Tiny moth from Asia spreading fast on Siberian elms in eastern North America

In 2010, moth collector James Vargo began finding numerous specimens of a hitherto unknown pygmy moth in his light traps on his property in Indiana, USA. When handed to Erik van Nieukerken, researcher at Naturalis Biodiversity Center (Leiden, the Netherlands) and specialist in pygmy moths (family Nepticulidae), the scientist failed to identify it as a previously known species.

These are male specimens of the studied leaf mining moth Stigmella multispicata collected from Iowa, USA.

Then, Erik found a striking similarity of the DNA barcodes with those of a larva he had recently collected on Siberian elm in Beijing’s botanical garden. At the time, the Chinese specimen could not be identified either.

In October 2015, Daniel Owen Gilrein, entomologist at Cornell Cooperative Extension of Suffolk County (New York, USA), received samples of green caterpillars seen to descend en masse from Siberian elm trees in Sagaponack, New York. He also received leafmines from the same trees.

Once they joined forces, the researchers did not take long to find out that the specimens from James Vargo and the caterpillars from New York belonged to one and the same species. The only thing left was its name.

Following further investigation, the scientists identified the moth as Stigmella multispicata – a pygmy moth described in 2014 from Primorye, Russia, by the Lithuanian specialists Agne Rociene and Jonas Stonis.

“Apparently, this meant that we were dealing with a recent invasion from East Asia into North America,” explains Erik.

Once the researchers had figured out how to identify the leafminer, they were quick to spot its existence in plenty of collections and occurrence reports from websites, such as BugGuide and iNaturalist.

With the help of Charley Eiseman, a naturalist from Massachusetts specializing in North American leafminers, the authors managed to conclude the moth’s existence in ten US states and two Canadian provinces. In most cases, the species was found on or near Siberian elm – another species transferred from Asia to North America.

Their study is published in the open access journal ZooKeys.

Despite the oldest records dating from 2010, it turned out that the species had already been well established at the time. The authors suspect that the spread has been assisted by transport of plants across nurseries.

“Even though Stigmella multispicata does not seem to be a real problem, it would be a good idea to follow its invasion over North America, and to monitor whether the species may also attack native elm species,” the researchers point out.

Distribution in North America.

Interestingly, in addition to the newly identified moth, the Siberian elms in North America have been struggling with another, even more common, invasive leafminer from Asia: the weevil species Orchestes steppensis. The beetle had been previously misnamed as the European elm flea weevil.

###

Original source:

van Nieukerken EJ, Gilrein DO, Eiseman CS (2018) Stigmella multispicata Rociene & Stonis, an Asian leafminer on Siberian elm, now widespread in eastern North America (Lepidoptera, Nepticulidae). ZooKeys 784: 95-125. https://doi.org/10.3897/zookeys.784.27296

Double trouble: Invasive insect species overlooked as a result of a shared name

An invasive leaf-mining moth, feeding on cornelian cherry, has been gradually expanding its distributional range from its native Central Europe northwards for a period likely longer than 60 years. During that period, it has remained under the cover of a taxonomic confusion, while going by a name shared with another species that feeds on common dogwood.

To reproduce, this group of leaf-mining moths lay their eggs in specific plants, where the larvae make tunnels or ‘mines’, in the leaves. At the end of these burrows, they bite off an oval section, in which they can later pupate. These cutouts are also termed ‘shields’, prompting the common name of the family, the shield-bearer moths.

During a routine study into the DNA of leaf-mining moths, Erik van Nieukerken, researcher at Naturalis Biodiversity Center, Leiden, the Netherlands, discovered that the DNA barcodes of the species feeding on common dogwood and cornelian cherry were in fact so different that they could only arise from two separate species. As a result, Erik teamed up with several other scientists and amateur entomologists to initiate a more in-depth taxonomic study.

Curiously, it turned out that the two species had been first identified on their own as early as in 1899, before being described in detail by a Polish scientist in the 50s. Ironically, it was another Polish study, published in the 70s, that regarded the evidence listed in that description as insufficient and synonymised the two leaf-miners under a common name (Antispila treitschkiella).

