Where Siberian orchids thrive: new hotspot of orchids discovered near Novosibirsk

Orchids of the Boreal zone are rare species. Most of the 28,000 species of the Orchid family actually live in the tropics. In the Boreal zone, ground orchids can hardly tolerate competition from other plants — mainly forbs or grasses. So they are often pushed into ecotones — border areas between meadows and forests, or between forests and swamps.

The variety of bloated lady’s-slipper (Cypripedium x ventricosum) within the boundaries of the Important Plant Area ‘Orchid Zapovednik’. Photo: Alexander Dubynin

Furthermore, there has been a decline in wild orchids all over North America and Eurasia, caused in part by human-induced destruction of their habitats, the transformation of ecosystems, and the harvesting of flowers from the wild. 

In the Novosibirsk region, 30 orchid species have been found, and about 40 in the entire Siberia.

Lesser yellow lady’s-slipper (Cypripedium calceolus) grows next to large-flowered lady’s-slipper and steadily forms a hybrid — bloated lady’s-slipper. Photo: Alexander Dubynin

It is no coincidence that many orchids are included in regional and national Red Book lists, with dedicated protected areas created to preserve them. When specialists find high concentrations of orchid species in a small area, it is always a significant discovery, in terms of both science and ecology. A recent publication in the open-access, peer-reviewed scientific journal Acta Biologica Sibirica describes one such area.

About 15 years ago, local biology teacher Yuri Panov found a place with mass growth of 13 orchid species in the Novosibirsk region. Together with his students, he studied the territory and took care of it, hanging birdhouses. The place was informally called School Orchid Zapovednik.

For the first time, this unique territory was discovered by a local biology teacher Yuri Panov, the head of the school environmental museum. Photo: Alexander Dubynin

In 2014, a wildfire from nearby farm fields broke out in the area. Fortunately, the orchid populations did not suffer much – in fact, this disturbance partially contributed to their growth in some areas, reducing competition from grasses and shrubs. However, the danger of frequent fires prompted Panov to invite specialists for a thorough botanical survey of the territory.

Researchers Alexander Dubynin, Inessa Selyutina and Alexandra Egorova of the Central Siberian Botanical Garden in Novosibirsk, and Mikhail Blinnikov of Kazan Federal University have been working in the area since 2017, registering the occurrences of orchids and photographing plants for the iNaturalist platform. There and in adjacent territories, they discovered a total of 14 orchid species, some of which were new to this territory and had never been registered before.

The area in  Novosibirsk region is truly unique. Here, researchers found one of the largest populations of large-flowered lady’s-slipper (Cypripedium macranthos) in Northern Eurasia, with up to 5,000 individual plants. The Cypripedium calceolus Lady’s-slipper orchid and the rare and beautiful bloated lady’s slipper (Cypripedium ventricosum) were also plentiful. Some of the discovered orchids require further study, such as the hybrids between Dactylorhiza and Gymnadenia and some unusual forms of Platanthera.

The researched area contained a wide variety of orchids. Video by Artem Shershnev

After an expert description of the territory, a new Important Plant Area was nominated for South Siberia. “Based on the analysis of plant species composition of protected areas in Novosibirsk Region,” Alexander Dubynin resumes, “we conclude that in situ preservation of orchids in the region is overall insufficient. It is therefore necessary to organize a new protected area ‘Orchid Zapovednik’ in the category of ‘botanical Zakaznik’ on 335 hectares with an explicit floral diversity conservation mandate and long-term orchid population monitoring.”

Over the past three years, the territory has increasingly attracted the attention of researchers and educators, becoming a kind of a ‘field laboratory’ for the study of orchid communities in South Siberia.

Original source:

Dubynin A, Selyutina I, Egorova A, Blinnikov M (2021) An orchid (Orchidaceae)-rich area recommended for preservation in Novosibirsk Region, Russia. Acta Biologica Sibirica 7: 1–18. https://doi.org/10.3897/abs.7.e63131

Senckenberg Nature Research Society transfers three journals to ARPHA Platform

Arthropod Systematics & Phylogeny, Vertebrate Zoology and Geologica Saxonica are the latest historic titles to select the various services and advanced technology provided by the OA-born scholarly publishing platform

One of the largest natural research associations in Germany, the Senckenberg Nature Research Society moved three of its international, open-access scholarly journals to the publishing platform ARPHA, following a recent contract with the scientific publisher and technology provider Pensoft.

Having opted for the white-label publishing solution, the journals remain under the brand of the Society and the Senckenberg Natural History Collections Dresden, one of the oldest natural-science museums in the world. Despite transitioning to a new platform, the past volumes of the journals remain accessible from a link on their website homepages.

