Unlikely wasp enemy of a serious alien pest in North America named Idris elba

A new species of wasp discovered in Mexico and named Idris elba, could help in managing the serious non-native bagrada bug, which already damages vegetable crops across North America.

While a mention of the British movie and music star is missing in its description, the species might prove to be a Heimdall-like ‘protector’ for many crops

A parasitic wasp was recently discovered in Guanajuato, Mexico, where it was found to parasitize the eggs of an invasive stink bug, known as the bagrada bug, which is a major pest of cruciferous vegetables. A research team from Colegio de Postgraduados (Mexico)Agriculture and Agri-Food Canada (AAFC) and the Florida State Collection of Arthropods (FSCA) collaborated to publish a study on the biology this species, Idris elba, and describe it as a species new to science.

The genus Idris was described in 1856 and now contains over 300 species and many more species are still undescribed. Species of Idris were previously known to only parasitize spider eggs. It was thus very unexpected when specimens of Idris were found to emerge from eggs of the bagrada bug by Dr. Refugio Lomeli-Flores and his team in Guanajuato. Advanced methods in molecular forensics were used by Dr. Tara Gariepy (AAFC) to match the DNA of the adult wasp with DNA left behind in the stink bug egg from which it emerged, independently confirming the results. The specimens were then sent to taxonomist, Dr. Elijah Talamas (FSCA), who determined that it was an undescribed species.

The discovery of this wasp marks an important step toward the development of efficient and natural control of the stink bug species Bagrada hilaris in North America. Commonly known as the bagrada bug, it is native to Africa, but is already an established and important pest of over 74 plant species in India, southern Europe, southern Asia and the Middle East.

Аcross the Atlantic, it has been known since 2008, when it was reported from Los Angeles, California (USA), followed by records from Coahuila state, Mexico, in 2014. Three years later, it was also found in the state of Guanajuato, which is responsible for over 70% of the country’s broccoli production, as well as the major import of broccoli and cauliflower in the USA and Canada. So far, measures to halt the bug’s invasion have proven largely ineffective, and its distribution is expected to reach new ecosystems of economical importance.

Non-parasitized (left) compared with a parasitized (right) bagrada bug egg, where an
Idris elba wasp was observed to emerge.
Image by Elijah J. Talamas

While not unheard of, it is uncommon for native parasitoids to attack an introduced host. Idris elba is exceptional because it demonstrates that these wasps can make the leap from parasitizing the eggs of spiders to the eggs of stink bugs. Having rejected the possibility of the species having been introduced alongside its host, the scientists note that the unexpected association could be either the result of a broad host range, or a case of lucky confusion, where the parasitoid tends to mistake the eggs of the stink bug for those of a spider.

It is no coincidence that this wasp has the species name “elba”. Dr. Talamas explained that explicitly naming the species after Idris Elba (the actor), also known as a patronym, would have to follow Latin grammar and become Idris elbai. By treating the second name as an arbitrary combination of letters, the grammar was avoided.

Four-time Golden Globe nominee for Best Actor, Idris Elba is a famous British actor, producer, writer, singer, DJ and producer, best known for a long list of blockbusters, including a good number of superhero movies, such as the Marvel series inspired by the myths of the Norse god Thor. There, Elba stars as Heimdall, whose almost namesake: Heimdallr, is a Norse deity believed to be the sole protector of the bridge linking the human world and the realm of the gods.

###

Original source:

Lomeli-Flores JR, Rodríguez-Rodríguez SE, Rodríguez-Levya E, González-Hernández H, Gariepy TD, Talamas EJ (2019) Field studies and molecular forensics identify a new association: Idris elba (Talamas), sp. nov. parasitizes the eggs of Bagrada hilaris (Burmeister). In: Talamas E (Eds) Advances in the Systematics of Platygastroidea II. Journal of Hymenoptera Research 73: 125-141. https://doi.org/10.3897/jhr.73.38025

Stuck in a Polish nuclear weapons bunker cannibal wood ants find the way home

In a recent development of the story about wood ants trapped in a post-Soviet nuclear weapons bunker in Poland, scientists, led by Prof. Wojciech Czechowski, with the decisive contribution of Dr. István Maák, both from the Museum and Institute of Zoology, Polish Academy of Sciences in Warsaw, deduced that the “colony” (in quotation marks because only workers were found), while lacking other food, had to survive on the corpses of imprisoned nestmates. By using an experimentally installed boardwalk, the ants were helped to get through the ventilation pipe that led out of the bunker and back to their maternal nest on the top.

