Singing in the rain: A new species of rain frog from Manu National Park, Amazonian Peru

A new rain frog species has been described from Amazonian Peru and the Amazonian foothills of the Andes. The frog, given the name Pristimantis pluvialis, was found by researchers from Southern Illinois University Carbondale, the University of Michigan, and the National University of San Antonio Abad of Cusco in Peru. The discovery is published in the open access journal ZooKeys.

Several individuals of P. pluvialis were found during nocturnal surveys near Manu National Park, a region recognized as having the highest diversity of reptiles and amphibians of any protected area.

The species has also been collected within the private conservation area Bosque Nublado, owned by the Peruvian NGO Perú Verde, and within the Huachiperi Haramba Queros Conservation Concession, the first such type of concession granted to a native community in Peru.

The new species is likely found within the park as well, bringing the number of known amphibian species in this area to 156. Similarly to other species within its genus, which is among the largest vertebrate genera, the new rain frog exhibits direct development. This means that it is capable of undergoing its entire life cycle without a free-living tadpole stage.

It can be distinguished from other members of its genus by call, skin texture, and the presence of a rostral papilla. It was given the name “pluvialis”, translatable to “rainy” from Latin, to denote the incredibly rain-soaked habitat it lives in (>8 meters of rain yearly), and because it was found calling only after heavy rains.

Unfortunately, when a fungal disease, known as the amphibian chytrid fungus, arrived in the area back in the early 2000s, many frog species in and around the region began to decline. Out of the studied ten individuals of the presently described new species, four were found to be infected. However, the impact of the disease on these particular rain frogs is still unknown, and their numbers do not seem to have decreased.Image 3

“This discovery highlights the need for increased study throughout the tropics, for example Manu NP and its surrounding areas have been well studied, but despite these efforts, new species are being continuously discovered,” points out first author Alex Shepack, a PhD student in the laboratory of co-author Dr Alessandro Catenazzi at Southern Illinois University.

###

Original source:

Shepack A, von May R, Ttito A, Catenazzi A (2016) A new species of Pristimantis (Amphibia, Anura, Craugastoridae) from the foothills of the Andes in Manu National Park, southeastern Peru. ZooKeys 594: 143-164. doi: 10.3897/zookeys.594.8295

Finding the real treasure of the Incas: Two new frog species from an unexplored region

Inaccessibility and mysticism surrounding the mist-veiled mountains of the central Andes make this region promising to hide treasures. With an area of 2197 km2, most of the Llanganates National Park, Ecuador, is nearly unreachable and is traversed only by foot. However, fieldwork conducted by researchers from the Museo de Zoología at Catholic University of Ecuador resulted in the discovery of a more real and tangible gem: biodiversity.

Among other surprises, during their expeditions the researchers discovered two new species of rain frogs, formally named P. llanganati and P. yanezi. The new species are characterized by the spiny appearance typical of several species inhabiting montane forests. The study was published in the open access journal ZooKeys.

The new rain frogs belong to the megadiverse genus Pristimantis. They are direct-developing frogs, which means that they lack a tadpole stage and therefore do not undergo metamorphosis.Amphibia

The Neotropical Andes houses a spectacular radiation of Pristimantis, especially in the Montane Forests of the eastern slopes of the Ecuadorian Andes. The species richness of this genus is still underestimated as a consequence of their cryptic morphology and the still sparse amphibian inventories in unexplored regions such as the Llanganates National Park.

The discovery reminds the authors of a mystic local legend dating from the 16th century, when the Inca Empire fell into the hands of Spanish conquerors. Word has it that in exchange for the young emperor’s life, Atahualpa, Incas offered to fill an entire room with tons of gold. However, the Spaniards broke their promise and the emperor was executed. A small group of loyal Incas led by General Rumiñahui decided to hide both, the mummy of Atahualpa and the gold, in the depths of the jungle of the Llanganates National Park.