Following their recent move to the Pensoft-developed publishing platform, Arthropod Systematics & PhylogenyVertebrate Zoology and Geologica Saxonica have not only acquired their own glossy and user-friendly websites, but have also taken advantage from ARPHA’s signature fast-track, end-to-end publishing system, which is to benefit all journal users: authors, reviewers and editors alike. In addition, the journals are already using many of the unique services offered by ARPHA, including publication in PDF, semantically enhanced HTML and machine-readable XML formats; advanced data publishing; sub-article-level usage metrics; automated export of sub-article elements and data to key aggregators; web-service integrations with major indexing and archiving databases; and others.

In particular, to the appeal of the authors, editors and reviewers, the ARPHA’s collaboration-centred online environment takes care after each submitted manuscript during the review, editing, publication, dissemination and archiving stages, so that no one needs to deal with locally stored files and their transfer by email or third-party cloud storages. Additionally, the platform is designed to regularly notify the users about any required action, thus sparing the burden of unnecessary communication and ensuring the speedy processing of manuscripts.

All three journals operate a Diamond Open Access policy, thanks to the support of the Senckenberg Nature Research Society, making the journals free to publish for all authors.

Arthropod Systematics & Phylogeny

Arthropod Systematics & Phylogeny is the successor of the historical Entomologische Abhandlungen, formerly published by the Museum of Zoology at Dresden.

Its scope covers the taxonomy, morphology, anatomy, phylogeny, historical biogeography and palaeontology of arthropod taxa, but excludes faunistics and research with a strong regional focus. Descriptions of new taxa are only welcome when embedded in a wider context, for example, a phylogenetic, evolutionary, or biogeographical framework.

Currently, the journal enjoys an Impact Factor of 1.51 and a continuously increasing Scopus CiteScore.

Vertebrate Zoology

Similarly, Vertebrate Zoology was preceded by Zoologische Abhandlungen, also formerly published by the Museum of Zoology at Dresden. Its first publications since the move to ARPHA Platform and part of the first journal volume for 2021 are already a fact.

The journal deals with research on taxonomy, morphology, anatomy, phylogeny, historical biogeography and palaeontology of vertebrates. Again, descriptions of new taxa should be integrated into a proper context, for example, a complete revision of a taxon. To support accountability and reproducibility in science and academia, the journal requires that studied specimens have to be deposited in a public scientific collection.

Vertebrate Zoology’s Impact Factor is currently standing at 1.167, while its last Scopus CiteScore reached 2.1 (2019).

Geologica Saxonica

Geologica Saxonica – Journal of Central European Geology, began its life in distant 1876, when it was founded under the name Mitteilungen aus dem Königlichen Mineralogisch-Geologischen und Prähistorischen Museum by German geologist Hanns Bruno Geinitz, renowned for his work on the Carboniferous and Cretaceous rocks and fossils of Saxony.

The journal’s scope ecompasses geology, paleontology, stratigraphy, petrography, mineralogy and geoscience history with focus on Central Europe.

“At Pensoft, we are delighted to support a world-renowned natural history association like Senckenberg in carrying its legacy and treasure of knowledge into our days and well beyond. Now, with ARPHA’s white-label solution, we’re certain that the journals will simultaneously preserve their identity and enjoy all perks of modern and technologically advanced publishing,”

comments Pensoft and ARPHA’s founder and CEO Prof. Lyubomir Penev.

“We are very pleased to have found reliable partners in Pensoft and the ARPHA platform for our three publications to further increase their visibility. Senckenberg’s scientific publications have a long – almost 200-year tradition – and are now shown in a new and innovative design with unprecedented information retrieval options!”

says Prof. Dr. Uwe Fritz, Editor-in-Chief of the journal Vertebrate Zoology and head of the Department of Zoology at Senckenberg Natural History Collections in Dresden.

###

Senckenberg is not the first prestigious German research institution to sign an agreement with Pensoft and ARPHA Platform. Since 2014, the Natural History Museum Berlin has trusted the publisher with its own historical titles in the Biology domain: Deutsche Entomologische Zeitschrift and Zoosystematics and Evolution. In 2017, Evolutionary Systematics by the University of Hamburg, another prominent journal with a legacy in the field of Zoology, followed suit. Last year, Zitteliana, a historical scholarly journal covering all fields of paleontology and geobiology by the State Natural History Collection of Bavaria (SNSB) also announced its joining the journal portfolio of Pensoft and ARPHA Platform.

###

Follow ARPHA Platform on Twitter and LinkedIn.

