Species of the crab family Xanthidae go by many names: gorilla crabs, mud crabs, pebble crabs, rubble crabs – the list goes on. But when it was time to name a tiny, ‘furry’ new species from China, researchers drew unlikely inspiration from the video game League of Legends.
Gothus teemo was named after the character Teemo from the immensely popular MOBA (Multiplayer Online Battle Arena) thanks to its distinctive appearance.
Loosely resembling a raccoon, Teemo is small and fluffy with a brown and white intermingled fur coat. The new species’ small size, densely covered short setae (bristles), and brown-striped colouration quickly drew comparisons.
Published in the open-access journal Zoosystematics and Evolution, the discovery was made during an expedition to the coral reefs of the South China Sea. There researchers discovered the new species in the Xisha Islands (Paracel Islands) and Nansha Islands (Spratly Islands).
The team collected specimens while scuba diving, photographing them and conserving them for further study. The specimens are now housed at the Marine Biological Museum, Chinese Academy of Sciences in Qingdao, China.
This new-to-science crab represents not only a new species, but also an entirely new genus. Sticking to a theme, researchers named the genus after a game – albeit one created 2,500 years before League of Legends!
They chose the name Gothus for the genus, drawing inspiration from the ancient Chinese strategy board game, Go. The name alludes to the intermingled black and white patterns on the carapace of Gothus species, beneath which lie circular granules resembling the pieces of the game.
As part of their study, the researchers suggested the reclassification of the species Actaea consobrina into the genus Gothus. This reclassification was based on both morphological and molecular evidence.
Gothus teemo is by no means the only new species named after a video game character. Just last week, we shared a story from our Biodiversity Data Journal about a blind spider named after the Monster Hunter character Khezu – check out the story below!
Gothus teemo is yet another reminder that countless unknown creatures are just waiting to be discovered. The coral reefs of the South China Sea continue to be a rich source of new and fascinating species. And, who knows, perhaps there’s a Gothus tristana out there, too.
Original source
Yuan Z-M, Jiang W, Sha Z-L (2024) Morphological and molecular evidence for Gothus teemo gen. et sp. nov., a new xanthid crab (Crustacea, Brachyura, Xanthoidea) from coral reefs in the South China Sea, with a review of the taxonomy of Actaeodes consobrinus (A. Milne-Edwards, 1867). Zoosystematics and Evolution 100(3): 965-987. https://doi.org/10.3897/zse.100.117859
–
Follow Zoosystematics and Evolution on X and Facebook for more!
At the Pensoft’s stand, delegates learned about the scientific publisher’s versatile open-access journal portfolio, as well as related publishing services and the Horizon project where Pensoft is a partner.
Here’s a fun fact: the University of Bologna is the oldest one still in operation in the world. It is also etched in history for being the first institution to award degrees of higher learning.
This year, the annual event themed “Biodiversity positive by 2030” took place in the stunning Italian city of Bologna famous for its historical and cultural heritage, in a way building a bridge between the past of European civilisation and the future, which is now in our hands.
***
At the Pensoft’s stand, delegates learned about the scientific publisher’s versatile open-access journal portfolio of over 30 journals covering the fields of ecology and biodiversity, as well as other related services and products offered by Pensoft, including the end-to-end full-featured scholarly publishing platform ARPHA, which hosts and powers all Pensoft journals, in addition to dozens other academic outlets owned by learned societies, natural history museums and other academic institutions.
In addition to its convenient collaborative online environment, user interface and automated export/import workflows, what ARPHA’s clients enjoy perhaps the most, are the various human-provided services that come with the platform, including graphic and web design, assistance in journal indexing, typesetting, copyediting and science communication.
Visitors at the stand could also be heard chatting with Pensoft’s Head of Journal development, Marketing and PR: Iva Boyadzhieva about the publisher’s innovative solutions for permanent preservation and far-reaching dissemination and communication of academic outputs that do not match the traditional research article format.