###

Original source:

Navarrete MJ, Venegas PJ, Ron SR (2016) Two new species of frogs of the genus Pristimantis from Llanganates National Park in Ecuador with comments on the regional diversity of Ecuadorian Pristimantis (Anura, Craugastoridae). ZooKeys 593: 139-162. doi: 10.3897/zookeys.593.8063

One of 8 new endemic polyester bees from Chile bears the name of a draconic Pokemon

Among the eight new bee species that Spencer K. Monckton has discovered as part of his Biology Master’s degree at York University, there is one named after a popular draconic creature from the Japanese franchise Pokémon. Called the stem-nesting Charizard, the new insect belongs to a subgenus, whose 17 species are apparently endemic to Chile, yet occupy a huge variety of habitats.

The young scientist, who is currently a PhD student at the University of Guelph, studying sawfly systematics and phylogeography, has his work published in the open access journal ZooKeys.

Known as polyester bees, the family to which the new species belong is characterized by the curious secretions these bees produce. Once applied to the walls of their nest cells, the secretion dries into a smooth, cellophane-like lining.

The new bee species are endemic to Chile, yet they occupy a huge variety of habitats ranging from the hyper-arid Atacama Desert in the north, to moist forests of monkey puzzle trees in the south, spanning elevations from the Pacific coast to more than 3200 metres above sea level. All of them are also solitary and nest in hollow plant stems.

Although the new bee species might lack the fiery breath of the dragon-like Pokémon, much like its namesake, it is normally found around mountains. Also, like the fictional species, the new bee has a distinctively long, snout-like face and broad hind legs, with antennae in place of horns.male charizard 2 head

However, the stem-nesting Charizard bee, as well as the other new species, are tiny creatures that measure between 4 and 7 mm in length. Unlike the predominantly orange colouration of the Pokémon, both males and females are mostly dark brown to black, patterned with variable yellow markings.

Yet, sometimes these yellow markings can turn orange when specimens are preserved, as was the case for the first specimen that Spencer Monckton observed of this species, which, he says, “cemented the comparison”.

In his research paper Spencer Monckton not only describes eight new endemic polyester bees, but he also provides thoroughly illustrated keys for identification of both the males and females of each of the species.

###

Original source:

Monckton SK (2016) A revision of Chilicola (Heteroediscelis), a subgenus of xeromelissine bees (Hymenoptera, Colletidae) endemic to Chile: taxonomy, phylogeny, and biogeography, with descriptions of eight new species. ZooKeys 591: 1-144. doi: 10.3897/zookeys.591.7731

Hollywood star Brad Pitt shares a name with a new wasp species from South Africa

Not only did an international research team discover two new endoparasitic wasp species in South Africa and India, and significantly expanded their genera’s distributional range, but they also gave a celebrity name to a special one of them.

While thinking of a name for the new wasp, Dr Buntika A. Butcher, Chulalongkorn University, Thailand, recalled her long hours of studying in her laboratory right under the poster of her favourite film actor. This is how a parasitic wasp from South Africa was named after Hollywood star Brad Pitt. The researchers have published their findings in the open access journal ZooKeys.bradpitti wasp img2

The new wasp species, called Conobregma bradpitti, belongs to a large worldwide group of wasps parasitising in moth or butterfly caterpillars. These wasps lay their eggs into a host, which once parasitised starts hardening. Thus, the wasp cocoon can safely develop and later emerge from the ‘mummified’ larva. Despite their macabre behaviour, many of these wasp species are considered valuable in agriculture because of their potential as biological control.

Brad Pitt’s flying namesake is a tiny creature measuring less than 2 mm. Its body is deep brown, nearly black in colour, while its head, antennae and legs are brown-yellow. The wings stand out with their much brighter shades.

Interestingly, the wasp with celebrity name unites two, until now, doubtful genera. Being very similar, they had already been noted to have only four diagnostic features that set them apart. However, C. bradpitti shared two of those with each. Thus, the species prompted the solution of the taxonomic problem and, as a result, the two were synonymised.