What can we learn from vanishing wildlife species: the case of the Pyrenean Ibex

The sad history of the Pyrenean Ibex (Capra pyrenaica pyrenaica) is a powerful example of species loss due to causes related to human activity. DNA analyses of Pyrenean Ibex found evidence that, after a demographic expansion about 20,000 years ago, its population went through a bottleneck caused by hunting, inbreeding and other factors, which ultimately caused its extinction. Their research is published in the open-access, peer-reviewed journal Zoosystematics and Evolution.

Only the French mountaineer and photographer Bernhard Clos managed to take a series of good photos of the Bucardo, as the Pyrenean Ibex is called on the Spanish side. Photo: Bernhard Clos

Likely the first extinction event of the 2000s in Europe, the sad history of the Pyrenean Ibex (Capra pyrenaica pyrenaica) is a powerful example of the ever-increasing species loss worldwide due to causes related to human activity. It can, however, give us valuable information on what should be done (or avoided) to halt this extinction vortex.

The distribution of this subspecies of Iberian Ibex was limited to the French and Spanish Pyrenees. Its first mention in an official written document, dating back to 1767, already refers to it as extremely rare. Like many other mountain goats, it was almost hunted to extinction before its killing became prohibited in 1913. Neither the institution of a national park (Ordesa & Monte Perdido), nor a conservation project with European LIFE program funding could stop the extinction of the Pyrenean Ibex eventually officialised on January 6, 2000. But the story of this charismatic animal did not end there – a controversial cloning program was started instantly with no scientific agreement, nor support from regional environmental NGOs, claiming that de-extinction was possible even in the absence of further DNA studies.

Laña, the last surviving Pyrenean Ibex, returned as a mounted animal to Torla-Ordesa on the 6th November 2012 after its controversial cloning attempt. Her skin is now exhibited in the visitors centre of Ordesa & Monte Perdido National Park. Photo: Manolo Grasa

To find out more about the drivers of its extinction, an international team composed of 7 nationalities built a database of all known museum specimens and reconstructed the demographic history of the Pyrenean Ibex based on DNA evidence. Their research is published in the open-access, peer-reviewed journal Zoosystematics and Evolution.

The research found that after a population expansion between 14,000 and 29,000 years ago (which is quite recent from a genetic point of view), a significant loss of genetic diversity followed between approximately 15,000 and 7,500 years BP, and continued until present. By that time, the Pyrenean Ibex also lived outside the Pyrenean mountain chain, but, gradually, its distribution was reduced to only one valley in the Ordesa National Park in the Spanish Pyrenees.

The adventures of the British hunter E.N. Buxton were published in 1893. This engraving represents a hunting party in the Ordesa Valley (Spanish Pyrenees).

Written sources confirm hunting of the Pyrenean Ibex from as early as the 14th century, and during the 19th and 20th century it became a common target for trophy hunters. Undoubtedly, hunting played an important role in reducing its population numbers and distribution area, but it is not possible – with the information currently available – to pinpoint it as the straw that broke the camel’s back. Infectious diseases that originate from livestock (for instance, those caused by the bluetongue virus, BTV, and sarcopses) are capable of decimating other subspecies of Iberian Ibex in extremely short periods of time.

While the relative contribution of various factors remains largely unknown, it seems that hunting and diseases transmitted from other animals have been effective in drastically reducing the number of Pyrenean ibexes over the last two centuries, because they were acting on an already genetically weakened population. This low genetic diversity, combined with inbreeding depression and reduced fertility, brought the population beyond the minimum viable size – from that point onwards, extinction was inevitable.

This case study shows the importance of historical biological collections for genetic analyses of extinct species. A privately owned 140-year-old trophy preserved in Pau, France, was genotyped as part of this research, showing that private individuals may possess material of high value. As there is little knowledge of such resources, the authors call for the creation of an online public database of private collections hosting biological material for the benefit of biodiversity studies. 

***


Original source:
Forcina G, Woutersen K, Sánchez-Ramírez S, Angelone S, Crampe JP, Pérez JM, Fandos P, Granados JE, Jowers MJ (2021) Demography reveals populational expansion of a recently extinct Iberian ungulate. Zoosystematics and Evolution 97(1): 211-221. https://doi.org/10.3897/zse.97.61854

New deadly snake from Asia named after character from Chinese myth ‘Legend of White Snake’

In 2001, the famous herpetologist Joseph B. Slowinski died from snakebite by an immature black-and-white banded krait, while leading an expedition team in northern Myanmar. The very krait that caused his death is now confirmed to belong to the same species identified as a new to science venomous snake, following an examination of samples collected between 2016 and 2019 from Yingjiang County, Yunnan Province, China.