Now, as a result of the recent study undertaken by van Nieukerken and his collaborators, the two moth species – Antispila treitschkiella and Antispila petryi – have their diagnostic features listed in a research article published in the open access journal Nota Lepidopterologica.

“We now establish that the species feeding on common dogwood, A. petryi, does not differ only in its DNA barcode, but also in characters of the larva, genitalia and life history,” explains Erik van Nieukerken. “A. petryi has a single annual generation, with larvae found from August to November, whereas A. treitschkiella, which feeds on cornelian cherry, has two generations, with larvae occurring in June-July and once again between September and November.”

While van Nieukerken and his team were working on the taxonomy of the moths, David C. Lees of the Natural History Museum, London, spotted a female leaf-miner in the Wildlife Garden of the museum. Following consultation with van Nieukerken, it turned out that the specimen in question was the first genuine A. treitschkiella ever to be found in Britain. Subsequently, the research groups decided to join forces, leading to the present discovery.

Despite the lack of data for the British Isles, it is already known that, in continental Europe, the cornelian cherry-feeding species had established in the Netherlands and much of Germany in the 1990s.

0.6 x 1.0

With common dogwood being widely planted, it is now suspected that A. petryi has recently reached Sweden and Estonia, even though there was no previous evidence of the leaf-miner expanding its range.

“This discovery should provoke the attention of gardeners and other members of the public alike to the invasive leafminers attacking some of our much admired trees and shrubs, as we have demonstrated for the cornelian cherry – a species well-known for its showy red berries in the autumn,” says David Lees.

“Especially in Britain, we hope that they check their photos for the conspicuous leaf mines, recognisable by those oval cutouts, to see if they can solve the mystery of when the invasion, which is now prominent on cornels around London, actually started, and how fast it progresses. Citizen scientists can help.”

###

Original source:

van Nieukerken EJ, Lees DC, Doorenweerd C, Koster S(JC), Bryner R, Schreurs A, Timmermans MJTN, Sattler K (2018) Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): an unjustified synonymy and overlooked range expansion. Nota Lepidopterologica 41(1): 39-86. https://doi.org/10.3897/nl.41.22264

Two new snout moth genera and three new species discovered in southern China

New members have joined the ranks of the snout moths – one of the largest groups within the insect order known formally as Lepidoptera, comprising all moths and butterflies.

Recently, taxonomists Dr. Mingqiang Wang, Dr. Fuqiang Chen, Prof. Chaodong Zhu and Prof. Chunsheng Wu of the Institute of Zoology at the Chinese Academy of Sciences described two genera and three species previously unknown to science discovered in southern China.

Their study is published in the open access journal ZooKeys.

Having named one of the two new genera Androconia, the scientists acknowledge a peculiar characteristic feature in these moths. The name derives from androconium, which is a set of modified scales located on the forewing in males and used to produce odors attractive to females. Not only is this feature evident in the newly described genus, but it also amazes with its shape reminiscent of a tower. The genus currently hosts two species – both described in the present study.

The second new genus, named Arcanusa, is established based on a species already discovered back in 2003, however, misplaced in another genus. The third new species announced in the present paper is also assigned to this genus.

Image 2In conclusion, the authors note that given the latitude they discovered all of the studied moths, it is highly likely that more species belonging to the newly described genera are pending discovery in the adjacent countries – especially India.

###

Original source:

Wang M, Chen F, Zhu C, Wu C (2017) Two new genera and three new species of Epipaschiinae Meyrick from China (Lepidoptera, Pyralidae). ZooKeys 722: 87-99. https://doi.org/10.3897/zookeys.722.12362

New butterfly species discovered in Russia with an unusual set of 46 chromosomes

What looked like a population of a common butterfly species turned out to be a whole new organism, and, moreover – one with a very peculiar genome organisation.

Discovered by Vladimir Lukhtanov, entomologist and evolutionary biologist at the Zoological Institute in St. Petersburg, Russia, and Alexander Dantchenko, entomologist and chemist at the Moscow State University, the startling discovery was named South-Russian blue (Polyommatus australorossicus). It was found flying over the northern slopes of the Caucasus mountains in southern Russia. The study is published in the open access journal Comparative Cytogenetics.

“This publication is the long-awaited completion of a twenty-year history,” says Vladimir Lukhtanov.