For example, the Research Ideas and Outcomes (RIO) journal was launched in 2015 by Pensoft as an open-science journal that would publish ‘unconventional’ research outputs, such as Grant proposals, Policy briefs, Project reports, Data management plans, Research ideas etc. Its project-branded open-science collections are in fact one of the Pensoft’s products that enjoys particular attention to participants in scientific projects funded by the likes of the European Commission’s Horizon programme.
Another innovation by Pensoft that easily becomes a talking point at forums like ECCB, is the ARPHA Conference Abstract (ACA) platform, which is basically a journal for conference abstracts, where abstracts are treated and published much like regular journal articles (a.k.a. ‘mini papers’) to enable permanent preservation, but also accessibility, discoverability and citability. Furthermore, ACA has been designed to act as an abstracts submission portal, where the abstracts undergo review and receive feedback before being published and indexed at dozens of relevant scientific databases.
On Wednesday, delegates also got a chance to hear the talk by renowned vegetation ecologist at the ZHAW Zurich University of Applied Sciences and Editor-in-Chief at the Vegetation Classification and Survey journal: Prof. Dr. Jürgen Dengler. He presented findings and conclusions concerning neophytes in Switzerland, while drawing comparisons with other European countries and regions.
***
At this year’s ECCB, Pensoft took a stand as an active Horizon project participant too. At the publisher’s booth, the delegates could explore various project outputs produced within REST-COAST, SpongeBoost and BioAgora. Each of these initiatives has been selected by the European Commission to work on the mitigation of biodiversity decline, while aiming for sustainable ecosystems throughout the Old continent.
In all three projects, Pensoft is a consortium member, who contributes with expertise in science communication, dissemination, stakeholder engagement and technological development.
Having started earlier this year, SpongeBoost is to build upon existing solutions and their large-scale implementation by implementing innovative approaches to improve the functional capacity of sponge landscapes. The project is coordinated by the Helmholtz Centre for Environmental Research (UFZ) and will be developed with the active participation of 10 partnering institutions from seven countries across Europe.
In the meantime, since 2022, the five-year BioAgora project has been working towards setting up the Science Service for Biodiversity platform, which will turn into an efficient forum for dialogue between scientists, policy actors and other knowledge holders. BioAgora is a joint initiative, which brings together 22 partners from 13 European countries led by the Finnish Environment Institute (SYKE).
***
Still, REST-COAST, SpongeBoost and BioAgora were not the only Horizon projects involving Pensoft that made an appearance at ECCB this year thanks to the Pensoft team.
On behalf of OBSGESSION – another Horizon-funded project, Nikola Ganchev, Communications officer at Pensoft, presented a poster about the recently started project. Until the end of 2027, the OBSGESSION project, also led by the Finnish Environment Institute (SYKE) and involving a total of 12 partnering organisations, will be tasked with the integration of different biodiversity data sources, including Earth Observation, in-situ research, and ecological models. Eventually, these will all be made into a comprehensive product for biodiversity management in both terrestrial and freshwater ecosystems.
On Tuesday evening, the CO-OP4CBD (abbreviation for Co-operation for the Convention on Biological Diversity) team: another Horizon Europe project, where Pensoft contributes with expertise in science communication and dissemination, held a workshop dedicated to what needs to be done to promote CBD activities in Central and Eastern Europe.
On the next day, scientists from the EuropaBON consortium: another project involving Pensoft that had concluded only about a month ago, held a session to report on the final conclusions from the project concerning the state and progress in biodiversity monitoring.
Researchers have described a remarkable new species of velvet worm from the Ecuadorian Amazon.
Take a look below:
While the Tiputini velvet worm (Oroperipatus tiputini) may look friendly, it is an accomplished hunter that shoots a sticky substance from a pair of glands to trap its prey.
However, lead author Jorge Montalvo from the USFQ Museum of Zoology, notes that the species also has a softer side, with the mother taking care of her considerably lighter-coloured young after they are born.
Velvet worms, also known as onychophorans or peripatus, are rare and unique invertebrates often referred to as “living fossils” because they evolved over 500 million years ago, long before the appearance of dinosaurs.
