While the new Coronavirus will, hopefully, be effectively controlled sooner rather than later, its latest namesake is here to stay – a small caddisfly endemic to a national park in Kosovo that is new to science.
Potamophylax coronavirus was collected near a stream in the Bjeshkët e Nemuna National Park in Kosovo by a team of scientists, led by Professor Halil Ibrahimi of the University of Prishtina. After molecular and morphological analyses, it was described as a caddisfly species, new to science in the open-access, peer-reviewed Biodiversity Data Journal.
Ironically, the study of this new insect was impacted by the same pandemic that inspired its scientific name. Although it was collected a few years ago, the new species was only described during the global pandemic, caused by SARS-CoV-2. Its name, P. coronavirus, will be an eternal memory of this difficult period.
In a broader sense, the authors also wish to bring attention to “another silent pandemic occurring on freshwater organisms in Kosovo’s rivers,” caused by the pollution and degradation of freshwater habitats, as well as the activity increasing in recent years of mismanaged hydropower plants. Particularly, the river basin of the Lumbardhi i Deçanit River, where the new species was discovered, has turned into a ‘battlefield’ for scientists and civil society on one side and the management of the hydropower plant operating on this river on the other.
The small insect order of Trichoptera, where P. coronavirus belongs, is very sensitive to water pollution and habitat deterioration. The authors of the new species argue that it is a small-scale endemic taxon, very sensitive to the ongoing activities in Lumbardhi i Deçanit river. Failure to understand this may drive this and many other species towards extinction.
Interestingly, in the same paper, the authors also identified a few other new species from isolated habitats in the Balkan Peninsula, which are awaiting description upon collection of further specimens. The Western Balkans and especially Kosovo, have proved to be an important hotspot of freshwater biodiversity. Several new insect species have been discovered there in the past few years, most of them being described by Professor Halil Ibrahimi and his team.
“We thought that it was a good idea to remember this extraordinary year through the name of one remarkable species of Darwin wasp found in seven Mexican States (including Tamaulipas, where the UAT campus is located) and also Guatemala,” comment the researchers who discovered the previously unknown species.
Scientists at the Autonomous University of Tamaulipas (UAT) in Mexico recently discovered five new species of parasitoid wasps in Mexico, but the name of one of them sounds a bit weird: covida. Why this name?
In fact, the reason is quite simple. The thing is that the team of Andrey Khalaim (also a researcher at the Zoological Institute of Russian Academy of Sciences in Saint Petersburg, Russia) and Enrique Ruíz Cancino discovered the new to science species during the 2020 global quarantine period, imposed due to the COVID-19 pandemic. Their findings are described in a newly published research article, in the peer-reviewed, open-access scientific journal ZooKeys.
“We thought that it was a good idea to remember this extraordinary year through the name of one remarkable species of Darwin wasp found in seven Mexican States (including Tamaulipas, where the UAT campus is located) and also Guatemala,”
explain the scientists.
The new species, which goes by the official scientific name Stethantyx covida, belongs to the Darwin wasp family Ichneumonidae, one of the most species-rich insect families, which comprises more than 25,000 species worldwide.
“Darwin wasps are abundant and well-known almost everywhere in the world because of their beauty, gracility, and because they are used in biological control of insect pests in orchards and forests. Many Darwin wasp species attack the larvae or pupae of butterflies and moths. Yet, some species are particularly interesting, as their larvae feed on spider eggs and others, even more bizarre, develop on living spiders!”
further explain the authors of the new study.
Stethantyx covida is a small wasp that measures merely 3.5 mm in length. It is predominantly dark in colour, whereas parts of its body and legs are yellow or brown. It is highly polished and shining, and the ovipositor of the female is very long and slender.Along with Stethantyx covida, the authors also described four other Mexican species of Darwin wasps from three different genera (Stethantyx, Meggoleus, Phradis), all belonging to the subfamily Tersilochinae. Some tersilochines are common on flowers in springtime. While the majority of them are parasitoids of larvae of various beetles, some Mexican species attack sawflies, inhabiting the forests.
