Tadpoles for dinner? Indigenous community in Mexico reveals a favorite recipe for a particular frog

Tadpoles of the Sierra Juarez brook frog Duellmanohyla ignicolor are consumed in caldo de piedra in the Chinantla region, in Oaxaca, Mexico.

Stone soup (caldo de piedra) is a traditional meal from the Indigenous Chinantla region in the state of Oaxaca, Mexico. Prepared by men, it is made by placing tomato, cilantro, chili peppers, onion, raw fish, salt, and water in a jicara (a bowl made from the fruit of the calabash tree) in a hole dug near a river. Then, the ingredients are cooked by adding red hot rocks to the “pot”.

In 2019, members of the CIIDIR-Oaxaca Amphibian Ecology Laboratory visited Santa Cruz Tepetotutla in the Chinantla region as part of their continued research work in the community’s forests and streams. 

“As we observed and recorded the presence of tadpoles, our guide, Mr. Pedro Osorio-Hernández, remarked that one such tadpole was eaten in stone soup”, says Dr Edna González Bernal, one of the researchers.

Local landscape. Photo by Carlos A. Flores

Although not much attention is paid to tadpoles, they are more important than you might think. They are perfect indicators of the health of bodies of water, due to their sensitivity to changes in the aquatic environment where they develop. When tadpoles are present in a stream, river, or even a puddle, they indicate an acceptable concentration of oxygen, pH, conductivity, and temperature, or overall good dynamics of sediments and plant matter. And, above all, finding tadpoles is the easiest way to know about the presence of an amphibian species that reproduces in that site, regardless of whether or not an adult has been observed. Hence, the identification of the unique characteristics of the tadpoles of each species is an important task that is currently drawing more attention amongst scientists. 

Duellmanohyla ignicolor tadpoles. Photo by Edna González-Bernal

“For us, as Oaxacans, Don Pedro’s words were an eye-opener”, biologist Carlos A. Flores, also part of the study,  continues. “Although we knew about the tradition of stone soup, we would have never imagined that it could be prepared with tadpoles of the Sierra Juárez Brook frog (Duellmanohyla ignicolor)!”

Duellmanohyla ignicolor. Photo by Edna González-Bernal

“As scientists, we wondered: why this species and not another? Since when have these tadpoles been eaten? In what other places are tadpoles consumed and in what form? Does this consumption have a negative effect on amphibian populations?”

To answer these questions, the researchers monitored several streams in the community, collecting data on the structure of these sites, such as depth, water velocity, temperature, etc. They wanted to identify the characteristics of the habitat where the tadpoles of this little known species are found. Their research was recently published in the open-access journal ZooKeys.

The team’s primary interest in the stone soup with tadpoles was to accurately document human interaction with this amphibian species. 

“It is common in anthropological literature to document the consumption of tadpoles in Mexico, but rarely does such documentation reach the species level. Even in some ethnoherpetological works, the consumption of tadpoles is mentioned only anecdotally”, Dr González Bernal explains.  

A boy collects tadpoles. Photo by Edna González-Bernal

“We learned that these larvae tend to form schools: aggregations of several tens to hundreds of individuals. They swim on the surface of the water and move their mouths to feed on suspended particles, which may be remains of plant matter, pollen or insect parts”, she continues. 

“This behavior, as has been documented in other species, biologically implies a strategy to feed more efficiently, control body temperature, protect themselves from predators and even to encourage social interaction. At the same time, it makes it easier for humans to capture several tadpoles using nets, hats, bags or even their own hands.”

This tadpole soup is consumed during the hottest months (April and May), when people go swimming in the river. The rest of the year, it is prepared with fish. Local people described the tadpoles as having a delicious fish-like flavor.

Why do people eat these particular tadpoles? Community members remarked that, because they are found at the surface of the water, they are considered cleaner than those found at the bottom, such as the tadpoles of the the coastal toad (Incilius valliceps) and the gloomy mountain frog (Ptychohyla zophodes). In addition, the tadpoles consumed in the stone broth reach sizes of up to 5 centimeters, which makes them a better choice for the dish.

Tadpoles caught using caps. Photo by Edna González-Bernal

Is stone soup a dish that only exists in the Chinantla region? “We found that while the dish has primarily been documented in this region, it is also consumed in some Indigenous Ayuk (Mixe) municipalities,” Dr González Bernal says. 

The cooking principle itself is a technique that has been used throughout history by different cultures around the world. The particularity of the caldo de piedra lies in its preparation with tomato, cilantro, and chili peppers, as well as prawns or particular species of fish such as the bobo (Joturus prichardi).

In the case of the Sierra Juarez Brook frog’s tadpoles, the researchers concluded that since they are consumed locally and for non-commercial purposes, the species is not at risk. However, the behavior of these tadpoles and their preference for deeper water bodies make them vulnerable to being caught in large quantities.

“In the context of the global amphibian crisis, it is of utmost importance to continue increasing our knowledge about the diversity of species and above all to delve deeper into their ecology, both at the adult and larval stages. Only in this way can we gain a greater understanding of each species’ needs and develop conservation strategies that take into account the biology of species with a complex life cycle, such as amphibians”, the research team says in conclusion. 