Currently, only about 240 velvet worm species are known, inhabiting tropical regions in the Americas, southern Chile, Africa, Southeast Asia, Oceania, and New Zealand.
Published in the open-access journal Zoosystematics and Evolution, the discovery was more than 20 years in the making. It also represented the first study of Ecuadorian velvet worms for over 100 years.
“The research on this new species took several decades. I discovered the first individual of this new species in 2001, and we finally managed to describe it as part of Jorge Montalvo’s graduation thesis, who is now my colleague at the Museum of Zoology at USFQ. To complete the description, we used not only macromorphological descriptions but also high-magnification images obtained with a scanning electron microscope.”
Diego F. Cisneros-Heredia, one of the authors and director of the USFQ Museum of Zoology, Ecuador.
The researchers named the species after the Tiputini Biodiversity Station (TBS), part of the Yasuní Biosphere Reserve. The name recognises the hard work of the station’s management, research, and field team in protecting biodiversity.
The description of the Tiputini velvet worm raises the total number of described velvet worm species in Ecuador to seven. This species is the first from the Ecuadorian Amazon lowlands and the third in the western Amazon.
Original source
Montalvo-Salazar JL, Bejarano ML, Valarezo A, Cisneros-Heredia DF (2024) A new species of velvet worm of the genus Oroperipatus (Onychophora, Peripatidae) from western Amazonia. Zoosystematics and Evolution 100(3): 779-789. https://doi.org/10.3897/zse.100.117952
–
Follow Zoosystematics and Evolution on X and Facebook for more!
One of the most beautiful aspects of Nature is the endless variety of shapes, colours and behaviours exhibited by organisms. These traits help organisms survive and find mates, like how a male peacock’s colourful tail attracts females or his wings allow him to fly away from danger. Understanding traits is crucial for biologists, who study them to learn how organisms evolve and adapt to different environments.
To do this, scientists first need to describe these traits in words, like saying a peacock’s tail is “vibrant, iridescent, and ornate”. This approach works for small studies, but when looking at hundreds or even millions of different animals or plants, it’s impossible for the human brain to keep track of everything.
Computers could help, but not even the latest AI technology is able to grasp human language to the extent needed by biologists. This hampers research significantly because, although scientists can handle large volumes of DNA data, linking this information to physical traits is still very difficult.
To solve this problem, researchers from the Finnish Museum of Natural History, Giulio Montanaro and Sergei Tarasov, along with collaborators, have created a special language called Phenoscript. This language is designed to describe traits in a way that both humans and computers can understand. Describing traits with Phenoscript is like programming a computer code for how an organism looks.
Phenoscript uses something called semantic technology, which helps computers understand the meaning behind words, much like how modern search engines know the difference between the fruit “apple” and the tech company “Apple” based on the context of your search.
In their research article, newly published in the open-access, peer-reviewed Biodiversity Data Journal, the researchers make use of the new language for the first time, as they create semantic phenotypes for four species of dung beetles from the genus Grebennikovius. Then, to demonstrate the power of the semantic approach, they apply simple semantic queries to the generated phenotypic descriptions.
Finally, the team takes a look yet further ahead into modernising the way scientists work with species information. Their next aim is to integrate semantic species descriptions with the concept of nanopublications, “which encapsulates discrete pieces of information into a comprehensive knowledge graph”. As a result, data that has become part of this graph can be queried directly, thereby ensuring that it remains Findable, Accessible, Interoperable and Reusable (FAIR) through a variety of semantic resources.
***
Research paper:
Montanaro G, Balhoff JP, Girón JC, Söderholm M, Tarasov S (2024) Computable species descriptions and nanopublications: applying ontology-based technologies to dung beetles (Coleoptera, Scarabaeinae). Biodiversity Data Journal 12: e121562. https://doi.org/10.3897/BDJ.12.e121562
What expert recommendations did the BiCIKL consortium give to policy makers and research funders to ensure that biodiversity data is FAIR, linked, open and, indeed, future-proof? Find out in the blog post summarising key lessons learnt from the Horizon 2020 project.