In their paper, the authors from Chulalongkorn University, Thailand and the University of Calicut, India, also describe another new species of parasitic image 3wasp. It is the first from its subtribe spotted in the whole of India, while its closest ‘relative’ lives in Nepal.

###

Original source:

Butcher BA, Quicke DLJ, Shreevihar S, Ranjith AP (2016) Major range extensions for two genera of the parasitoid subtribe Facitorina, with a new generic synonymy (Braconidae, Rogadinae, Yeliconini). ZooKeys 584: 109-120. doi: 10.3897/zookeys.584.7815

Curious new bush species growing ‘bleeding’ fruits named by a US class of 150 7th graders

A class of 150 US 7th graders has helped select a name for a newly discovered plant, which amazes with its fruits that appear to be bleeding once they are cut open. Bucknell University biology professor Chris Martine and life science teacher Bradley Catherman challenged the students to come up with ideas for what to call the new Australian species last spring.

Looking for a way to engage local youngsters in biodiversity science, Martine scheduled a presentation to the collective 7th grade life science classes at Donald H. Eichhorn Middle School. As the day of his assembly approached, he started to think that the best way to generate interest might be to somehow allow the students to participate in the actual research he was doing in his lab at the time. Only, he knew there were few things he could do with 150 13- and 14-year olds sitting in a gymnasium.

“I emailed Mr. Catherman and I said, ‘How about we ask them to name a new species for me?’ explained Martine. “And then I showed up with live plants, preserved specimens, and my notes from the Outback – and we said, ‘Go ahead, tell us what to call this thing.'”

Nearly a year later, Martine and his co-authors, including two undergraduate students, have published the new species in the open access journal PhytoKeys. The news is coming just in time for the National Teacher Appreciation Day, thus giving tribute to Bradley Catherman, a life science teacher who is not afraid to step beyond the standard curriculum and make that extra step to actually engage his students with their studies.

OLYMPUS DIGITAL CAMERA

“I was really impressed with Mr. Catherman’s willingness to work outside of the typical curriculum on this,” said Martine, “In an age when K-12 teachers are increasingly pressured to ‘teach to the test’ he is still willing to think creatively and try something unusual.”

Curiously, the new flowering bush species ‘behaves’ nothing like an ordinary plant. While its unripened fruits are greenish white on the inside when cut open, they start ‘bleeding’ in no more than two minutes. The scientists have even filmed a video short showing how their insides turn bloody scarlet at first, before growing darker, appearing just like clotting blood.

A week after the presentation, each of the students submitted an essay in which they suggested a name, explained the meaning, and translated it into Latin (the language that scientific names are required to be in). Catherman and Martine then selected the two best essays for the inaugural Discovery Prize, a new middle school science award established by Martine and his wife, Rachel.

“As you might imagine, the suggestions ran the gamut from the silly to the scientific,” said Martine. “But for every request to name the species after a favorite food, family pet, or Taylor Swift, there were many suggestions based on the data the students had been provided.”

According to Martine, a number of the students suggested names based on two characteristics of the plant’s berries: the ‘bleeding’ unripened fruits and the dry and bone-hard mature ones. Based on this, the plant will now be known as Solanum ossicruentum, best translated to Australian blood bone tomato, with “ossi” meaning “bone” and “cruentum” meaning “bloody”. The species belongs to the genus of the tomato.mature fruit

The species is native to the sub-arid tropical zone of northern Australia. Martine collected the seeds, he grew his research plants from, during a 2014 expedition to Western Australia and the Northern Territory. However, specimens of the plant had actually been gathered for years before then.

“This is just one of thousands of unnamed Australian species that have been collected by dedicated field biologists and then stored in museums,” said Martine, who studied specimens of the new species in the Northern Territory Herbarium before hunting for it in the bush.

“There is a wealth of museum material just waiting to be given names – and, of course, the organisms represented by those specimens await that recognition, as well as the attention and protection that come with it.”

 

IMG_5089Luckily for Solanum ossicruentum, attention and protection are not too much of an issue.