The ants were discovered in 2013 thanks to a yearly campaign set to count hibernating bats in the same bunker. The scientific report was published in 2016 also in Journal of Hymenoptera Research. At that time, the scientists estimated the presence of at least several hundred thousand workers, arguably close to a million. The insects ended up in this situation as a result of large numbers of wood ants continuously falling down a ventilation pipe to never return to their nest on top of the bunker. Several years later, the “colony” still appeared to be thriving, despite being trapped in a confined space with no light, heat and obvious source of food.

In the newly published paper, the scientists sought out whether while lacking alternative food, the wood ants would consume the dead bodies of their conspecifics that were accumulating on the bunker floor. In nature, a similar behaviour occurs frequently during spring, when protein food is scarce. These are the so-called “ant wars”, which serve to set the boundaries of the territories of neighbouring conspecific colonies of wood ants, while simultaneously providing food in the form of the fresh corpses of the numerous victims.

Recent research has also shown that corpse consumption in wood ants is more common than it was previously thought, and that nestmate’s corpses can serve as an important food source not only in periods of food shortage.

Taking into account the clear signs of cannibalism in the bunker with practically no other organisms to feed on the ant cadavers, the scientists could safely deduce that the bunker “colony” survived indeed on consuming mostly dead nestmates.


“The present case adds a dimension to the great adaptive ability of ants to marginal habitats and suboptimal conditions, as the key to understanding their unquestionable eco-evolutionary success”, added the authors.


In the spring of 2016, the scientists decided to free the captive ants. At first, they released a group of one hundred ants from the bunker into the outskirts of the mother nest, in order to confirm the relation between the two partly isolated groups. As expected, no aggressive behaviour was observed. In September, a 3-metre-long vertical boardwalk with one end burrowed in the mound made by the bunker “colony” and the other one tucked inside the ventilation pipe was constructed. Soon, individual ants started to inspect the escape route. By February 2017, the nuclear weapon bunker was almost deserted. Meanwhile, the maternal wood ant colony still nests at the top of the bunker at the outlet of the ventilation pipe, and ants continue to fall down through the pipe. However, the boardwalk now allows them to move freely up and down.


“So, we can expect further intriguing ant behaviour,” comment the scientists.

Research article:

Rutkowski T, Maák I, Vepsäläinen K, Trigos-Peral G, Stephan W, Wojtaszyn G, Czechowski W (2019) Ants trapped for years in an old bunker; survival by cannibalism and eventual escape. Journal of Hymenoptera Research 72: 177-184. https://doi.org/10.3897/jhr.72.38972

Facebook and Instagram gave away the presence of the ‘Japan pig’ seahorse in Taiwan

Japan pig seahorse (Hippocampus japapigu) in its natural habitat at Hejie, Kenting, Taiwan

Credit: Chao-Tsung Chen
License: CC-BY 4.0

While monitoring of cryptic and elusive tiny creatures, such as pygmy seahorses that measure only 13 to 27 mm, might be too costly and time-consuming for research teams and institutions, the underwater activity might be proving of particular interest to photography and diving enthusiasts.

At least, this is what comes across from the recent reports of five miniature species identified from Taiwanese waters by local citizen scientists and passed along via Facebook and Instagram. Amongst the findings, there are two species that had never before been reported from the country, including last year’s media sensation: the ‘Japan pig’, considered to only be found in the “Land of the Rising Sun”. The study, conducted by the team Mr. Joseph Heard,  Drs Jeng-Ping Chen and Colin Wen from Tunghai University and Taiwan Ocean Research Institute, is published in ZooKeys, the very same open-access journal that saw the description of the species in 2018.

The scientists note that pygmy seahorses are largely unknown species and even basic information regarding their habitats is largely inconsistent and based on unofficial reports. As monitoring of marine wildlife can be expensive and time-consuming, especially regarding its small and cryptic representatives, the researchers decided to use “Phone a Friend” lifeline. Scuba divers and underwater photographers were approached on social media to help investigate pygmy seahorse diversity in Taiwan.

Their call resulted in 259 social media items, including 75 photos of 78 miniature creatures from their natural habitats at five different locations. Identified as five separate species, their discovery ranks Taiwan as one of the world’s biodiversity hotspots for pygmy seahorse, given that there are only seven species of pygmy seahorses out there.

A Japan pig seahorse (Hippocampus japapigu) in its natural habitat at Green Island, Taiwan.
Credit: Jolly Huang
License: CC-BY 4.0

Four of those were found at Green Island alone, a small volcanic Pacific island, measuring only 15 km2. 

Pygmy seahorse specimen collection from Taiwan for future examination is still undergoing.

