Interoperable biodiversity data extracted from literature through open-ended queries

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

The OpenBiodiv contribution to BiCIKL

Apart from coordinating the Horizon 2020-funded project BiCIKL, scholarly publisher and technology provider Pensoft has been the engine behind what is likely to be the first production-stage semantic system to run on top of a reasonably-sized biodiversity knowledge graph.

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

As of February 2023, OpenBiodiv contains 36,308 processed articles; 69,596 taxon treatments; 1,131 institutions; 460,475 taxon names; 87,876 sequences; 247,023 bibliographic references; 341,594 author names; and 2,770,357 article sections and subsections.

In fact, OpenBiodiv is a whole ecosystem comprising tools and services that enable biodiversity data to be extracted from the text of biodiversity articles published in data-minable XML format, as in the journals published by Pensoft (e.g. ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal), and other taxonomic treatments – available from Plazi and Plazi’s specialised extraction workflow – into Linked Open Data.

“I believe that OpenBiodiv is a good real-life example of how the outputs and efforts of a research project may and should outlive the duration of the project itself. Something that is – of course – central to our mission at BiCIKL.”

explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft.

“The basics of what was to become the OpenBiodiv database began to come together back in 2015 within the EU-funded BIG4 PhD project of Victor Senderov, later succeeded by another PhD project by Mariya Dimitrova within IGNITE. It was during those two projects that the backend Ontology-O, the first versions of RDF converters and the basic website functionalities were created,”

he adds.

At the time OpenBiodiv became one of the nine research infrastructures within BiCIKL tasked with the provision of virtual access to open FAIR data, tools and services, it had already evolved into a RDF-based biodiversity knowledge graph, equipped with a fully automated extraction and indexing workflow and user apps.

Currently, Pensoft is working at full speed on new user apps in OpenBiodiv, as the team is continuously bringing into play invaluable feedback and recommendation from end-users and partners at BiCIKL. 

As a result, OpenBiodiv is already capable of answering open-ended queries based on the available data. To do this, OpenBiodiv discovers ‘hidden’ links between data classes, i.e. taxon names, taxon treatments, specimens, sequences, persons/authors and collections/institutions. 

Thus, the system generates new knowledge about taxa, scientific articles and their subsections, the examined materials and their metadata, localities and sequences, amongst others. Additionally, it is able to return information with a relevant visual representation about any one or a combination of those major data classes within a certain scope and semantic context.

Users can explore the database by either typing in any term (even if misspelt!) in the search engine available from the OpenBiodiv homepage; or integrating an Application Programming Interface (API); as well as by using SPARQL queries.

On the OpenBiodiv website, there is also a list of predefined SPARQL queries, which is continuously being expanded.

Sample of predefined SPARQL queries at OpenBiodiv.

“OpenBiodiv is an ambitious project of ours, and it’s surely one close to Pensoft’s heart, given our decades-long dedication to biodiversity science and knowledge sharing. Our previous fruitful partnerships with Plazi, BIG4 and IGNITE, as well as the current exciting and inspirational network of BiCIKL are wonderful examples of how far we can go with the right collaborators,”

concludes Prof Lyubomir Penev.

***

Follow BiCIKL on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

You can also follow Pensoft on Twitter, Facebook and Linkedin and use #OpenBiodiv on Twitter.

Pensoft among the first 27 publishers to share prices & services via the Journal Comparison Service by Plan S

All journals published by Pensoft – each using the publisher’s self-developed ARPHA Platform – provide extensive and transparent information about their costs and services in line with the Plan S principles.

In support of transparency and openness in scholarly publishing and academia, the scientific publisher and technology provider Pensoft joined the Journal Comparison Service (JCS) initiative by cOAlition S, an alliance of national funders and charitable bodies working to increase the volume of free-to-read research. 

As a result, all journals published by Pensoft – each using the publisher’s self-developed ARPHA Platform – provide extensive and transparent information about their costs and services in line with the Plan S principles.

The JCS was launched to aid libraries and library consortia – the ones negotiating and participating in Open Access agreements with publishers – by providing them with everything they need to know in order to determine whether the prices charged by a certain journal are fair and corresponding to the quality of the service. 

According to cOAlition S, an increasing number of libraries and library consortia from Europe, Africa, North America, and Australia have registered with the JCS over the past year since the launch of the portal in September 2021.

While access to the JCS is only open to librarians, individual researchers may also make use of the data provided by the participating publishers and their journals. 

This is possible through an integration with the Journal Checker Tool, where researchers can simply enter the name of the journal of interest, their funder and affiliation (if applicable) to check whether the scholarly outlet complies with the Open Access policy of the author’s funder. A full list of all academic titles that provide data to the JCS is also publicly available. By being on the list means a journal and its publisher do not only support cOAlition S, but they also demonstrate that they stand for openness and transparency in scholarly publishing.

“We are delighted that Pensoft, along with a number of other publishers, have shared their price and service data through the Journal Comparison Service. Not only are such publishers demonstrating their commitment to open business models and cultures but are also helping to build understanding and trust within the research community.”

said Robert Kiley, Head of Strategy at cOAlition S. 