In the mid-nineties, Vladimir Lukhtanov, together with his students and collaborators, started an exhaustive study of Russian butterflies using an array of modern and traditional research techniques. In 1997, Alexander Dantchenko who was mostly focused on butterfly ecology, sampled a few blue butterfly specimens from northern slopes of the Caucasus mountains. These blues looked typical at first glance and were identified as Azerbaijani blue (Polyommatus aserbeidschanus).

However, when the scientists looked at them under a microscope, it became clear that they had 46 chromosomes – a very unusual number for this group of the blue butterflies and exactly the same count as in humans.

Having spent twenty years studying the chromosomes of more than a hundred blue butterfly species and sequencing DNA from all closely related species, the researchers were ready to ascertain the uniqueness of the discovered butterfly and its chromosome set.

Throughout the years of investigation, it has become clear that caterpillars of genetically related species in the studied butterfly group feed on different, but similar plants. This discovery enables entomologists to not only discover new butterfly species with the help of botanic information, but also protect them.

“We are proud of our research,” says Vladimir Lukhtanov. “It contributes greatly to both the study of biodiversity and understanding the mechanisms of biological evolution.”

###

Original source:

Lukhtanov VA, Dantchenko AV (2017) A new butterfly species from south Russia revealed through chromosomal and molecular analysis of the Polyommatus (Agrodiaetus) damonides complex (Lepidoptera, Lycaenidae). Comparative Cytogenetics 11(4): 769-795. https://doi.org/10.3897/CompCytogen.v11i4.20072

Rare footage of a new clearwing moth species from Malaysia reveals its behavior

Unique footage of a new species of clearwing moth has been recorded in a primeval rainforest in Peninsular Malaysia revealing the behaviour of this elusive insect.

Clearwing moths, which are day-flying insects belonging to the Sesiidae family, imitate bees and wasps. Apart from the common species considered as agricultural pests, these moths are known mainly from old museum specimens, stored on pins in forgotten drawers. In the wild, they are elusive creatures, rarely spotted and, hence, poorly studied.

Marta Skowron Volponi from the University of Gdansk, Poland, a PhD student specialising in entomology, teamed up with nature filmmaker and photographer Paolo Volponi, associated with the ClearWing Foundation for Biodiversity, to find these intriguing insects. The results of their studies were recently published in ZooKeys.

In their search for clearwing moths, they went deep into the virgin Malaysian jungle, where elephants, tigers, tapirs and other charismatic Southeast Asian animals roam, while dealing with the intense heat, humidity and countless blood-suckers.

In the end, however, their effort was worth it: on a bank of a crystal clear river, during the hottest hours of the day, the researchers discovered a new species of clearwing moth displaying behaviour known as mud-puddling.

“Mud-puddling is the process of sucking-up liquids in order to gain essential nutrients, such as salt or proteins”, explains Marta. “It has only recently been observed in clearwing moths and, similarly as in other Lepidopterans, it seems to be restricted to males”.

The newly discovered species was named Pyrophleps ellawi in honour of Marta and Paolo’s Malaysian friend EL Law who supported the team during their expeditions and who has a deep affinity for nature.

Curiously, rather than resembling a butterfly’s relative, the new moth looks like an insect from a whole different order. It mimics potter wasps.

“It has a slender body, long legs and transparent wings with a blue sheen in sunlight, similarly to some species of potter wasps”, says Marta.

Furthermore, while observing the moth in the wild, the authors noticed that it does not only look like a wasp – it also flies like one.

“There were potter wasps in the same area. In flight, the two insects were impossible to distinguish, they would always confuse us!”

The new species seems to be quite rare. During the authors’ three expeditions to Malaysia, they managed to see only eight individuals with each of them seen on a different day.

“So there we were: on our knees on a sandy beach, in the middle of the jungle, trying to film the 1.5 cm moth”, Marta recalls. “We didn’t have much time: a single clearwing would come around 2:00 PM and stay for several minutes only. We knew that once it flew away, we would not get another shot”.

“Could it be that their rarity is the reason why the behaviour of clearwing moths is practically unknown and why there are still new species waiting to be discovered?” the researchers wonder.