Heard J, Chen J-P, Wen CKC (2019) Citizen science yields first records of Hippocampus japapigu and Hippocampus denise (Syngnathidae) from Taiwan: A hotspot for pygmy seahorse diversity. ZooKeys 883: 83-90. https://doi.org/10.3897/zookeys.883.39662 

Data mining applied to scholarly publications to finally reveal Earth’s biodiversity

At a time when a million species are at risk of extinction, according to a recent UN report, ironically, we don’t know how many species there are on Earth, nor have we noted down all those that we have come to know on a single list. In fact, we don’t even know how many species we would have put on such a list.

The combined research including over 2,000 natural history institutions worldwide, produced an estimated ~500 million pages of scholarly publications and tens of millions of illustrations and species descriptions, comprising all we currently know about the diversity of life. However, most of it isn’t digitally accessible. Even if it were digital, our current publishing systems wouldn’t be able to keep up, given that there are about 50 species described as new to science every day, with all of these published in plain text and PDF format, where the data cannot be mined by machines, thereby requiring a human to extract them. Furthermore, those publications would often appear in subscription (closed access) journals.

The Biodiversity Literature Repository (BLR), a joint project ofPlaziPensoft and Zenodo at CERN, takes on the challenge to open up the access to the data trapped in scientific publications, and find out how many species we know so far, what are their most important characteristics (also referred to as descriptions or taxonomic treatments), and how they look on various images. To do so, BLR uses highly standardised formats and terminology, typical for scientific publications, to discover and extract data from text written primarily for human consumption.

By relying on state-of-the-art data mining algorithms, BLR allows for the detection, extraction and enrichment of data, including DNA sequences, specimen collecting data or related descriptions, as well as providing implicit links to their sources: collections, repositories etc. As a result, BLR is the world’s largest public domain database of taxonomic treatments, images and associated original publications.

Once the data are available, they are immediately distributed to global biodiversity platforms, such as GBIF–the Global Biodiversity Information Facility. As of now, there are about 42,000 species, whose original scientific descriptions are only accessible because of BLR.

The very basic principle in science to cite previous information allows us to trace back the history of a particular species, to understand how the knowledge about it grew over time, and even whether and how its name has changed through the years. As a result, this service is one avenue to uncover the catalogue of life by means of simple lookups.

So far, the lessons learned have led to the development of TaxPub, an extension of the United States National Library of Medicine Journal Tag Suite and its application in a new class of 26 scientific journals. As a result, the data associated with articles in these journals are machine-accessible from the beginning of the publishing process. Thus, as soon as the paper comes out, the data are automatically added to GBIF.

While BLR is expected to open up millions of scientific illustrations and descriptions, the system is unique in that it makes all the extracted data findable, accessible, interoperable and reusable (FAIR), as well as open to anybody, anywhere, at any time. Most of all, its purpose is to create a novel way to access scientific literature.

To date, BLR has extracted ~350,000 taxonomic treatments and ~200,000 figures from over 38,000 publications. This includes the descriptions of 55,800 new species, 3,744 new genera, and 28 new families. BLR has contributed to the discovery of over 30% of the ~17,000 species described annually.

Prof. Lyubomir Penev, founder and CEO of Pensoft says,

“It is such a great satisfaction to see how the development process of the TaxPub standard, started by Plazi some 15 years ago and implemented as a routine publishing workflow at Pensoft’s journals in 2010, has now resulted in an entire infrastructure that allows automated extraction and distribution of biodiversity data from various journals across the globe. With the recent announcement from the Consortium of European Taxonomic Facilities (CETAF) that their European Journal of Taxonomy is joining the TaxPub club, we are even more confident that we are paving the right way to fully grasping the dimensions of the world’s biodiversity.”

Dr Donat Agosti, co-founder and president of Plazi, adds:

“Finally, information technology allows us to create a comprehensive, extended catalogue of life and bring to light this huge corpus of cultural and scientific heritage – the description of life on Earth – for everybody. The nature of taxonomic treatments as a network of citations and syntheses of what scientists have discovered about a species allows us to link distinct fields such as genomics and taxonomy to specimens in natural history museums.”

Dr Tim Smith, Head of Collaboration, Devices and Applications Group at CERN, comments:

“Moving the focus away from the papers, where concepts are communicated, to the concepts themselves is a hugely significant step. It enables BLR to offer a unique new interconnected view of the species of our world, where the taxonomic treatments, their provenance, histories and their illustrations are all linked, accessible and findable. This is inspirational for the digital liberation of other fields of study!”

###

Additional information:

BLR is a joint project led by Plazi in partnership with Pensoft and Zenodo at CERN.