***
Follow Biodiversity Data Journal on Facebook and X.
The discovery represents an inspiration for biodiversity conservation in an area the scientific community assumed to be a barren agricultural landscape of plant extinctions.
A new 5 cm-high plant species has been discovered on the western Andean slopes of Ecuador in an area where scientists once believed a rich diversity of native plants and animals had been totally destroyed.
The tiny plant, with iridescent foliage and white ephemeral flowers, was found in a farmer’s backyard during ongoing collaborative research expeditions in western Ecuador, led by teams of Ecuadorian and international researchers.
The expeditions resulted in the rediscovery of small forest fragments in a legendary hotspot known as Centinela. Selby Gardens research botanist, John L. Clark is the lead author of the article describing the new species in the peer-reviewed, open-access journal PhytoKeys.
The forest fragments are less than 20 miles from Santo Domingo, a major city of more than 300,000 people. Each fragment of Centinela is an isolated biodiversity island surrounded by large swaths of agricultural landscape largely devoid of forest.
A seminal publication titled “Biological extinction in western Ecuador” brought attention to the rapid loss of rainforest in western Ecuador. It was authored by the late botanists Alwyn Gentry and Calaway Dodson, Selby Gardens’ first Executive Director, whose research inspired names such as Gasteranthus extinctus in recognition of the loss of more than 70-97% of rainforests from the western Ecuadorian lowlands due to agriculture.
This discovery, amongst others, has shattered the preconception that the multitudes of life in the region had vanished entirely. The name Amalophyllon miraculum reflects the “miracle” of its discovery in the unexpected fragments of protected forests.
“The heroic efforts of local landowners who maintained small patches of forests – usually surrounding waterfalls – were instrumental in conserving these remnant forest fragments,” Clark says.
Clark JL, Fernández A, Zapata JN, Restrepo-Villarroel C, White DM, Pitman NCA (2024) Amalophyllon miraculum (Gesneriaceae), an exceptionally small lithophilous new species from the western Andean slopes of Ecuador. PhytoKeys 242: 307–316. https://doi.org/10.3897/phytokeys.242.118069
Researchers in Malaysia have discovered a tiny and distinctive plant that steals its nutrients from underground fungi.
Published as a new species in the open-access journal PhytoKeys, Thismia malayana belongs to a group of plants known as mycoheterotrophs. Unlike most plants, mycoheterotrophs do not perform photosynthesis. Instead, they act as a parasite, stealing carbon resources from the fungi on their roots.
The 2 cm-long plant’s unusual adaptation takes advantage of the mycorrhizal symbiosis, which is usually a mutually beneficial relationship between colonising fungi and a plant’s root system.
By stealing nutrients from fungi, it can thrive in the low-light conditions of dense forest understories where its highly specialised flowers are pollinated by fungus gnats and other small insects.
A team of botanists from the Forest Research Institute Malaysia (FRIM) collaborated with local naturalists and stakeholders to make the discovery in the tropical rainforests of Peninsular Malaysia. It was there they found the miniscule species hidden amongst leaf litter and growing near tree roots and old rotten logs.
The research team identified Thismia malayana in two locations: the lowlands of Gunung Angsi Forest Reserve in Negeri Sembilan and the hilly dipterocarp forests of Gunung Benom in the Tengku Hassanal Wildlife Reserve, Pahang.
Despite its small size, Thismia malayana is very sensitive to environmental changes and has been classified as Vulnerable according to the IUCN Red List criteria. Its limited distribution and the potential threat from trampling due to its proximity to hiking trails underscore the importance of continued conservation efforts.
Original source
Siti-Munirah MY, Hardy-Adrian C, Mohamad-Shafiq S, Irwan-Syah Z, Hamidi AH (2024) Thismia malayana (Thismiaceae), a new mycoheterotrophic species from Peninsular Malaysia. PhytoKeys 242: 229-239. https://doi.org/10.3897/phytokeys.242.120967
Researchers have discovered a new distinctive and secretive snake species in the Hejaz region of Saudi Arabia.