The new krait species, found in Southwestern China and Northern Myanmar, is described by Dr Zening Chen of Guangxi Normal University, PhD candidate Shengchao Shi, Dr Li Ding from the Chengdu Institute of Biology at the Chinese Academy of Sciences, Dr Gernot Vogel of the Society for Southeast Asian Herpetology in Germany and Dr Jingsong Shi of the Institute of Vertebrate Paleontology and Paleoanthropology at Chinese Academy of Sciences. Their study is published in the open-access, peer-reviewed journal ZooKeys.

The new krait species Bungarus suzhenae. Photo by Dr Li Ding

The researchers decided to name the new species Bungarus suzhenae – Suzhen’s krait, after the mythical figure of Bai Su Zhen (白素贞) – a powerful snake goddess from the traditional Chinese myth ‘Legend of White Snake (白蛇传)’.

The legend says that, after thousands of years of practicing magic power, the white snake Bai Su Zhen transformed herself into a young woman and fell in love with the human man Xu Xian. Together, they ran a hospital, saving lots of human lives with medicine and magic. However, this love between goddess and human was forbidden by the world of the gods and, eventually, Bai Su Zhen was imprisoned in a tower for eternity. Since then, the Chinese regard her as a symbol of true love and good-heartedness. 

Illustration of the Legend of the White Snake, by Xin Wang, Chongqing museum of natural history

“The black-and-white banded krait is one of the snakes most similar to the white snake in nature, so we decided to name it after Bai Su Zhen,” say the authors.

In fact, the discovery of Suzhen’s krait was inspired by another accident from 2015, when the Chinese herpetologist Mian Hou was bitten by a black-and-white banded krait in Yingjiang. “It hurt around the wound, and the skin around it turned dark,” said the unfortunate man, who luckily survived. 

The skull of Bungarus suzhenae (3d-reconstructed model, by Jingsong Shi)

The authors of the present study realized that the bite was different from those of the many-banded krait B. multicinctus, which go without clear symptoms or pain around the wound. This clue eventually led to the discovery of Suzhen’s krait.

Because kraits are highly lethal, understanding their species diversity and geographic distribution is vital for saving human lives. Thanks to adequate description and classification of deadly snakes, research on venom, antivenom development and proper snakebite treatment can advance more rapidly. 

Suzhen’s krait Bungarus suzhenae preying on Yunnan Caecilian Ichthyophis bannanicus. Credit: GTO

The new study makes it easier to distinguish between krait species from China and adjacent southeastern Asia. “Three species of the black-and-white banded kraits from China were previously put under the same name – many-banded krait, which would hinder appropriate medical treatment,” the authors point out. Additionally, they suggest that antivenom for the many-banded krait be reevaluated accordingly.

Carried with the wind: mass migration of Larch Budmoth to the Russian High Arctic

Live Larch Budmoth walking on tundra, Vize Island, air temperature +3C, 30.07.2020. Photo by Dr Maria Gavrilo

Arctic habitats have fascinated biologists for centuries. Their species-poor insect faunas, however, provide little reward for entomologists – scientists who study insects – to justify spending several weeks or even months in the hostile environments of tundra or polar deserts. As a result, data on insects from the High Arctic islands are often based on occasional collecting and remain scarce.

Vize Island has uniform flatland landscape with lichen-moss vegetation typicalfor High-Arctic islands. Photo by Dr Maria Gavrilo

Vize Island, located in the northern part of the Kara Sea, is one of the least studied islands of the Russian High Arctic in terms of its biota. Scientists Dr Maria V. Gavrilo of the Arctic and Antarctic Research Institute in Russia and Dr Igor I. Chupin of the Institute of Systematics and Ecology of Animals in Russia visited this ice-free lowland island in the summer of 2020. 

“Our expedition studied the ecology of Ivory Gull”, Maria Gavrilo says, “but we also looked for other wildlife.” Because of the lack of data, scientists appreciate any observation on insects they can get from the High Arctic.

On the island, the team found hundreds of small moths. They were identified by Dr Mikhail V. Kozlov of the University of Turku, Finland, as Larch Budmoths – the first and only terrestrial invertebrate to ever be observed and collected on Vize Island. Their observations are published in the open-access, peer-reviewed journal Nota Lepidopterologica.

Live Larch Budmoth walking on tundra, Vize Island, air temperature +3C, 30.07.2020. The scientists believe that this moth arrived on the island two weeks earlier after travelling with the winds some 1200 km across the Arctic ocean. Photo by Dr Maria Gavrilo 

The scientists first observed live and freshly dead moths on the sandy banks of a pond near the meteorological station. Then, they saw hundreds of them at the sandy bottom of a river valley with shallow streams. Moths, single or in groups, were mostly found at the water’s edge, along with some fine floating debris. Despite extremely low daily temperatures (+2-5°C), flying moths were also spotted on several occasions.