###

Original source:

Skowron Volponi MA, Volponi P (2017) A new species of wasp-mimicking clearwing moth from Peninsular Malaysia with DNA barcode and behavioural notes (Lepidoptera, Sesiidae). ZooKeys692: 129-139. Doi: 10.3897/zookeys.692.13587

 

An overlooked and rare new gall-inducing micromoth from Brazil

A new species and genus (Cecidonius pampeanus) of primitive monotrysian micromoth from the Brazilian Pampa biome has been recently discovered to induce scarcely noticeable galls under the swollen stems of the Uruguayan pepper tree.

Gall-inducing moths lay their eggs in the tree bark, where the larvae form the characteristic roundish swellings as they grow larger. In their turn, these galls attract various parasitoids and inquiline wasps – wasps that have lost the ability to form galls for their own eggs – and so they take advantage of the galls of other species, while under development. The inquilines modify the galls into larger ones which subsequently last longer and attract even more attention. As a result, even though abundant as young, the new moth’s larvae rarely survive and their density in the field later in life is low.

Moreiraetal_PressRelease_Image2While free-living gall moths are generally rare, the studied genus pupates on the ground, resulting in its being overlooked for over a century. Furthermore, the galls fall to the ground where the last instar larvae undergo a period of suspended development for months. They stay motionless within their gall until pupation and emerge as adults in the next growing season.

After all this time, this species has finally been recognised in the open access journal ZooKeys by an international research team, led by Dr. Gilson Moreira, Universidade Federal do Rio Grande do Sul, Brazil. In their paper, the scientists describe the gall, immature stages and adults of the moth. They also provide information on its natural history in conjunction with one of the associated parasitoid and inquiline wasps.

“It took several years to obtain a small number of C. pampeanus pupae and adults to use for the description,” say the authors.

“The existence of these galls has been known for more than a century. However, biologists believed they are induced by the inquiline wasps,” they explain. “Consequently, it turned out that the wasps do not induce galls, but rather modify them early in development into large and colourful, visually appealing galls.”

The study also provides strong evidence that the species is under threat of extinction and the scientists suggest that protective measures need to be taken to conserve it.

In fact, they found strikingly low levels of gene flow amongst populations of C. pampeanus. In their paper, the team also emphasises that, in case of extinction of the primary gall inducer, a whole insect community associated with their galls will follow. This could happen even before science becomes familiar with all of these species.

Open savannahs of southern Brazil, where populations of the new moth’s host plant (the Uruguayan pepper tree) are found, have been suffering from anthropic impact for decades, mostly caused by agriculture and cattle ranching.

Curiously, the present study is the first in Brazil to suggest that a micromoth and its associated fauna should be subjected to conservation measures.

Extant populations of the new species are distant and isolated from each other, being restricted to a small geographic area in the northeast Southern Brazilian “Campos” (= Pampean savannah), a neglected biome from a nature preservation perspective. Most of the moths have retreated to higher elevations, such as hilltops and hill slopes interspersed with small bushes, where they get shelter from the anthropic influence.

###

Original source:

Moreira GRP, Eltz RP, Pase RB, Silva GT, Bordignon SAL, Mey W, Gonçalves GL (2017) Cecidonius pampeanus, gen. et sp. n.: an overlooked and rare, new gall-inducing micromoth associated with Schinus in southern Brazil (Lepidoptera, Cecidosidae). ZooKeys 695: 37-74. https://doi.org/10.3897/zookeys.695.13320

New butterfly species discovered in Israel for the first time in 109 years

Vladimir Lukhtanov, entomologist and evolutionary biologist at the Zoological Institute in St. Petersburg, Russia, made a startling discovery: what people had thought was a population of a common species, turned out to be a whole new organism and, moreover – one with an interesting evolutionary history. This new species is named Acentria’s fritillary (Melitaea acentria) and was found flying right over the slopes of the popular Mount Hermon ski resort in northern Israel. It is described in the open access journal Comparative Cytogenetics.

“To me, it was a surprise that no one had already discovered it,” says Vladimir Lukhtanov.

“Thousands of people had observed and many had even photographed this beautifully coloured butterfly, yet no one recognised it as a separate species. The lepidopterists (experts in butterflies and moths) had been sure that the Hermon samples belonged to the common species called Persian fritillary (Melitaea persea), because of their similar appearance, but nobody made the effort to study their internal anatomy and DNA”.

