive within the nest, and, later, exit the ant nest? How strong is the strength of the host association? What are the benefits for the host? What about the diet specialization of adult and larvae? These are the sort of questions the scientists ask themselves.

Clearly, there is a wide range of new hypotheses to be investigated and inter-disciplinary approaches will be needed to unravel the secrets to myrmecophily and the covert, enigmatic lives of case-bearer beetles.

Photo Credit: 

© Jason Penney

Original source:

Agrain FA, Buffington ML, Chaboo CS, Chamorro ML, Schöller M (2015) Leaf beetles are ant-nest beetles: the curious life of the juvenile stages of case-bearers (Coleoptera, Chrysomelidae, Cryptocephalinae). In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 5. ZooKeys 547: 133–164. doi: 10.3897/zookeys.547.6098

Over 300 new beetle records for New Brunswick, Canada, in a special issue of ZooKeys

Beetles diversity in New Brunswick, Canada, has elicited the interest of biologists for over a century and continues to do so. In 1991, 1,365 species were known from New Brunswick. That number had increased to 2,703 by 2013, as a result of a series of publications in three previous special ZooKeys issues and other publications. In spite of that work, there were still gaps in the knowledge of the Coleopteran fauna.

Now, a group of insect specialists have joined forces in the name of their love for beetles, and compiled their findings from the last three years, reporting another 303 species for New Brunswick, including thirty-two species new to science. All of these records are published in a special issue, titled “The Coleoptera of New Brunswick and Canada: Providing baseline biodiversity and natural history data” of the open access journal ZooKeys.

It might have been only three years, but the authors of the present issue have expanded the beetle fauna of New Brunswick by 13%. On a longer timeline since 1991, the increase rises to an impressive 124%.

These figures come as a result of the 303 new records for New Brunswick that included 32 species, which the team have found to be new to science, 4 new North American records, 21 new Canadian records, 270 new provincial records, and 45 adventive species that have somehow arrived in the region from elsewhere. As a result, the beetle fauna of New Brunswick currently comprises 3,062 species.

“This information constitutes a baseline of biological knowledge that is critical to support other branches of science,” point out the authors.

“It is important to remind ourselves that the understanding of biological diversity is not possible without taxonomic research, which is thought by many to be the foundation of biological science,” they explain. “Data on the mega-diversity of life and knowledge on species identity and distribution require discovery, description, cataloguing, and organization in order to be made accessible to a wide audience.”

“This work would not have been possible to complete without the enthusiasm, determination, and professionalism of a small number of dedicated individuals who are acknowledged in the papers in this special issue,” the researchers conclude. “We hope that this special issue will generate a positive response and further interest in the Coleoptera fauna of New Brunswick and Canada, as many new discoveries await.”

###

Original source:

Webster RP, Bouchard P, Klimaszewski J, Sweeney JD (2016) History of Coleoptera collecting in New Brunswick, Canada: advancing our knowledge of the Coleoptera fauna in the early 21st century. In: Webster RP, Bouchard P, Klimaszewski J (Eds) The Coleoptera of New Brunswick and Canada: providing baseline biodiversity and natural history data. ZooKeys 573: 1-18. doi: 10.3897/zookeys.573.8123

Two brand new dung beetle species from montane grazing sites and forests in Mexico

While carrying out a biodiversity study, a Mexican-Italian research team discovered three new dung beetle species in montane forests disturbed by livestock grazing. Mexico has been a mecca for naturalists, and its dung beetle species are among the best known in the world. This is why the discovery of new species there is noteworthy. The present study, published in the open-access journal ZooKeys, describes two of them and highlights the need to further explore the biodiversity of disturbed ecosystems.

Mexico is a country that holds a vast number of creatures and ecosystems. There is in fact a fascinating phenomenon: tropical forests that have close affinities with South America co-occurring with temperate and arid areas shared with North America. Thus, Mexico has been particularly attractive to explorers ever since the 19th century.

A group of animals that has woken up a special interest for studies in Mexico is the so-called ‘dung beetles’. As their name suggests, dung beetles are insects that feed mainly on mammal faeces.

For decades, an international research team, led by Dr Gonzalo Halffter, has studied dung beetles across the world, especially in Mexico. As a consequence, the Mexican species are some of the best-known. However, Dr Halffter and his team are not interested exclusively in dung beetles, but also in evolutive phenomena, the effects of land-use change, ecosystems modification by human activities, and conservation biology. Such concerns seem to be of particular importance now that the terrestrial ecosystems in Mexico have been severely destroyed and disturbed by people.

Image 2

Livestock is one of the major drivers of biodiversity loss worldwide, which makes the present discovery particularly impressive. With at least 58% of the area of Mexico occupied with livestock farming, dung beetles are essential in cleaning up. While studying their diversity at conserved forests and cattle grazing sites across the mountains of Mexico, the researchers found some new species of dung beetles.

The first to discover these new dung beetles was Victor Moctezuma, a student of Dr Gonzalo’s at the Instituto de Ecología of Mexico.

“I was carrying out sampling for my Masters Degree studies, but I had no idea that new dung beetles could be found in a forest that is disturbed by human activities, such as livestock grazing and land-use change,” recalls Moctezuma. “So I was really surprised when I discovered three dung beetle species.” One of these species has already been published.

Apart from the two new dung beetles, formally called Onthophagus clavijeroi and Onthophagus martinpierai, the present paper also provides theories about the current distributions of these insects across the Mexican mountains and their putative evolutive relationships. As a whole, the study highlights the importance of disturbed forest for species discovery and conservation.

###

Original source:

Moctezuma V, Rossini M, Zunino M, Halffter G (2016) A contribution to the knowledge of the mountain entomofauna of Mexico with a description of two new species of Onthophagus latreille, 1802 (Coleoptera, Scarabaeidae, Scarabaeinae). ZooKeys 572: 23-50. doi:10.3897/zookeys.572.6763