On average, four dead moths per 10 square meters were counted along the sandy river bed during a survey on 19.07.2020. Photo by Dr Maria Gavrilo 

The larvae of Larch Budmoth feed on the needles of different coniferous trees. Because Vize Island is located 1000 km north of the tree limit, the scientists can be sure about the migratory origin of the moths observed on Vize Island. They were likely transported there on 12–14 July 2020 by strong winds coming from the continent. The nearest potential source population of Larch Budmoth is located in the northern part of the Krasnoyarsk Region, which means they travelled at least 1200 km.

“The Arctic islands will be colonised by forest insects as soon as changing environmental conditions allow the establishment of local populations.”

Dr Mikhail V. Kozlov, University of Turku

Importantly, some moths remained alive and active for at least 20 days after their arrival, which means that long-distance travel did not critically deplete resources stored in their bodies. The current changes in climate are making it easier for more southerly insects to invade species-poor areas in the High Arctic islands – provided they can reach them and survive there.

“The successful arrival of a large number of live moths from continental Siberian forests to Vize Island has once more demonstrated the absence of insurmountable barriers to initial colonisation of High Arctic islands by forest insects”, concludes Mikhail Kozlov, who has studied Arctic insects for decades. “The Arctic islands will be colonised by forest insects as soon as changing environmental conditions allow the establishment of local populations.”

***

Original source:

Gavrilo MV, Chupin II, Kozlov MV (2021) Carried with the wind: mass occurrence of Zeiraphera griseana (Hübner, 1799) (Lepidoptera, Tortricidae) on Vize Island (Russian High Arctic). Nota Lepidopterologica 44: 91–97. https://doi.org/10.3897/nl.44.63662

Why we shouldn’t blame women for gender disparity in science: Perspectives of women in zoology

A Brazilian network of female zoologists aims to oppose gender disparity in science

Guest blog post by Veronica Slobodian

Scientists are part of a rather sexist society and, therefore, ruled by a rather sexist social conduct. Nevertheless, women scientists attempt to thrive despite all setbacks provided by structural sexism (both explicit and implicit). 

Sadly, female scientists are more likely to suffer from harassment, be deprived from recognition for their work, and be more overburdened with household chores compared to their male counterparts. All these situations are being reinforced by social gender stereotypes. 

As a result, many women leave academia because of these hindrances and prejudice in a phenomenon known as “leaking pipeline”. To properly address those setbacks, we must first recognize the structural inequalities in academia, and then provide strategies to recruit, retain and promote students and faculty from underrepresented groups. 

In a rebuttal to an article published in Nature Communications (AlShebli et al. 2020, now retracted), which suggested that female protégés reap more benefits when mentored by men and, therefore, policies to promote female mentors need to be revisited, our group of female zoologists wrote the opinion paper “Why we shouldn’t blame women for gender disparity in academia: Perspectives of Women in Zoology“, now published in the open-access scientific journal Zoologia. Quickly supported by over 500 signatories from all around the world, the piece soon grew into the Women in Zoology network, which brings together zoologists from underrepresented people in the scientific field groups, especially women.

In this reply, we pointed to the methodological flaws and addressed the inherently problematic conclusions of AlShebli et al. (2020). We also demonstrated the gendered academic settings that systematically prejudices women and presented how some of the current diversity policies are positively changing the zoological field in Brazil. While writing our response, we realized these challenges and aches were in fact much more common in the field, so we decided to broaden the network to encompass all female zoologists who want a more fair and diverse Zoology. So, with the “Women in Zoology” network, our aim is to promote female zoologists, investigate their underrepresentation in Brazilian zoology, and propose policies to balance the situation. 

***

Original article: 

Slobodian V, Soares KDA, Falaschi RL, Prado LR, Camelier P, Guedes TB, Leal LC, Hsiou AS, Del-Rio G, Costa ER, Pereira KRC, D’Angiolella AB, de A Sousa S, Diele-Viegas LM (2021) Why we shouldn’t blame women for gender disparity in academia: perspectives of women in zoology. Zoologia 38: 1-9. https://doi.org/10.3897/zoologia.38.e61968 

***

Find more information about the “Women in Zoology” network on Instagram: @mulheresnazoologia.