***
Original source:
Khalaim AI, Ruíz-Cancino E (2020) Contribution to the taxonomy of Mexican Tersilochinae (Hymenoptera, Ichneumonidae), with descriptions of five new species. ZooKeys 974: 1-21. https://doi.org/10.3897/zookeys.974.54536
Newly published findings about the phylogenetics and systematics of some previously known, but also other yet to be identified species of Old World Leaf-nosed bats, provide the first contribution to a recently launched collection of research articles, whose task is to help scientists from across disciplines to better understand potential hosts and vectors of zoonotic diseases, such as the Coronavirus. Bats and pangolins are among the animals already identified to be particularly potent vehicles of life-threatening viruses, including the infamous SARS-CoV-2.
The article, publicly available in the peer-reviewed scholarly journal ZooKeys, also pilots a new generation of Linked Open Data (LOD) publishing practices, invented and implemented to facilitate ongoing scientific collaborations in times of urgency like those we experience today with the COVID-19 pandemic currently ravaging across over 230 countries around the globe.
In their study, an international team of scientists, led by Dr Bruce Patterson, Field Museum‘s MacArthur curator of mammals, point to the existence of numerous, yet to be described species of leaf-nosed bats inhabiting the biodiversity hotspots of East Africa and Southeast Asia. In order to expedite future discoveries about the identity, biology and ecology of those bats, they provide key insights into the genetics and relations within their higher groupings, as well as further information about their geographic distribution.
“Leaf-nosed bats carry coronaviruses–not the strain that’s affecting humans right now, but this is certainly not the last time a virus will be transmitted from a wild mammal to humans. If we have better knowledge of what these bats are, we’ll be better prepared if that happens,”
says Dr Terrence Demos, a post-doctoral researcher in Patterson’s lab and a principal author of the paper.
“With COVID-19, we have a virus that’s running amok in the human population. It originated in a horseshoe bat in China. There are 25 or 30 species of horseshoe bats in China, and no one can determine which one was involved. We owe it to ourselves to learn more about them and their relatives,”
comments Patterson.
In order to ensure that scientists from across disciplines, including biologists, but also virologists and epidemiologists, in addition to health and policy officials and decision-makers have the scientific data and evidence at hand, Patterson and his team supplemented their research publication with a particularly valuable appendix table. There, in a conveniently organized table format, everyone can access fundamental raw genetic data about each studied specimen, as well as its precise identification, origin and the natural history collection it is preserved. However, what makes those data particularly useful for researchers looking to make ground-breaking and potentially life-saving discoveries is that all that information is linked to other types of data stored at various databases and repositories contributed by scientists from anywhere in the world.
Furthermore, in this case, those linked and publicly available data or Linked Open Data (LOD) are published in specific code languages, so that they are “understandable” for computers. Thus, when a researcher seeks to access data associated with a particular specimen he/she finds in the table, he/she can immediately access additional data stored at external data repositories by means of a single algorithm. Alternatively, another researcher might want to retrieve all pathogens extracted from tissues from specimens of a specific animal species or from particular populations inhabiting a certain geographical range and so on.
###
The data publication and dissemination approach piloted in this new study was elaborated by the science publisher and technology provider Pensoft and the digitisation company Plazi for the purposes of a special collection of research papers reporting on novel findings concerning the biology of bats and pangolins in the scholarly journal ZooKeys. By targeting the two most likely ‘culprits’ at the roots of the Coronavirus outbreak in 2020: bats and pangolins, the article collection aligns with the agenda of the COVID-19 Joint Task Force, a recent call for contributions made by the Consortium of European Taxonomic Facilities (CETAF), the Distributed System for Scientific Collections (DiSSCo) and the Integrated Digitized Biocollections (iDigBio).