“Not only is it widespread and fairly abundant,” said Martine, “but one of the healthiest populations occurs in Mirima National Park, a popular and easily-accessible natural area just outside the Western Australian town of Kununurra.”

“Plus, middle schoolers can be tough to deal with. I don’t think anyone in their right mind would mess with this plant, now,” the botanist joked.

###

Original source:

Martine CT, Cantley JT, Frawley ES, Butler AR, Jordon-Thaden IE (2016) New functionally dioecious bush tomato from northwestern Australia, Solanum ossicruentum, may utilize “trample burr” dispersal. PhytoKeys 63: 19-29. doi: 10.3897/phytokeys.63.7743

A new scorpion from California reveals hidden biodiversity in the Golden State

California is known for its high biological diversity. The state encompasses a wide variety of habitats, from temperate coastal scrub and cool redwood forests to high-elevation conifer forests and grasslands that are home to an equally diverse variety of plants and animals. Biologists have been intensively studying and characterizing the biodiversity of California for centuries.

Recent fieldwork by researchers Warren Savary and Rob Bryson uncovered a new species of scorpion in the foothills of the Sierra Nevada in northeastern California. It is related to several species in the genusPseudouroctonus, and is only the fourth new species of scorpion to be described from California in the past twenty years. The description is published in the open access journal ZooKeys.

The lead author, Warren Savary, is a field associate of the California Academy of Sciences and has been studying the scorpion diversity of California since the 1970s. He and a collaborator described a new species endemic to the White and Inyo Mountains in eastern California in 1991.

“California is home to a remarkable variety of scorpions,” says Savary. “However, the more I study them, the more I realize that we’ve only just scratched the surface. A lot of scorpion diversity remains to be described.” He and co-author Rob Bryson, a researcher at the University of Washington, have started using DNA to help better understand scorpion diversity.

“Scorpions have been around for a long time — over 400 million years — and many are quite similar in general appearance,” comments Bryson. “We can use DNA sequences to help us piece together how scorpions have evolved and how they are related. Despite looking similar, DNA often reveals that even assumed close relatives can be quite divergent.”

Savary and Bryson are working on publishing the descriptions of several other new species of scorpions from California. “2016 will be an exciting year for scorpion discoveries,” they promise.

###

Original source:

Savary WE, Bryson Jr RW (2016) Pseudouroctonus maidu, a new species of scorpion from northern California (Scorpiones, Vaejovidae). ZooKeys 584: 49-59. doi: 10.3897/zookeys.584.6026

Tracing the ancestry of dung beetles

One of the largest and most important groups of dung beetles in the world evolved from a single common ancestor and relationships among the various lineages are now known, according to new research by an entomologist from Western Kentucky University.

The study by Dr T. Keith Philips, recently published in the open access journal ZooKeys, provides important insights into the evolution and diversity of these dung beetles, which make up about half of the world’s dung beetle fauna.

The two tribes studied, the onthophagines and oniticellines, evolved from a single common ancestor and are found worldwide, except for Antarctica. These dung beetles make up the vast majority of species and dung beetle biomass in many ecosystems, feeding on mammal dung.

Dung beetles are well known to many people because many species are colorful and active in the daytime. Additionally, many taxa have unusual behaviors, such as making and rolling balls of dung away from a dung pile. Often thought of as nature’s garbage collectors, the important ecosystem service offered by dung beetle helps recycle nutrients, reduces parasites, and can even help seeds germinate.

While the two tribes studied do not have species that create balls, they instead have evolved many other diverse behaviors. This includes species that do not feed on dung but specialize on fungi, carrion, and dead millipedes. Many species that evolved from the same common ancestor even live in close association with termites and ants, where they might be feeding on nest debris.

“This is one of the most important groups of dung beetles that finally has a hypothesis on how they evolved and diversified on earth,” Philips notes. “The evolutionary scenario can now be tested and refined in the future with more data.” Although relatively well known, this group still may have as many as 1,000 undiscovered species left for scientists to document.