Call for data papers describing datasets from Russia to be published in Biodiversity Data Journal

GBIF partners with FinBIF and Pensoft to support publication of new datasets about biodiversity from across Russia

Original post via GBIF

In collaboration with the Finnish Biodiversity Information Facility (FinBIF) and Pensoft Publishers, GBIF has announced a new call for authors to submit and publish data papers on Russia in a special collection of Biodiversity Data Journal (BDJ). The call extends and expands upon a successful effort in 2020 to mobilize data from European Russia.

Between now and 15 September 2021, the article processing fee (normally €550) will be waived for the first 36 papers, provided that the publications are accepted and meet the following criteria that the data paper describes a dataset:

The manuscript must be prepared in English and is submitted in accordance with BDJ’s instructions to authors by 15 September 2021. Late submissions will not be eligible for APC waivers.

Sponsorship is limited to the first 36 accepted submissions meeting these criteria on a first-come, first-served basis. The call for submissions can therefore close prior to the stated deadline of 15 September 2021. Authors may contribute to more than one manuscript, but artificial division of the logically uniform data and data stories, or “salami publishing”, is not allowed.

BDJ will publish a special issue including the selected papers by the end of 2021. The journal is indexed by Web of Science (Impact Factor 1.331), Scopus (CiteScore: 2.1) and listed in РИНЦ / eLibrary.ru.

For non-native speakers, please ensure that your English is checked either by native speakers or by professional English-language editors prior to submission. You may credit these individuals as a “Contributor” through the AWT interface. Contributors are not listed as co-authors but can help you improve your manuscripts.

In addition to the BDJ instruction to authors, it is required that datasets referenced from the data paper a) cite the dataset’s DOI, b) appear in the paper’s list of references, and c) has “Russia 2021” in Project Data: Title and “N-Eurasia-Russia2021“ in Project Data: Identifier in the dataset’s metadata.

Authors should explore the GBIF.org section on data papers and Strategies and guidelines for scholarly publishing of biodiversity data. Manuscripts and datasets will go through a standard peer-review process. When submitting a manuscript to BDJ, authors are requested to select the Biota of Russia collection.

To see an example, view this dataset on GBIF.org and the corresponding data paper published by BDJ.

Questions may be directed either to Dmitry Schigel, GBIF scientific officer, or Yasen Mutafchiev, managing editor of Biodiversity Data Journal.

The 2021 extension of the collection of data papers will be edited by Vladimir Blagoderov, Pedro Cardoso, Ivan Chadin, Nina Filippova, Alexander Sennikov, Alexey Seregin, and Dmitry Schigel.

This project is a continuation of the successful call for data papers from European Russia in 2020. The funded papers are available in the Biota of Russia special collection and the datasets are shown on the project page.

***

Definition of terms

Datasets with more than 5,000 records that are new to GBIF.org

Datasets should contain at a minimum 5,000 new records that are new to GBIF.org. While the focus is on additional records for the region, records already published in GBIF may meet the criteria of ‘new’ if they are substantially improved, particularly through the addition of georeferenced locations.” Artificial reduction of records from otherwise uniform datasets to the necessary minimum (“salami publishing”) is discouraged and may result in rejection of the manuscript. New submissions describing updates of datasets, already presented in earlier published data papers will not be sponsored.

Justification for publishing datasets with fewer records (e.g. sampling-event datasets, sequence-based data, checklists with endemics etc.) will be considered on a case-by-case basis.

Datasets with high-quality data and metadata

Authors should start by publishing a dataset comprised of data and metadata that meets GBIF’s stated data quality requirement. This effort will involve work on an installation of the GBIF Integrated Publishing Toolkit.

Only when the dataset is prepared should authors then turn to working on the manuscript text. The extended metadata you enter in the IPT while describing your dataset can be converted into manuscript with a single-click of a button in the ARPHA Writing Tool (see also Creation and Publication of Data Papers from Ecological Metadata Language (EML) Metadata. Authors can then complete, edit and submit manuscripts to BDJ for review.

Datasets with geographic coverage in Russia

In correspondence with the funding priorities of this programme, at least 80% of the records in a dataset should have coordinates that fall within the priority area of Russia. However, authors of the paper may be affiliated with institutions anywhere in the world.

***

Check out the Biota of Russia dynamic data paper collection so far.

Follow Biodiversity Data Journal on Twitter and Facebook to keep yourself posted about the new research published.

Guest blog post: New ectoparasite records from Honduras came from bats recorded since 2015

Guest blog post by Manfredo Alejandro Turcios-Casco

Since its foundation in 2015, the research team “The Big Bat Theory” has filled important information gaps regarding bats and their ectoparasites in Honduras. We started as just bachelor students mist-netting bats in our university (Universidad Nacional Autónoma de Honduras- UNAH) in our free time. Then we studied a lot about their natural history, distribution, and ecology, and, without any financial support, we started to travel the country studying bats.