In 2012, Vladimir Lukhtanov, together with his students, initiated an exhaustive study of Israeli butterflies using an array of modern and traditional research techniques. In 2013, Asya Novikova (until 2012, a master’s student at St. Petersburg University and, from 2013, a PhD student at the Hebrew University, Jerusalem) sampled a few fritillaries from Mt. Hermon.

It was at that time when the researchers noticed that the specimens “didn’t look right” – their genitalia appeared different from those of the typical Persian fritillary. Over the next few years, Lukhtanov and his students studied this population in-depth. They carried out sequencing DNA from the specimens and found that they had a unique molecular signature – very different from the DNA of any other fritillary.

The Acentria’s fritillary seems to be endemic in northern Israel and the neighbouring territories of Syria and Lebanon. Its evolutionary history is likely to prove interesting.

“The species is probably one of a handful of butterflies known to have arisen through hybridisation between two other species in the past,” says Lukhtanov. “This process is known to be common in plants, but scientists have only recently realised it might also be present in butterflies.”

This is the first new butterfly species discovered and described from the territory of Israel in 109 years.

###

Original source:

Lukhtanov VA (2017) A new species of Melitaea from Israel, with notes on taxonomy, cytogenetics, phylogeography and interspecific hybridization in the Melitaea persea complex (Lepidoptera, Nymphalidae). Comparative Cytogenetics 11(2): 325-357. https://doi.org/10.3897/CompCytogen.v11i2.12370

Origins of an enigmatic genus of Asian butterflies carrying mythological names decoded

A group of rare Asian butterflies which have once inspired an association with Hindu mythological creatures have been quite a chaos for the experts. In fact, their systematics turned out so confusing that in order to decode their taxonomic placement, scientists had to dig up their roots some 43 million years back.

Now, having shed new light on their ancestors, a team of researchers from the Biodiversity Institute of Ontario at University of Guelph, Agriculture and Agri-Food Canada and University of Vienna, published their findings in the open access journal Zoosystematics and Evolution.

CalinagaTogether, Drs. Valentina Todisco, Vazrick Nazari and Paul Hebert arrived at the conclusion that the enigmatic genus (Calinaga) originated in southeast Tibet in the Eocene as a result of the immense geological and environmental impact caused by the collision between the Indian and Asian subcontinents. However, the diversification within the lineage was far from over at that point. In the following epochs, the butterflies had to adapt to major changes when Indochina drifted away, leading to the isolation of numerous populations; and then again, when the Pleistocene climatic changes took their own toll.

To make their conclusions, the scientists studied 51 specimens collected from a wide range of localities spanning across India, South China, Laos, Vietnam, Myanmar and Thailand. For the first time for the genus, the authors conducted molecular data and combined it with an examination of both genitalia and wing patterns – distinct morphological characters in butterflies. While previous estimates had reported existence of anywhere between one and eleven species in the genus, the present study identified only four, while confirming how easy it is to mislabel samples based on earlier descriptions.

However, the researchers note that they have not sampled specimens from all species listed throughout the years under the name of the genus, so they need additional data to confirm the actual number of valid Calinaga species. The authors are to enrich this preliminary study in the near future, analysing both a larger dataset and type specimens in collaboration with the Natural History Museum of London that holds the largest Calinaga collection.

Despite being beautiful butterflies, the examined species belong to a genus whose name derives from the Hindu mythical reptilian creatures Nāga and a particular one of them – Kaliya, which is believed to live in Yamuna river, Uttar Pradesh, and is notorious for its poison. According to the Hindu myths, no sooner than Kaliya was confronted by the major deity Krishna, did it surrender.

“It seems that the modern taxonomy of Calinaga is in need of a Krishna to conquer these superfluous names and cleanse its taxonomy albeit after careful examination of the types and sequencing of additional material,” comment the authors.