Currently, BLR is supported by a grant from Arcadia, a charitable fund of Lisbet Rausing and Peter Baldwin.

Could biodiversity data be finally here to last?

While digital curation, publication and dissemination of data have been steadily picking up in recent years in scientific fields ranging from biodiversity and ecology to chemistry and aeronautics, so have imminent concerns about their quality, availability and reusability. What’s the use of any dataset if it isn’t FAIR (i.e. findable, accessible, interoperable and reusable)?  

With the all-too-fresh memory of researchers like Elizabeth “Lizzie” Wolkovich who would spend a great deal of time chasing down crucial and impossible-to-replicate data by means of pleading to colleagues (or their successors) via inactive email addresses and literally dusting off card folders and floppy disks, it is easy to imagine that we could be bound to witness history repeating itself once more. At the end of yet another day in today’s “Big Data” world, data loss caused by accidental entry errors or misused data standards seems even more plausible than an outdated contact or a drawer that has suddenly caught fire. 

When a 2013 study, which looked into 516 papers from 1991 to 2011, reported that the chances of associated datasets to be available for reuse fell by 17% each year starting from the publication date, it cited issues mostly dealing with the data having simply been lost through the years or stored on currently inaccessible storage media. However, the researcher of today is increasingly logging their data into external repositories, where datasets are swiftly provided with a persistent link via a unique digital object identifier (DOI), while more and more publishers and funders require from authors and project investigators to make their research data openly available upon the publication of the associated paper. Further, we saw the emergence of the Data Paper, a research article type later customised for the needs of various fields, including biodiversity, launched in order to describe datasets and facilitate their reach to a wider audience. So, aren’t data finally here to last? 

The majority of research funders, such as the EU’s Framework Programme Horizon2020, have already adopted Open Access policies and are currently working on their further development and exhaustiveness.

Credit: OpenAIRE Research Data Management Briefing paper, available to download from <https://www.openaire.eu/briefpaper-rdm-infonoads/download>.

Today, biodiversity scientists publish and deposit biodiversity data at an unprecedented rate and the pace is only increasing, boosted by the harrowing effects of climate change, species loss, pollution and habitat degradation among others. Meanwhile, the field is yet to adopt universal practices and standards for efficiently linking all those data together – currently available from rather isolated platforms – so that researchers can indeed navigate through the available knowledge and build on it, rather than duplicate unknowingly the efforts of multiple teams from across the globe. Given the limited human capabilities as opposed to the unrestricted amounts of data piling up by the minute, biodiversity science is bound to stagnate if researchers don’t hand over the “data chase” to their computers.

Truth be told, a machine that stumbles across ‘messy’ data – i.e. data whose format and structure have been compromised, so that the dataset is no longer interoperable, i.e. it fails to be retrieved from one application to another – differs little from a researcher whose personal request to a colleague is being ignored. Easily missable details such as line breaks within data items, invalid characters or empty fields could lead to data loss, eventually compromising future research that would otherwise build on those same records. Unfortunately, institutionally available data collections are just as prone to ‘messiness’, as evidenced by data expert and auditor Dr Robert Mesibov

“Proofreading data takes at least as much time and skill as proofreading text,” says Dr Mesibov. “Just as with text, mistakes easily creep into data files, and the bigger the data file, the more likely it has duplicates, disagreements between data fields, misplaced and truncated (cut-off) data items, and an assortment of formatting errors.”

Snapshot from a data audit report received by University of Cordoba’s Dr Gloria Martínez-Sagarra and Prof Juan Antonio Devesa while preparing their data paper, which describes the herbarium dataset for the vascular plants in COFC.

Similarly to research findings and conclusions which cannot be considered truthful until backed up by substantial evidence, the same evidence (i.e. a dataset) should be of questionable relevance and credibility if its components are not easily retrievable for anyone wishing to follow them up, be it a human researcher or a machine. In order to ensure that their research contribution is made in a responsible fashion in compliance with good scientific practices, scientists should not only care to make their datasets openly available online, but also ensure they are clean and tidy, therefore truly FAIR. 

With the kind help of Dr Robert Mesibov, Pensoft has implemented mandatory data audit for all data paper manuscripts submitted to the relevant journals in its exclusively open access portfolio to support responsibility, efficiency and FAIRness in biodiversity science. Learn more about the workflow here. The workflow is illustrated in a case study, describing the experience of University of Cordoba’s Dr Gloria Martínez-Sagarra and Prof Juan Antonio Devesa, while preparing their data paper later published in PhytoKeys. A “Data Quality Checklist and Recommendations” is accessible on the websites of the relevant Pensoft journals, including Biodiversity Data Journal.