###

Original source:

Philips TK (2016) Phylogeny of the Oniticellini and Onthophagini dung beetles (Scarabaeidae, Scarabaeinae) from morphological evidence. ZooKeys 579: 9-57. doi: 10.3897/zookeys.579.6183.

Surprising exotic flies in the backyard: New gnat species from Museum Koenig’s garden

Little did scientists Kai Heller and Björn Rulik expect to discover a new species in Germany’s Alexander Koenig Museum‘s garden upon placing a malaise trap for testing purposes. Not only did an unknown and strikingly coloured gnat get caught, but it turned out to be a species, which showed to have much more in common with its relatives from New Zealand. Their study is published in the open access Biodiversity Data Journal (BDJ).

While the genus, which the new dark-winged fungus gnat species belongs to, likely originates from the Australasian region, it was so far represented by only three species in Europe. None of them, however, stands out with the contrasting colouration of the presently announced fourth one.

The new gnat, called Ctenosciara alexanderkoenigi after the German museum’s founder, is described based on a single specimen caught in the framework of the German Barcode of Life Project (GBOL). Over three days, the scientists observed the flying insects getting caught in a malaise trap, placed among the predominantly non-native plants in the Alexander Koenig Museum’s garden. This tent-like structure is designed to catch flying insects. Once they fly into its walls, they get funnelled into a collecting bottle.

Upon noticing the beautiful striking colour of the fly, the two specialists were convinced they had just discovered a new to science species. Most of these flies are bright brownish, and the only other orange European dark-winged fungus gnat – almost uniformly orange. In contrast, the new species stands out with a mixture of reddish, black and yellowish-white hues. Based on the DNA-barcode match with New Zealand specimens, the authors concluded that the species must have arrived from the Australasian region in Europe quite recently.

oo_47399

“It is a rare occurrence, that a species from the opposite end of the world is represented by a single specimen only and it is not yet clear, whether Ctenosciara alexanderkoenigi has a permanent population in Germany or if it was only introduced casually with plants or soil,” they explain. “Probably, the species was recently introduced from the Australasian Region. If it was a permanent member of the European fauna, a striking species like this would likely have been found earlier.”

In conclusion, the scientists note that modern technologies such as the high quality photo documentation, established as a standard by the BOLD project, DNA barcodes assigned with BINs, as well as facilitated by speedy publishing, have largely aided taxonomists to build on the biodiversity knowledge.

“We believe that the rapid description of Ctenosciara alexanderkoenigi, coupled with the BDJ reviewing system, might be a robust and ground-breaking way to accelerate and stabilise taxonomy in the future,” they finish their paper.

###

Original source:

Heller K & Rulik B (2016) Ctenosciara alexanderkoenigi sp. n. (Diptera: Sciaridae), an exotic invader in Germany? Biodiversity Data Journal 4: e6460. doi: 10.3897/BDJ.4.e6460

Two brand new dung beetle species from montane grazing sites and forests in Mexico

While carrying out a biodiversity study, a Mexican-Italian research team discovered three new dung beetle species in montane forests disturbed by livestock grazing. Mexico has been a mecca for naturalists, and its dung beetle species are among the best known in the world. This is why the discovery of new species there is noteworthy. The present study, published in the open-access journal ZooKeys, describes two of them and highlights the need to further explore the biodiversity of disturbed ecosystems.

Mexico is a country that holds a vast number of creatures and ecosystems. There is in fact a fascinating phenomenon: tropical forests that have close affinities with South America co-occurring with temperate and arid areas shared with North America. Thus, Mexico has been particularly attractive to explorers ever since the 19th century.

A group of animals that has woken up a special interest for studies in Mexico is the so-called ‘dung beetles’. As their name suggests, dung beetles are insects that feed mainly on mammal faeces.

For decades, an international research team, led by Dr Gonzalo Halffter, has studied dung beetles across the world, especially in Mexico. As a consequence, the Mexican species are some of the best-known. However, Dr Halffter and his team are not interested exclusively in dung beetles, but also in evolutive phenomena, the effects of land-use change, ecosystems modification by human activities, and conservation biology. Such concerns seem to be of particular importance now that the terrestrial ecosystems in Mexico have been severely destroyed and disturbed by people.