The early years of “The Big Bat Theory” research group

At that time, we did not know that many of those records, in the future, would be important for Honduras. After saving some money, we travelled to different departments of Honduras such as Francisco Morazán, Valle, Gracias a Dios, Comayagua, and Santa Bárbara. Then we found support from Marcio Martínez to get to know La Mosquitia, and we started studying bats in unexplored regions. Because of this initiative, we collaborated with bat ectoparasite specialist Gustavo Graciolli and bat specialist Richard Laval, which resulted in the publication of our research in the open-access, peer-reviewed journal Check List.

As a result of this project, we were able to register for the first time the Spinturnicidae family in Honduras with the species Periglischrus iheringi and P. ojastii, a new record of Basilia ortizi (Nycteribiidae), Aspidoptera delatorrei, Strebla matsoni (found hosting Artibeus jamaicensis for the first time), and Neotrichobius bisetosus (Streblidae). The latter, previously only known from Venezuela, is the record with the northernmost locality published to date. We managed to increase the number of species of bat ectoparasites in Honduras to 48, which is 33 more than in Paraguay and 65 less than in Peru.

Species of ectoparasites recorded for the first time in Honduras: A) Periglischrus iheringi (Spinturnicidae); B) Periglischrus ojastii (Spinturnicidae); C) Aspidoptera delatorrei (Streblidae); D) Trichobius yunkeri (Streblidae); E) Basilia ortizi (Nycteribiidae); F) Neotrichobius bisetosus (Streblidae); G) Strebla matsoni (Streblide).

We definitely consider that this still misunderstood group needs more research effort locally and in general. Considering the lack of knowledge, the chances of discovering new species for the region, new records for the country or region, as well as new discoveries about the relationship and interactions with their hosts, are high. The number of bat species registered for Honduras is a predictor of the number of ectoparasite species that may exist. We also consider “La Reserva de la Biosfera del Río Plátano” an important site for the study of ectoparasites of bats. This is the most important area in Honduras for bat research and conservation, not only because of its high biodiversity, but also because it is a poorly studied region.

“We are very motivated to have carried out this study on new records of ectoparasites in bats, since it is the first investigation we do on this taxon, but we are sure that it will not be the last, since we have already begun to collect new data in collaboration with experts on this topic. We are sure that new discoveries still await us in this area, and we are eager to make new contributions and enrich the information on this taxon in Honduras and the world.”

Alejandro Orellana, co-author of the publication

***

Research paper:

Gustavo Graciolli G, Ávila-Palma HD, Ordoñez-Trejo EJ, Soler-Orellana JA, Ordoñez-Mazier DI, Martínez M, LaVal R, Turcios-Casco MA (2021) Additions of host associations and new records of bat ectoparasites of the families Spinturnicidae, Nycteribiidae and Streblidae from Honduras. Check List 17(2): 459–469. https://doi.org/10.15560/17.2.459

Highlands of diversity: Another new chameleon from the Bale region, Ethiopia

The Bale Mountains in south-central Ethiopia are considered to be one of the most unique centers of endemism, with an extraordinary number of plants and animals that can only be found there. Numerous species are already known from this Afromontane high-elevation plateau, making it a biodiversity hotspot, but ongoing research continues to reveal the presence of so far unknown and undescribed organisms. 

The new chameleon species, Trioceros wolfgangboehmei
Credit: Koppetsch et al.

Zoologists Thore Koppetsch and Benjamin Wipfler of the Research Museum Alexander Koenig in Bonn, Germany, and Petr Nečas from the Czech Republic, describe one such species: a new small-sized chameleon living on the edge of the forest. Their findings were published in the open-access, peer-reviewed life science journal Zoosystematics and Evolution

There were already two species of the chameleon genus Trioceros known to be restricted to the Bale region when Thore Koppetsch and his colleagues discovered another unique representative of this group from the northern slopes of the Bale Mountains. Interestingly, this new chameleon is considered to be part of a species complex of the wide-spread Ethiopian Chameleon Trioceros affinis. Previous studies have indicated divergence between its different populations across the Ethiopian Highlands – with some of them separated by the northern extension of the Great Rift Valley, which also shaped the evolution of early humans. 

Living individual of Trioceros wolfgangboehmei
Credit: Koppetsch et al.

The new chameleon, Trioceros wolfgangboehmei, has a special name. It honours the scientific work of Wolfgang Böhme, senior herpetologist at the Zoological Research Museum Alexander Koenig in Bonn, and his passion for chameleons and other reptiles.