CASE STUDY: Data audit for the “Vascular plants dataset of the COFC herbarium (University of Cordoba, Spain)”, a data paper in PhytoKeys

Following the submission of their data paper manuscript, which serves to describe the herbarium dataset of vascular plants at the University of Cordoba (Spain), to the open access journal PhytoKeys, Dr Gloria Martínez-Sagarra and Prof Juan Antonio Devesa received a data audit report, prepared by data specialist Dr Robert Mesibov

The dataset described in Dr Gloria Martínez-Sagarra’s and Prof Juan Antonio Devesa’s paper is registered and available from the GBIF portal.



As part of the routine workflow, which is mandatory for data papers submitted across relevant Pensoft journals, their work underwent a technical evaluation against a checklist of data quality features, compiled in such a fashion that it ensures uncompromised accessibility, readability and interoperability of the data, regardless of whether its next user is a human or a machine. 

To do so, it is crucial that any issues concerning the data structure and format within a dataset – which could potentially cause data loss down the line – need to be identified and addressed prior to the publication of the data paper, in fact, before it is even assigned to a subject editor. Only after the data audit is performed, can a manuscript proceed to peer review. In case there are major issues with the dataset, the data paper can be rejected right away, but resubmitted after the necessary corrections are applied.

In the report, the authors could find a list of identified issues as well as recommendations from Dr Mesibov. Similarly to a conventional peer review, these comments are meant to pinpoint any areas that need to be corrected straight away, as well as those that might only need a bit of further clarification. After receiving the data audit report, the authors take their turn to address the feedback.

Snapshot from the data auditing report received by Dr Gloria Martínez-Sagarra and Prof Juan Antonio Devesa for their data paper manuscript submitted to PhytoKeys.

In the present case, the report features a list of discrepancies between the counts of taxonomic records as listed in the data paper as opposed to those in the original dataset, i.e. verbatim.txt. Here, as it turned out, the disagreement is due to various taxonomic revisions that have taken place within the highlighted families since the dataset’s last update on GBIF.

Dr Gloria Martínez-Sagarra and Prof Juan Antonio Devesa sent back their comments on the issues addressed in the data audit report.

In other cases, however, data entry errors, such as inappropriately used fields and  non-compliance with the Darwin Core recommendations, had to be cleaned, in order to prevent data loss and compromised interoperability.

With the problematic data corrected, the manuscript proceeded to peer review and was accepted for publication five days later.

Editor’s user interface on the PhytoKeys website showing the progress of the manuscript from submission to acceptance.

Having followed the strong recommendations from Pensoft, the authors also re-uploaded their revised data to GBIF.

Data audit workflow provided for data papers submitted to Pensoft journals.

As a result, both the data paper and the associated dataset are not only published in an open access, peer-reviewed journal and safely stored at GBIF, but also verified as Findable, Accessible, Interoperable and Reusable. 

Thanks to the thorough work and additional efforts of University of Cordoba’s Dr Gloria Martínez-Sagarra and Prof Juan Antonio Devesa, future researchers working on the Andalusian flora can already rely on a real head start.

Find more about the Pensoft’s mandatory data quality workflow in this blog post.

Plant diversity and endemism in China: unreachable locations and diverse microclimates

The newly described Bulbophyllum reflexipetalum

A new issue of the scholarly, open-access and peer-reviewed journal PhytoKeys focuses on the Chinese biodiversity hotspots and their substantial role in understanding the country’s unique flora. The special issue embarks on a treasure hunt into China’s biodiversity hotspots, including the descriptions of 23 species previously unknown to science and new insights into the ecological diversity of ferns based on their DNA sequences.

In China, biodiversity-rich landscapes vary from the dry Northwest region, through the surrounded by massive mountain ranges of the Qinghai-Tibet Plateau, to the tropical and subtropical southern China. The combination of remote and hard to reach mountain areas and diverse microclimates promises high levels of endemism.


“With extended collaboration among Chinese scientists and coordination of networks on plant conservation and taxonomy across China, we synthesize a special issue entitled “Revealing the plant diversity in China’s biodiversity hotspots”, to present the latest findings by Chinese botanists, and to update knowledge of the flora for China and adjacent countries”, explained De-Zhu Li, professor of botany at Kunming Institute of Botany (KIB), Chinese Academy of Sciences (CAS), in the editorial.

Among the newly described species, four new members of the African violet family were found from a subtropical forest in Yunnan province in southern China, discovered by researchers from Xishuangbanna Tropical Botanical Garden, CAS and their collaborators. Half of them were found only from a sole population and require further botanical examinations to deploy the conservation priorities, remark the scientists.