Image 2

Livestock is one of the major drivers of biodiversity loss worldwide, which makes the present discovery particularly impressive. With at least 58% of the area of Mexico occupied with livestock farming, dung beetles are essential in cleaning up. While studying their diversity at conserved forests and cattle grazing sites across the mountains of Mexico, the researchers found some new species of dung beetles.

The first to discover these new dung beetles was Victor Moctezuma, a student of Dr Gonzalo’s at the Instituto de Ecología of Mexico.

“I was carrying out sampling for my Masters Degree studies, but I had no idea that new dung beetles could be found in a forest that is disturbed by human activities, such as livestock grazing and land-use change,” recalls Moctezuma. “So I was really surprised when I discovered three dung beetle species.” One of these species has already been published.

Apart from the two new dung beetles, formally called Onthophagus clavijeroi and Onthophagus martinpierai, the present paper also provides theories about the current distributions of these insects across the Mexican mountains and their putative evolutive relationships. As a whole, the study highlights the importance of disturbed forest for species discovery and conservation.

###

Original source:

Moctezuma V, Rossini M, Zunino M, Halffter G (2016) A contribution to the knowledge of the mountain entomofauna of Mexico with a description of two new species of Onthophagus latreille, 1802 (Coleoptera, Scarabaeidae, Scarabaeinae). ZooKeys 572: 23-50. doi:10.3897/zookeys.572.6763

The lizard of consistency: New iguana species which sticks to its colors found in Chile

During a field trip at 3000 metres above sea level, a group of scientists, led by Jaime Troncoso-Palacios, Universidad de Chile, discovered a new endemic iguana species, in the mountains of central Chile, scientists. Noticeably different in size and scalation, compared to the rest of the local lizards, what initially grabbed the biologists’ attention was its colouration. Not only was it unlike the already described ones, but also appeared surprisingly consistent within the collected individuals, even regardless of their sex. Eventually, it was this peculiar uniformity that determined the lizard’s name L. uniformis. The study is published in the open-access journal ZooKeys.

The researchers found the lizards quite abundant in the area, which facilitated their observations and estimations. Apart from a thorough description of the new iguana along with its comparisons to its related species, the present paper also provides an in-depth discussion about the placement of the new taxon, which had been confused with other species in the past.

While most of the other lizards from the area and its surroundings often vary greatly in colouration and pattern between populations and sexes, such thing is not present in the new species. Both males and females from the observed collection have their bodies’ upper side in brown, varying from dark on the head, through coppery on the back and light brown on the tail. The down side of the body is mainly yellowish, while the belly – whitish. The only variables the scientists have noticed in their specimens are slight differences in the shade with two females demonstrating unusual olive hues on their snouts. These differences in morphology were also strongly supported by the molecular phylogeny through the analysis of mitochondrial DNA, which was performed by Dr. Alvaro A. Elorza, from Universidad Andres Bello.

Accustomed to life in highland rocky habitats with scarce greenery, these lizards spend their active hours, estimated to take place between 09:00 h and 18:00 h hidden under stones. However, they might not be too hard to find due to their size of about 8.5 cm for the males and their abundance in the studied area. The females are more slender and measure 7 cm in length on average.

Having caught one of their specimens while holding a yellow flower in its mouth, the scientists conducted further examination of the stomach contents of the studied individuals and concluded that the species is omnivorous, feeding mainly on plants as well as insects and roundworms.

In conclusion, the researchers showed that there is still a huge gap in the knowledge of the close relatives of the newly described species and their “challenging taxonomy”.

 

###

Original source:

Troncoso-Palacios J, Elorza AA, Puas GI, Alfaro-Pardo E (2016) A new species of Liolaemusrelated to L. nigroviridis from the Andean highlands of Central Chile (Iguania, Liolaemidae).ZooKeys 555: 91-114. doi: 10.3897/zookeys.555.6011