Rhynchocalamus hejazicus is a small snake bearing a black collar and reddish colouration. A completely black variation of of the species known as a ‘melanistic morphotype’ was also discovered.
The snake’s genus Rhynchocalamus previously had a large distribution gap, stretching between the Levant and coastal regions of Yemen and Oman. However, the new species is widely distributed between these areas, prompting the research team to dub it “the missing piece of the puzzle.”
Rhynchocalamus hejazicus inhabits sandy and stony soils with varying vegetation cover and is found in habitats disturbed by humans, suggesting the species should not be categorised as threatened according to IUCN criteria.
The species’ natural history and behaviour remain unclear, and further monitoring and conservation efforts are necessary to better understand its ecological dynamics. However, it appears that Rhynchocalamus hejazicus is predominantly nocturnal as all encountered individuals were active at night.
“The discovery of a new species of snake widespread in the central-western regions of Saudi Arabia is surprising and gives rise to the hope that more undiscovered species might be present in the Kingdom,” the authors say.
Most observations of the new species are the result of intense sampling efforts in a vast area around the ancient Arabic oasis city of AlUla, fostered by the Royal Commission for AlUla, Saudi Arabia, which is pushing forward scientific activities and explorations to promote conservation in the region. Recent research in Saudi Arabia has led to fruitful collaborations and findings like this study, to which many experts from multiple teams contributed significantly.
The discovery of such a distinctive snake highlights the existing gap in knowledge of rare and secretive species, and the need to enhance sampling efforts and monitoring strategies to fully capture species diversity in unexplored areas.
Original source
Licata F, Pola L, Šmíd J, Ibrahim AA, Liz AV, Santos B, Patkó L, Abdulkareem A, Gonçalves DV, AlShammari AM, Busais S, Egan DM, Ramalho RMO, Smithson J, Brito JC (2024) The missing piece of the puzzle: A new and widespread species of the genus Rhynchocalamus Günther, 1864 (Squamata, Colubridae) from the Arabian Peninsula. Zoosystematics and Evolution 100(2): 691-704. https://doi.org/10.3897/zse.100.123441
–
Follow Zoosystematics and Evolution on X and Facebook for more!
Within theBiodiversity Community Integrated Knowledge Library (BiCIKL) project, 14 European institutions from ten countries, spent the last three years elaborating on services and high-tech digital tools, in order to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of various types of data about the world’s biodiversity. These types of data include peer-reviewed scientific literature, occurrence records, natural history collections, DNA data and more.
By ensuring all those data are readily available and efficiently interlinked to each other, the project consortium’s intention is to provide better tools to the scientific community, so that it can more rapidly and effectively study, assess, monitor and preserve Earth’s biological diversity in line with the objectives of the likes of the EU Biodiversity Strategy for 2030 and the European Green Deal. Their targets require openly available, precise and harmonised data to underpin the design of effective measures for restoration and conservation, reminds the BiCIKL consortium.
Since 2021, the project partners at BiCIKL have been working together to elaborate existing workflows and links, as well as create brand new ones, so that their data resources, platforms and tools can seamlessly communicate with each other, thereby taking the burden off the shoulders of scientists and letting them focus on their actual mission: paving the way to healthy and sustainable ecosystems across Europe and beyond.
Now that the three-year project is officially over, the wider scientific community is yet to reap the fruits of the consortium’s efforts. In fact, the end of the BiCIKL project marks the actual beginning of a European- and global-wide revolution in the way biodiversity scientists access, use and produce data. It is time for the research community, as well as all actors involved in the study of biodiversity and the implementation of regulations necessary to protect and preserve it, to embrace the lessons learned, adopt the good practices identified and build on the knowledge in existence.
This is why amongst the BiCIKL’s major final research outputs, there are two Policy Briefs meant to summarise and highlight important recommendations addressed to key policy makers, research institutions and funders of research. After all, it is the regulatory bodies that are best equipped to share and implement best practices and guidelines.