In another paper, scientists Yun-Feng Huang and Li-Na Dong and Wei-Bin Xu, representatives of Guangxi Institute of Botany, revealed the discovery of a new species from the primrose family. Found nowhere outside the limestone areas in Liucheng county (Guangxi, China), this rare plant species is currently facing serious threats of extinction because of the fragility and sensitivity of its habitat to the environmental changes associated with the rapid economic development of China.


The newly described Lysimachia fanii
Credit: Yun-Feng Huang, Li-Na Dong, Wei-Bin Xu
License: CC-BY 4.0

Another team from the Guizhou University of Traditional Chinese Medicine and KIB describes a new representative of the parachute flowers. Ceropegia jinshaensis, characterized by the shape and size of its leaves and flowers. 


“More conservation efforts are needed in this region to counteract the increasing anthropogenic disturbance and destruction”, state the leading authors from KIB, who discovered a new species of orchid in the Eastern Himalaya biodiversity hotspot.

The special issue features the description of additional two orchid species, discovered in Motuo, located at the Himalayan border between China, Myanmar and India. The region is well known for its vertical vegetation system, varying from tropical forest to permanent glaciers. Ji-Dong Ya and Cheng Liu from the KIB and Xiao-Hua Jin from the Institute of Botany, CAS underline that the difficult access to the area allows the thriving and diversification of plants. 

Find the complete “Revealing the plant diversity in China’s biodiversity hotspots” special issue openly published in PhytoKeys at: https://phytokeys.pensoft.net/issue/1703/

Recursive language and modern imagination were acquired simultaneously 70,000 years ago

The lion-man sculpture from Germany (dated to 37,000 years ago) must have been first imagined by the artist by mentally synthesizing parts of the man and beast together and then executing the product of this mental creation in ivory. The composite artworks provide a direct evidence that by 37,000 years ago humans have acquired prefrontal synthesis.
Image by JDuckeck
[Public domain, https://commons.wikimedia.org/wiki/File:Lion_man_photo.jpg, Wikimedia Commons]

A genetic mutation that slowed down the development of the prefrontal cortex (PFC) in two or more children may have triggered a cascade of events leading to acquisition of recursive language and modern imagination 70,000 years ago.

This new hypothesis, called Romulus and Remus and coined by Dr. Vyshedskiy, a neuroscientist from Boston University, might be able to solve the long-standing mystery of language evolution. It is published in the open-science journal Research Ideas and Outcomes (RIO).

Numerous archeological and genetic evidence have already convinced most paleoanthropologists that the speech apparatus has reached essentially modern configurations before the human line split from the Neanderthal line 600,000 years ago. Considering that the chimpanzee communication system already has 20 to 100 different vocalizations, it is likely that the modern-like remodeling of the vocal apparatus extended our ancestors’ range of vocalizations by orders of magnitude. In other words, by 600,000 years ago, the number of distinct verbalizations used for communication must have been on par with the number of words in modern languages.

On the other hand, artifacts signifying modern imagination, such as composite figurative arts, elaborate burials, bone needles with an eye, and construction of dwellings arose not earlier than 70,000 years ago. The half million-year-gap between the acquisition of the modern speech apparatus and modern imagination has baffled scientists for decades.

While studying acquisition of imagination in children, Dr. Vyshedskiy and his colleagues discovered a temporal limit for the development of a particular component of imagination. It became apparent that modern children who have not been exposed to full language in early childhood never acquire the type of active constructive imagination essential for juxtaposition of mental objects, known as Prefrontal Synthesis (PFS).

Dr. Vyshedskiy explains:

“To understand the importance of PFS, consider these two sentences: “A dog bit my friend” and “My friend bit a dog.” It is impossible to distinguish the difference in meaning using words or grammar alone, since both words and grammatical structure are identical in these two sentences. Understanding the difference in meaning and appreciating the misfortune of the 1st sentence and the humor of the 2nd sentence depends on the listener’s ability to juxtapose the two mental objects: the friend and the dog. Only after the PFC forms the two different images in front of the mind’s eye, are we able to understand the difference between the two sentences. Similarly, nested explanations, such as “a snake on the boulder to the left of the tall tree that is behind the hill,” force listeners to use PFS to combine objects (a snake, the boulder, the tree, and the hill) into a novel scene. Flexible object combination and nesting (otherwise known as recursion) are characteristic features of all human languages. For this reason, linguists refer to modern languages as recursive languages.”