Apart from its biogeographical patterns, the new species also has a characteristic appearance, displaying enlarged spiny scales on its back and tail that form a prominent crest. It usually lives on small trees and bushes at an altitude of above 2,500 m above sea level.

Head detail of the new chameleon, Trioceros wolfgangboehmei
Credit: Koppetsch et al.

“Given the variation in colour patterns and morphology between different populations of these chameleons in Ethiopia, it is likely that these groups still bear a higher hidden diversity than expected, which might be revealed by further ongoing investigations.”

Thore Koppetsch

Furthermore, the research team urges for sustainable preservation and conservation of its habitat to mitigate the impact of human activity.

***

Original source:

Koppetsch T, Nečas P, Wipfler B (2021) A new chameleon of the Trioceros affinis species complex (Squamata, Chamaeleonidae) from Ethiopia. Zoosystematics and Evolution 97 (1): 161–179. https://doi.org/10.3897/zse.97.57297 

A Red List of insect experts in Europe

New EC-funded project will identify trends in taxonomic expertise across Europe to identify gaps in expert knowledge

Europe’s largest bumblebee, Bombus fragrans, is currently assessed as an Endangered species.
Illustration by Denitza Peneva.

Insects are the largest taxonomic group in the animal kingdom. Three out of four described animal species belong to the class Insecta. They are widely distributed in terrestrial and aquatic environments. Indispensable to the ecosystem, insects drive key processes such as pollination, decomposition, soil formation and supply an essential part of the food webs.

Yet, insect populations have been catastrophically plummeting. For example, recent studies have shown a decrease of 75% of insect biomass in German Nature Reserves in less than 30 years, and the situation is probably no less dramatic anywhere in Europe. According to the European Red List of threatened species, one in ten bee species and a quarter of all grasshopper species are at risk of extinction. As it becomes clear how dependent on insects our ecosystems and our economy are, people gradually realise the dramatic consequences of insect decline.

One less known aspect of this global crisis is on the agenda today: the shrinking number of insect taxonomists, the scientists on whose highly specialised skills we depend to obtain knowledge on the diversity of organisms. Without taxonomists, no study of species or ecosystems would be possible, as we would not be able to recognise what biodiversity we are losing.

Here is why the European Commission has funded a new project to embark on the pioneer task to assess the status of taxonomic expertise on insects in Europe. A “Red List” of taxonomists will be compiled for the first time for any group of organisms. The effort is being undertaken by a diverse and interdisciplinary team of experts, including the organisation uniting the most important and largest European natural science collections (CETAF) and the world’s authority on assessing the risk of extinction of organisms: IUCN (the International Union for Conservation of Nature).

As with typical European Red List (ERL) assessments, normally applied to species level, the project involves the collection and evaluation of the available information about the number, location, qualification and field of specialisation of insect taxonomists and the application of systematic criteria to assess the risk of their “extinction”. This concept has never been applied to scientists before, but by using the ERL analogy, the project aims to combine those groups of insects and those countries that bear the highest risk of losing the associated taxonomic expertise and potential gaps.

Bringing together individual scientists, research institutions and learned societies from across Europe, the project will compare the trends and pull up recommendations to overcoming the risks, preserving and further evolving the expert capacity of this scientific community. Unlike species extinctions, the loss of taxonomic knowledge is reversible, especially when the needs are clear and the necessary resources are invested in education, training, career development and recognition.

###

Additional information:

CETAF is the European organization of Natural History Museums, Botanic Gardens and Research Centers with their associated natural science collections comprising 71 of the largest taxonomic institutions from 22 European countries (18 EU, 1 EEA and 3 non-EU), gathering expertise of more than 5,000 researchers. Their collections contain a wide range of specimens including animals, plants, fungi and rocks, and genetic resources which are used for scientific research and exhibitions. CETAF aims to promote training, research collaborations and understanding in taxonomy and systematic biology as well as to facilitate access to our natural heritage by sharing the information derived from the collections.

IUCN (the International Union for Conservation of Nature) is a membership Union composed of both government and civil society organisations. It harnesses the experience, resources and reach of its more than 1,400 Member organisations and the input of more than 17,000 experts. This diversity and vast expertise makes IUCN the global authority on the status of the natural world and the measures needed to safeguard it.

Pensoft is an independent academic publishing company and technology provider, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials. Through its Research and Technical Development department, the company is involved in various research and technology projects. Founded in 1992 “by scientists, for scientists” and initially focusing on book publishing, Pensoft is now a leading publisher of innovative open access journals in taxonomy and biodiversity science.