###

Original source:

Todisco V, Nazari V, Hebert PDN (2017) Preliminary molecular phylogeny and biogeography of the monobasic subfamily Calinaginae (Lepidoptera, Nymphalidae). Zoosystematics and Evolution 93(2): 255-264. https://doi.org/10.3897/zse.93.10744

Portuguese moth’s mystery solved after 22 years

An unknown moth, collected from Portugal 22 years ago, has finally been named and placed in the tree of life thanks to the efforts of an international team of scientists. The moth was unambiguously placed in the family of geometer moths (Geometridae), commonly known as loopers or inchworms due to the characteristic looping gait of their larvae.

The new species description is published in the open access journal Nota Lepidopterologica, along with a taxonomic review of the genus Ekboarmia, thought to comprise four species in the western Mediterranean area.

The first specimen, a male, was found in 1995 in Lagoa de Santo André, south of Lisbon, near the Atlantic coast. Despite its unique appearance, the specialists did not find enough similarities with any other European species, making its classification impossible. When three females were finally found following an intensive search in 2009, the team of scientists hoped they would find enough evidence to solve the mystery.

“The discovered females had different wing patterns compared to the males, suggesting sexual dimorphism, adding another complexity in the identification. This new species could not have been classified on the basis of external characters alone,” explains Dieter Stüning from Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany.

In 2015, two specimens, a male and a female, have been DNA barcoded and recently became targets of detailed morphological examinations. DNA data played an essential role in demonstrating that the male and the female belong to the same species, whereas morphological structures finally provided unambiguous evidence to place the mystery moth in the geometrid genus Ekboarmia. The species name miniaria seemed appropriate to denote its small size. The tiny moth is the smallest in its genus whose other species are externally dissimilar.

Peder Skou from Denmark played a central role in the discovery of the species, tirelessly searching for more material to solve the questions. “Discovery of an undescribed and distinct macromoth from Europe is a rare occasion, because the continent’s fauna is probably the most exhaustively studied in the world,” explains Skou.

Pasi Sihvonen from the Finnish Museum of Natural History concludes: “Virtually nothing is known about the species. Altogether, only 11 specimens have been found between 1995 and 2011. Larvae of related species feed on juniper needles, which might also be the foodplant of the new species. We hope that the richly illustrated publication of the new moth will lead to new discoveries of this mysterious species. More data are needed, for instance, its conservation status cannot be evaluated due to insufficient life history and distribution data.”

###

Original source:

Skou P, Stüning D, Sihvonen P (2017) Revision of the West-Mediterranean geometrid genus Ekboarmia, with description of a new species from Portugal (Lepidoptera, Geometridae, Ennominae). Nota Lepidopterologica 40(1): 39-63. https://doi.org/10.3897/nl.40.10440

Gehry’s Biodiversity Museum – favorite attraction for the butterflies and moths in Panama

Ahead of Gehry’s Biodiversity Museum‘s opening in October 2014, PhD candidate Patricia Esther Corro Chang, Universidad de Panama, studied the butterflies and moths which had been attracted by the bright colours of the walls and which were visiting the grounds of the tourist site.

The resulting checklist, published in the open access journal Biodiversity Data Journal, aims to both evaluate the biodiversity and encourage the preservation and development of the Amador Causeway (Calzada de Amador) and the four Causeway Islands. The name of the islands derives from their being linked to each other and the mainland via a causeway made of rocks excavated during the construction of the Panama Canal.

The researcher reports a total of six butterfly and eight moth families, identified from the 326 specimens collected over the course of 10 months from the botanical garden of the museum and adjacent areas. They represent a total of 52 genera and 60 species.

IMG_0096Interestingly, the eye-catching bright colours of the walls of the museum seem to play an important role for the insect fauna of the area. Not only are numerous butterflies and moths being attracted to the site, but they also express curious behaviour. On various occasions, for example, a species of skipper butterfly was seen to show a clear preference for yellowish surfaces. In their turn, a number of butterfly predators, such as jumping spiders, are also frequenting the walls.

The article in the journal provides knowledge of the butterfly and moth fauna at the mainly vegetated study area, located on a narrow strip of water distant from the city of Panama.

###

Original source:

Corro-Chang P (2017) Behavioural notes and attraction on Lepidoptera around the Gehry’s Biodiversity Museum (Causeway, Calzada de Amador, Panamá, República de Panamá). Biodiversity Data Journal 5: e11410. https://doi.org/10.3897/BDJ.5.e11410