Research article:

Flores CA, Arreortúa M, González-Bernal E (2022) Tadpole soup: Chinantec caldo de piedra and behavior of Duellmanohyla ignicolor larvae (Amphibia, Anura, Hylidae). ZooKeys 1097: 117-132. https://doi.org/10.3897/zookeys.1097.76426

Lifting the veil over mysterious desert truffles: Terfezia’s ecology and diversity towards cultivation

Developing below the soil surface, desert truffles are hard to find. Recently, researchers of the University of Évora updated the number of known species of the desert truffle genus Terfezia occurring in Portugal from three to ten species. They thoroughly characterized their ecological preferences, adding new knowledge on Terfezia’s cryptic lifestyle. These findings are of major importance, as desert truffles have a high economic value. The study was published in the open-access journal MycoKeys.

In a caring, symbiotic relationship, mycorrhizal fungi live and feed in the roots of specific plants, while providing water and nutrients to their ‘companion’. In arid and semi-arid environments, mycorrhization processes are essential to the survival of both plants and fungi. Moreover, the fungus’ hyphal network, which spreads within the soil connecting several plant individuals, is of utmost importance to enhancing soil quality and fertility.

Researchers of the University of Évora in Portugal, led by biologist Celeste Santos e Silva, worked on Terfezia fungi, the most diverse and species-rich genus among desert truffles. Their study, published in the open-access journal MycoKeys, might prove particularly valuable to rural populations in the Mediterranean basin, where desert truffles, highly valued in local markets, are an important food source. Increasingly turning into an exquisite component of the Mediterranean diet, Terfezia products can also be very profitable. Furthermore, these fungi are essential for soil conservation, preventing erosion and desertification.

Desert truffles.

After 8 years of exhaustive field exploration in search of desert truffles and many hours in the molecular biology lab, the researchers noted some previously unknown trends in the ecology of Terfezia species. They recorded seven species that were new to Portugal, including two that are new to science – Terfezia lusitanica and Terfezia solaris-libera. This brings the number of Terfezia species known to be growing in the country to ten. Particularly important was the discovery of a broader ecological range for many of the studied species (e.g. Terfezia grisea). Adding valuable information about their possible hosts, symbionts and ecological constraints, these findings help open new opportunities for truffle cultivation.

“It is very difficult to identify all specimens given that the Terfezia species look so much alike, and molecular biology was absolutely fundamental here”, explains the researcher. “The technique was essential to update and solve problems about their taxonomy and the relationship between the species in the genus.”

Furthermore, the discoveries are also expected to positively impact the local communities by stimulating agriculture produce, business and even employment. 

Desert truffle production explained. Video by University of Évora

Knowledge gained in this research about the conditions in which different Terfezia species grow is an important step to desert truffle cultivation: the fungi are hard to find in the wild, which is why it would make a big difference – including financially – for local communities if they figure out a way to grow truffles themselves.

Within the project “Mycorrhization of Cistus spp with Terfezia arenaria (Moris) Trappe and its application in the production of desert truffles” (ALT20-03-0145-FEDER-000006), the researchers took a step forward towards achieving mycorrhizal association of desert truffles with perennial plants (rock roses), which would allow their mass production for various sectors such as food, medicine and soil recovery. This new form of production, assures the MED researcher and leader of the project, “will make it possible to create more jobs, reversing the current trend towards desertification in rural areas, while being a great tool for ecosystem recovery and restoration”.

Research article:


Santos-Silva C, Louro R, Natário B, Nobre T (2021) Lack of knowledge on ecological determinants and cryptic lifestyles hinder our understanding of Terfezia diversity. MycoKeys 84: 1-14. https://doi.org/10.3897/mycokeys.84.71372

Underground gourmet: Selected terrestrial cave invertebrates and their meal preferences

Doubting whether terrestrial cave invertebrates feed on just anything they can find in the harsh food-wise environment underground, Dr. Jaroslav Smrz, fromCharles University, Vinicna, and his international team conducted a research in Slovakian and Romania caves. They tested the hypothesis that these species have rather negligible selection of food. Their microanatomical research into the gut content of several microwhip scorpions, oribatid mites, millipedes, springtails and crustaceans showed, however, that there is an evident meal preference among the species.

The results confirmed that the studied groups can adapt and develop under the pressure of extreme environmental factors. Therefore, the researchers concluded a low level of food competition. The study is available in the Subterranean Biology open-access journal.

The scientists studied the cells and tissues of the selected invertebrates and found out that the gut contents were nearly identical between the representatives of each group. This was the case even when the specimens had been collected from various locations. For instance, all microwhip scorpions proved a preference for cyanobacteria, while the mites favored the bacteria found in bat guano and the millipedes – fungi.

“The limited food offer seems to be used very unambiguously and thoroughly by the invertebrate communities,” the research team explained. “Therefore, the competition for food can be actually regarded as very low,” they concluded.

###

Original source:

Smrz J, Kovac L, Mikes J, Sustr V, Lukesova A, Tajovsky K, Novakova A, Reznakova P (2015) Food sources of selected terrestrial cave arthropods. Subterranean Biology 16: 37-46. doi:10.3897/subtbiol.16.8609