###
Original source:
Patterson BD, Webala PW, Lavery TH, Agwanda BR, Goodman SM, Kerbis Peterhans JC, Demos TC (2020) Evolutionary relationships and population genetics of the Afrotropical leaf-nosed bats (Chiroptera, Hipposideridae). ZooKeys 929: 117-161. https://doi.org/10.3897/zookeys.929.50240
Looking at today’s ravaging COVID-19 (Coronavirus) pandemic, which, at the time of writing, has spread to over 220 countries; its continuously rising death toll and widespread fear, on the outside, it may feel like scientists and decision-makers are scratching their heads more than ever in the face of the unknown. In reality, however, we get to witness an unprecedented global community gradually waking up to the realisation of the only possible solution: collaboration.
On one hand, we have nationwide collective actions, including cancelled travel plans and mass gatherings; social distancing; and lockdowns, that have already proved successful at changing what the World Health Organisation (WHO) has determined as “the course of a rapidly escalating and deadly epidemic” in Hong Kong, Singapore and China. On the other hand, we have the world’s best scientists and laboratories all steering their expertise and resources towards the better understanding of the virus and, ultimately, developing a vaccine for mass production as quickly as possible.
While there is little doubt that the best specialists in the world will eventually invent an efficient vaccine – just like they did following the Western African Ebola virus epidemic (2013–2016) and on several other similar occasions in the years before – the question at hand is rather when this is going to happen and how many human lives it is going to cost?
Again, it all comes down to collective efforts. It only makes sense that if research teams and labs around the globe join their efforts and expertise, thereby avoiding duplicate work, their endeavours will bear fruit sooner rather than later. Similarly to employees from across the world, who have been demonstrating their ability to perform their day-to-day tasks and responsibilities from the safety of their homes just as efficiently as they would have done from their conventional offices, in today’s high-tech, online-friendly reality, no more should scientists be restricted by physical and geographical barriers either.
“Observations, prevention and impact of COVID-19”: Special Collection in RIO Journal
To inspire and facilitate collaboration across the world, the SPARC-recognised Open Science innovator Research Ideas and Outcomes(RIO Journal) decided to bring together scientific findings in an easy to discover, read, cite and build on collection of publications.
Furthermore, due to its revolutionary approach to publishing, where early and brief research outcomes (i.e. ideas, raw data, software descriptions, posters, presentations, case studies and many others) are all considered as precious scientific gems, hence deserving a formal publication in a renowned academic journal, RIO places a special focus on these contributions.
Accepted manuscripts that shall deal with research relevant to the COVID-19 pandemic across disciplines, including medicine, ethics, politics, economics etc. at a local, regional, national or international scale; and also meant to encourage crucial discussions, will be published free of charge in recognition of the emergency of the current situation. Especially encouraged are submissions focused on the long-term effects of COVID-19.
Furthermore, thanks to the technologically advanced infrastructure and services it provides, in addition to a long list of indexers and databases where publications are registered, the manuscripts submitted to RIO Journal are not only rapidly processed and published, but once they get online, they immediately become easy to discover, cite and built on by any researcher, anywhere in the world.
On top of that, Pensoft’s targeted and manually provided science communication services make sure that published research of social value reaches the wider audience, including key decision-makers and journalists, by means of press releases and social media promotion.
***
More info about RIO’s globally unique features, visit the journal’s website. Follow RIO Journal on Twitter and Facebook.
Accepted papers will be published free of charge in recognition of the emergency of the current global situation
Was it the horseshoe bat or could it rather be one of the most traded mammal in the world: the pangolin, at the root of the current devastating pandemic that followed the transmission of the zoonotic SARS-CoV-2 virus to a human host, arguably after infected animal products reached poorly regulated wet markets in Wuhan, China, last year?