Most recently, the BiCIKL consortium published two particularly important policy briefs, both addressed to the likes of the European Commission’s Directorate-General for Environment; the European Environment Agency; the Joint Research Centre; as well as science and policy interface platforms, such as the EU Biodiversity Platform; and also organisations and programmes, e.g. Biodiversa+ and EuropaBON, which are engaged in biodiversity monitoring, protection and restoration. The policy briefs are also to be of particular use to national research funds in the European Union.
One of the newly published policy briefs, titled “Uniting FAIR data through interlinked, machine-actionable infrastructures”, highlights the potential benefits derived from enhanced connectivity and interoperability among various types of biodiversity data. The publication includes a list of recommendations addressed to policy-makers, as well as nine key action points. Understandably, amongst the main themes are those of wider international cooperation; inclusivity and collaboration at scale; standardisation and bringing science and policy closer to industry. Another major outcome of the BiCIKL project: the Biodiversity Knowledge Hub portal is noted as central to many of these objectives and tasks in its role of a knowledge broker that will continue to be maintained and updated with additional FAIR data-compliant services as a living legacy of the collaborative efforts at BiCIKL.
The second policy brief, titled “Liberate the power of biodiversity literature as FAIR digital objects”, shares key actions that can liberate data published in non-machine actionable formats and non-interoperable platforms, so that those data can also be efficiently accessed and used; as well as ways to publish future data according to the best FAIR and linked data practices. The recommendations highlighted in the policy brief intend to support decision-making in Europe; expedite research by making biodiversity data immediately and globally accessible; provide curated data ready to use by AI applications; and bridge gaps in the life cycle of research data through digital-born data. Several new and innovative workflows, linkages and integrative mechanisms and services developed within BiCIKL are mentioned as key advancements created to access and disseminate data available from scientific literature.
While all policy briefs and factsheets – both primarily targeted at non-expert decision-makers who play a central role in biodiversity research and conservation efforts – are openly and freely available on the project’s website, the most important contributions were published as permanent scientific records in a BiCIKL-branded dedicated collection in the peer-reviewed open-science journal Research Ideas and Outcomes (RIO). There, the policy briefs are provided as both a ready-to-print document (available as supplementary material) and an extensive academic publication.
Currently, the collection: “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective” in the RIO journal contains 60 publications, including policy briefs, project reports, methods papers, conference abstracts, demonstrating and highlighting key milestones and project outcomes from along the BiCIKL’s journey in the last three years. The collection also features over 15 scientific publications authored by people not necessarily involved in BiCIKL, but whose research uses linked open data and tools created in BiCIKL. Their publications were published in a dedicated article collection in the Biodiversity Data Journal.
***
Visit the Biodiversity Community Integrated Knowledge Library (BiCIKL) project’s website at: https://bicikl-project.eu/.
Today, Pensoft celebrates one of its most distinguished editors and the world’s leading authority on thrips: Dr. Laurence Mound on the occasion of his 90th birthday.
Born in Willesden, London, on 22 April 1934, Dr. Mound is considered a world authority in the field. Having received his PhD from the University of London, he has been studying the biology and systematics of the order Thysanoptera for more than six decades. His academic recognitions include honorary membership at both the Royal and the Australian Entomological societies.
To date, Dr. Laurence Mound is the most prolific thrips researcher in history and has made monumental contributions to the field as the author of 500 publications, including landmark papers that have since shaped our understanding of the taxonomy and evolution of thrips. He has also published a number of books on thrip identification and control.
Having worked with admirable devotion and persistence to advance the knowledge of thrips on a global scale, Dr. Mound has described over 700 species and 100 genera. His studies have helped with species identifications in important pest groups, which in turn has had a pivotal role in the management of pests and the prevention of the establishment of new pest species.
One of the first-ever entomologists to join the ZooKeys editorial team, Mound has been the journal’s go-to editor for the order Thysanoptera for more than a decade. He oversaw the publication of 18 research papers at ZooKeys. He has also authored 11 articles in the journal, including especially valuable identification keys of different taxa from across the globe. He has also been one of the journal’s active reviewers.