Unlike vocabulary and grammar acquisition, which can be learned throughout one’s lifetime, there is a strong critical period for the development of PFS and individuals not exposed to conversations with recursive language in early childhood can never acquire PFS as adults. Their language is always lacking understanding of spatial prepositions and recursion that depend on the PFS ability. In a similar manner, pre-modern humans would not have been able to learn recursive language as adults and, therefore, would not be able to teach recursive language to their own children, who, as a result, would not acquire PFS. Thus, the existence of a strong critical period for PFS acquisition creates a cultural evolutionary barrier for acquisition of recursive language.

The second predicted evolutionary barrier was a faster PFC maturation rate and, consequently, a shorter critical period. In modern children the critical period for PFS acquisition closes around the age of five. If the critical period in pre-modern children was over by the age of two, they would have no chance of acquiring PFS. A longer critical period was imperative to provide enough time to train PFS via recursive conversations.

An evolutionary mathematical model, developed by Dr. Vyshedskiy, predicts that humans had to jump both evolutionary barriers within several generations since the “PFC delay” mutation that is found in all modern humans, but not in Neanderthals, is deleterious and is expected to be lost in a population without an associated acquisition of PFS and recursive language. Thus, the model suggests that the “PFC delay” mutation triggered simultaneous synergistic acquisition of PFS and recursive language.

This model calls for:

  • two or more children with extended critical period due to “PFC delay” mutation;
  • these children spending a lot of time talking to each other;
  • inventing the recursive elements of language, such as spatial prepositions;
  • acquiring recursive-conversations-dependent PFS;
  • teaching recursive language to their offsprings.

The hypothesis is named after the celebrated twin founders of Rome, Romulus and Remus. Similar to legendary Romulus and Remus, whose caregiver was a wolf, the real children’s caregivers had an animal-like communication system with many words, but no recursion. Their parents could not have taught them spatial prepositions or recursion; children had to invent recursive elements of language themselves. Such an invention of a new recursive language has been observed in contemporary children, for example among deaf children in Nicaragua.

“The acquisition of PFS and recursive language 70,000 years ago resulted in what was in essence a behaviorally new species: the first behaviorally modern Homo sapiens,” concludes Dr. Vyshedskiy. “This newly acquired power for fast juxtaposition of mental objects in the process of PFS dramatically facilitated mental prototyping and led to fast acceleration of technological progress. Armed with the unprecedented ability to mentally simulate any plan and equally unprecedented ability to communicate it to their companions, humans were poised to quickly become the dominant species.”

Humans acquired an ability to trap large animals and therefore gained a major nutritional advantage. As the population grew exponentially, humans diffused out of Africa and quickly settled in the most habitable areas of the planet, arriving in Australia around 50,000 years ago. These humans were very much like modern humans since they possessed both components of full language: the culturally transmitted recursive language along with the innate predisposition towards PFS, enabled by the “PFC delay” mutation.

###

Original source:

Vyshedskiy A (2019) Language evolution to revolution: the leap from rich-vocabulary non-recursive communication system to recursive language 70,000 years ago was associated with acquisition of a novel component of imagination, called Prefrontal Synthesis, enabled by a mutation that slowed down the prefrontal cortex maturation simultaneously in two or more children – the Romulus and Remus hypothesis. Research Ideas and Outcomes 5: e38546. https://doi.org/10.3897/rio.5.e38546

Eleven new species of rain frogs discovered in the tropical Andes

One of the newly described species: Pristimantis chomskyi.
Its name honors Noam Chomsky, a renowned linguist from ASU.
Image by David Velalcázar, BIOWEB-PUCE.

Eleven new to science species of rain frogs are described by two scientists from the Museum of Zoology of the Pontifical Catholic University of Ecuador in the open-access journal ZooKeys. Discovered in the Ecuadorian Andes, the species are characterized in detail on the basis of genetic, morphological, bioacoustic, and ecological features.

On the one hand, the publication is remarkable because of the large number of new species of frogs. Regarding vertebrate animals, most studies only list between one and five new to science species, because of the difficulty of their collection and the copious amount of work involved in the description of each. To put it into perspective, the last time a single article dealt with a similar number of newly discovered frogs from the western hemisphere was in 2007, when Spanish scientist Ignacio de la Riva described twelve species from Bolivia.

The Rain frogs comprise a unique group lacking a tadpole stage of development. Their eggs are laid on land and hatch as tiny froglets.
Image by BIOWEB-PUCE.

On the other hand, the new paper by Nadia Paez and Dr Santiago Ron is astounding due to the fact that it comes as part of the undergraduate thesis of Nadia Paez, a former Biology student at the Pontifical Catholic University, where she was supervised by Professor Santiago Ron. Normally, such a publication would be the result of the efforts of a large team of senior scientists. Currently, Nadia Paez is a PhD student in the Department of Zoology at the University of British Columbia in Canada.