To make matters worse, the current situation is no precedent. Looking at the not so distant past, we notice that humanity has been repeatedly falling victim to viral deadly outbreaks, including Zika, Ebola, the Swine flu, the Spanish flu and the Plague, where all are linked to an animal host that at one point, under specific circumstances transferred the virus to people.
Either way, here’s a lesson humanity gets to learn once again: getting too close to wildlife is capable of opening the gates to global disasters with horrific and irreversible damage on human lives, economics and ecosystems. What is left for us to understand is how exactly these transmission pathways look like and what are the factors making certain organisms like the bat and the pangolin particularly efficient vectors of diseases such as COVID-19 (Coronavirus). This crucial knowledge could’ve been easier for us to grasp had we only obtained the needed details about those species on time.
Aligning with the efforts of the biodiversity community, such as the recently announced DiSSCo and CETAF COVID-19 Task Force, who intend to create an efficient network of taxonomists, collection curators and other experts from around the globe and equip them with the tools and large datasets needed to combat the unceasing pandemic, the open-access peer-reviewed scholarly journal ZooKeys invites researchers from across the globe to submit their work on the biology of bats and pangolins to a free-to-publish special issue.
The effort will be coordinated with the literature digitisation provider Plazi, who will extract and liberate data on potential hosts from various journals and publishers. In this way, these otherwise hardly accessible data will be re-used to support researchers in generation of new hypotheses and knowledge on this urgent topic.
By providing further knowledge on these sources and vectors of zoonotic diseases, this collection of publications could contribute with priceless insights to make the world better prepared for epidemics like the Coronavirus and even prevent such from happening in the future.
Furthermore, by means of its technologically advanced infrastructure and services, including expedite peer review and publication processes, in addition to a long list of indexers and databases where publications are registered, ZooKeys will ensure the rapid publication of those crucial findings, and will also take care that once they get online, they will immediately become easy to discover, cite and built on by any researcher, anywhere in the world.
***
The upcoming “Biology of bats and pangolins” special issue is to add up to some excellent examples of previous research on the systematics, biology and distribution of pangolins and bats published in ZooKeys.
In their review paper from 2015, Chinese scientists looked into the issues and prospects around captive breeding of pangolins. A year later, their colleagues at South China Normal University provided further insights into captive breeding, in addition to new data on the reproductive parameters of Chinese pangolins.
Back in 2013, a Micronesian-US research studied the taxonomy, distribution and natural history of flying fox bats inhabiting the Caroline Islands (Micronesia). A 2018 joint study on bat diversity in Sri Lanka focused on chiropteran conservation and management; while a more recent article on the cryptic diversity and range extension of the big-eyed bats in the genus Chiroderma.
Buden D, Helgen K, Wiles G (2013) Taxonomy, distribution, and natural history of flying foxes (Chiroptera, Pteropodidae) in the Mortlock Islands and Chuuk State, Caroline Islands. ZooKeys 345: 97-135. https://doi.org/10.3897/zookeys.345.5840
Edirisinghe G, Surasinghe T, Gabadage D, Botejue M, Perera K, Madawala M, Weerakoon D, Karunarathna S (2018) Chiropteran diversity in the peripheral areas of the Maduru-Oya National Park in Sri Lanka: insights for conservation and management. ZooKeys 784: 139-162. https://doi.org/10.3897/zookeys.784.25562
Hua L, Gong S, Wang F, Li W, Ge Y, Li X, Hou F (2015) Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507: 99-114. https://doi.org/10.3897/zookeys.507.6970
Lim BK, Loureiro LO, Garbino GST (2020) Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). ZooKeys 918: 41-63. https://doi.org/10.3897/zookeys.918.48786
Zhang F, Wu S, Zou C, Wang Q, Li S, Sun R (2016) A note on captive breeding and reproductive parameters of the Chinese pangolin, Manis pentadactyla Linnaeus, 1758. ZooKeys 618: 129-144. https://doi.org/10.3897/zookeys.618.8886