“As Editor-in-Chief of ZooKeys, I wish you a ‘Happy 90th birthday!’ and thank you for your dedication and support of the journal since its very early days,”
“We are truly honoured to have been working with Laurence all these years! His passion and dedication have left a permanent mark on the field of entomology. We toast to the future success and happiness of a dear friend, editor, and author. May his work continue to inspire many more generations of entomologists and conservationists,”
Its name pays homage to the dark wizard Lord Voldemort, the fearsome antagonist of the Harry Potter series, drawing parallels with the ant’s ghostly appearance.
In the sun-scorched Pilbara region of north-western Australia, scientists have unearthed a mysterious creature from the shadows – a new ant species of the elusive genus Leptanilla.
The new species, Leptanilla voldemort – L. voldemort for short – is a pale ant with a slender build, spindly legs, and long, sharp mandibles. The species name pays homage to the dark wizard Lord Voldemort, the fearsome antagonist of the Harry Potter series, drawing parallels with the ant’s ghostly and slender appearance, and the dark underground environment, from which it has emerged.
Leptanilla voldemort was discovered during an ecological survey to document animals living belowground in the arid Pilbara region of north-western Australia. Only two specimens of the bizarre new ant species were found. Both were collected in a net that was lowered down a 25-metre drill hole and skilfully retrieved while scraping against the hole’s inner surface – an innovative technique for collecting underground organisms known as ‘subterranean scraping’.
Compared to other Leptanilla antspecies, L. voldemort has an extremely slender body as well as long, spindly antennae and legs. Together with its collection from a 25-metre-deep drill hole, this unusual morphologyhas left experts speculating as to whether it truly dwells in soil like other Leptanilla species, or exploits a different subterranean refuge, such as the air-filled voids and cracks that form within layers of rock deeper underground.
The long, sharp jaws of L. voldemort, however, leave little to the imagination.
“Leptanilla voldemort is almost surely a predator, a fearsome hunter in the dark. This is backed up by what we know from the few observations of specialised hunting behaviours in other Leptanilla antspecies, where the tiny workers use their sharp jaws and powerful stings to immobilise soil-dwelling centipedes much larger than them, before carrying their larvae over to feed on the carcass” said Dr Wong, lead author of the study.
The exact prey of L. voldemort, however, is not known, though a variety of other subterranean invertebrates, including centipedes, beetles and flies, were collected from the same locality.
There are over 14,000 species of ants worldwide, but only about 60 belong to the enigmatic genus Leptanilla. Unlike most ants, all species of Leptanilla are hypogaeic – their small colonies, usually comprising a queen and only a hundred or so workers, nest and forage exclusively underground. To adapt to life in darkness, Leptanilla workers are blind and colourless. The lilliputian members of the ant world, these ants measure just 1 to 2 millimetres – not much larger than a grain of sand – allowing them to move effortlessly through the soil. Due to their miniscule size, pale colouration, and unique underground dwellings, finding Leptanilla species is a challenge even for expert ant scientists, and much of their biology remains shrouded in mystery.
While Australia boasts some of the highest levels of ant diversity in the world – with estimates ranging from 1,300 to over 5,000 species – L. voldemort is only the second Leptanilla species discovered from the continent. The first, Leptanilla swani, was described nearly a century ago – from a small colony found under a rock in 1931 – and has almost never been seen since.
With its formation beginning approximately 3.6 billion years ago, the Pilbara is one of the oldest land surfaces on Earth. Despite the scorching summers and meagre rainfall, the region harbours globally important radiations of underground invertebrates. Adding to the unique biodiversity of this ancient landscape, the discovery of the enigmatic ant L. voldemort is a testament to the wizardry of nature and the mysteries of life in the depths of darkness.
Research article:
Wong MKL, McRae JM (2024) Leptanilla voldemort sp. nov., a gracile new species of the hypogaeic ant genus Leptanilla (Hymenoptera, Formicidae) from the Pilbara, with a key to Australian Leptanilla. ZooKeys 1197: 171-182. https://doi.org/10.3897/zookeys.1197.114072