Unfortunately, amongst the findings of concern is that most of the newly described frog species are listed as either Data Deficient or Threatened with extinction, according to the criteria of the International Union for Conservation of Nature (IUCN). All of the studied amphibians appear to have very restricted geographic ranges, spanning less than 2,500 km2. To make matters worse, their habitats are being destroyed by human activities, especially cattle raising, agriculture, and mining.

Amongst the newly described species, there is the peculiar Multicolored Rain Frog, where the name refers to its outstanding color variation. Individuals vary from bright yellow to dark brown. Initially, the studied specimens were assumed to belong to at least two separate species. However, genetic data demonstrated that they represented a single, even if highly variable, species.

Variations of the Multicolored Rain Frog. Its name makes reference to the outstandingly varied colorations within the species.
Image by BIOWEB-PUCE.

The rest of the previously unknown frogs were either named after scientists, who have made significant contributions in their fields, or given the names of the places they were discovered, in order to highlight places of conservation priority.

###

Original source:

Paez NB, Ron SR (2019) Systematics of Huicundomantis, a new subgenus of Pristimantis (Anura, Strabomantidae) with extraordinary cryptic diversity and eleven new species. ZooKeys868: 1-112. https://doi.org/10.3897/zookeys.868.26766.

Revolutionary method could bring us much closer to the description of hyperdiverse faunas

A novel approach relying on a short sequence of mitochondrial DNA in conjunction with a lateral image of the holotype specimen was proposed to greatly accelerate species identification and description, especially when it comes to hyperdiverse taxa, such as parasitic wasps.

At today’s rate, it could take another two millennia for science to document all currently existing species of multicellular life

Two hundred and sixty-one years ago, Linnaeus formalized binomial nomenclature and the modern system of naming organisms. Since the time of his first publication, taxonomists have managed to describe 1.8 million of the estimated 8 to 25 million extant species of multicellular life, somewhere between 7% and 22%. At this rate, the task of treating all species would be accomplished sometime before the year 4,000. In an age of alarming environmental crises, where taking measures for the preservation of our planet’s ecosystems through efficient knowledge is becoming increasingly urgent, humanity cannot afford such dawdling.

“Clearly something needs to change to accelerate this rate, and in this publication we propose a novel approach that employs only a short sequence of mitochondrial DNA in conjunction with a lateral image of the holotype specimen,”

explain the researchers behind a new study, published in the open-access journal Deutsche Entomologische Zeitschrift (DEZ).
Description rate of parasitic wasps species (superfamily
Ichneumonoidea).
Data from Taxapad (Yu et al. 2016).

In standardized practices, it is required that experts conduct plenty of time- and labor-consuming analyses, in order to provide thorough descriptions of both the morphology and genetics of individual species, as well as a long list of characteristic features found to differentiate each from any previously known ones. However, the scientists argue, at this stage, it is impossible to pinpoint distinct morphological characters setting apart all currently known species from the numerous ones not yet encountered. To make matters worse, finding human and financial resources for performing this kind of detailed research is increasingly problematic.

This holds especially true when it comes to hyperdiverse groups, such as ichneumonoid parasitoid wasps: a group of tiny insects believed to comprise up to 1,000,000 species, of which only 44,000 were recognised as valid, according to 2016 data. In their role of parasitoids, these wasps have a key impact on ecosystem stability and diversity. Additionally, many species parasitise the larvae of commercially important pests, so understanding their diversity could help resolve essential issues in agriculture.

Meanwhile, providing a specific species-unique snippet of DNA alongside an image of the specimen used for the description of the species (i.e. holotype) could significantly accelerate the process. By providing a name for a species through a formal description, researchers would allow for their successors to easily build on their discoveries and eventually reach crucial scientific conclusions.

“If this style were to be adopted by a large portion of the taxonomic community, the mission of documenting Earth’s multicellular life could be accomplished in a few generations, provided these organisms are still here,”

say the authors of the study.

To exemplify their revolutionary approach, the scientists use their paper to also describe a total of 18 new species of wasps in two genera (Zelomorpha and Hemichoma) known from Área de Conservación Guanacaste, Costa Rica. Currently, the team works on the treatment of related species, which still comprise only a portion of the hundreds of thousands that remain unnamed.

###

Original source:

Meierotto S, Sharkey MJ, Janzen DH, Hallwachs W, Hebert PDN, Chapman EG, Smith MA (2019) A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment. Deutsche Entomologische Zeitschrift 66(2): 119-145. https://doi.org/10.3897/dez.66.34683