***

About cOAlition S:

On 4 September 2018, a group of national research funding organisations, with the support of the European Commission and the European Research Council (ERC), announced the launch of cOAlition S, an initiative to make full and immediate Open Access to research publications a reality. It is built around Plan S, which consists of one target and 10 principles. Read more on the cOAlition S website.

About Plan S:

Plan S is an initiative for Open Access publishing that was launched in September 2018. The plan is supported by cOAlition S, an international consortium of research funding and performing organisations. Plan S requires that, from 2021, scientific publications that result from research funded by public grants must be published in compliant Open Access journals or platforms. Read more on the cOAlition S website.

Pensoft’s ARPHA Publishing Platform integrates with OA Switchboard to streamline reporting to funders of open research

By the time authors open their inboxes to the message their work is online, a similar notification will have also reached their research funder.

Image credit: OA Switchboard.

By the time authors – who have acknowledged third-party financial support in their research papers submitted to a journal using the Pensoft-developed publishing platform: ARPHA – open their inboxes to the congratulatory message that their work has just been published and made available to the wide world, a similar notification will have also reached their research funder.

This automated workflow is already in effect at all journals (co-)published by Pensoft and those published under their own imprint on the ARPHA Platform, as a result of the new partnership with the OA Switchboard: a community-driven initiative with the mission to serve as a central information exchange hub between stakeholders about open access publications, while making things simpler for everyone involved.

All the submitting author needs to do to ensure that their research funder receives a notification about the publication is to select the supporting agency or the scientific project (e.g. a project supported by Horizon Europe) in the manuscript submission form, using a handy drop-down menu. In either case, the message will be sent to the funding body as soon as the paper is published in the respective journal.

“At Pensoft, we are delighted to announce our integration with the OA Switchboard, as this workflow is yet another excellent practice in scholarly publishing that supports transparency in research. Needless to say, funding and financing are cornerstones in scientific work and scholarship, so it is equally important to ensure funding bodies are provided with full, prompt and convenient reports about their own input.”

comments Prof Lyubomir Penev, CEO and founder of Pensoft and ARPHA.

 

“Research funders are one of the three key stakeholder groups in OA Switchboard and are represented in our founding partners. They seek support in demonstrating the extent and impact of their research funding and delivering on their commitment to OA. It is great to see Pensoft has started their integration with OA Switchboard with a focus on this specific group, fulfilling an important need,”

adds Yvonne Campfens, Executive Director of the OA Switchboard.

***

About the OA Switchboard:

A global not-for-profit and independent intermediary established in 2020, the OA Switchboard provides a central hub for research funders, institutions and publishers to exchange OA-related publication-level information. Connecting parties and systems, and streamlining communication and the neutral exchange of metadata, the OA Switchboard provides direct, indirect and community benefits: simplicity and transparency, collaboration and interoperability, and efficiency and cost-effectiveness.

About Pensoft:

Pensoft is an independent academic publishing company, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials.

All journals (co-)published by Pensoft are hosted on Pensoft’s full-featured ARPHA Publishing Platform and published in a way that ensures their content is as FAIR as possible, meaning that it is effortlessly readable, discoverable, harvestable, citable and reusable by both humans and machines.

***

Follow Pensoft on Twitter, Facebook and Linkedin.
Follow OA Switchboard on Twitter and Linkedin.

First discovery of microplastics from water trapped on plant leaves

“These phytotelmata are very small and have a short lifespan. The question is, therefore, how were they polluted with microplastics?”

Although they have not been around for long, microplastics have found their way to almost every ecosystem on the planet. They have been discovered in the soil, in rivers, in our food and bottled water, and even in the human body. Recently, a team of researchers found, for the first time, microplastics in water trapped in plant leaf axils.

The teasel Dipsacus.

Katarína Fogašová, Peter Manko, and Jozef Obona of the University of Prešov, Slovakia, initially set out to Eastern Slovakia to study the organisms living in the little water puddles forming in teasel leaf axils. 

Teasels of the genus Dipsacus have characteristic opposite leaves that grow on the stem above each other in several levels. As they clasp the stem, they form cup-like structures that collect water, known as telmata. 

“Teasel phytotelmata are a relatively common but overlooked aquatic microcosm with a very short-term occurrence of only 3 to 4 months.“

To their surprise, they found differently coloured fragments and fibers, some reaching 2.4 mm in length, which were identified as microplastics.

“These phytotelmata are very small and have a short lifespan,” the researchers write in their paper, which was published in the journal BioRisk. “The question is, therefore, how were they polluted with microplastics?”

Phytotelmata provided by teasel.

No other sources of contaminants were found in the studied area, so the fragments and fibers most likely came from polluted atmosphere, they suggest. Another theory is that snails may have transported them from the soil or from other plants, in or on their bodies. 

“The first finding of microplastics in small short-term water reservoirs created by plants is further evidence that contamination of this kind spreads through various pathways and probably no environment on Earth is safe, which of course makes our discovery quite disheartening,” the researchers say.

“On the other hand, the results of our research of teasel phytotelmata, as a very unusual and highly specific natural environment, offer many possibilities for use in researching the spatio-temporal characteristics of the spread of microplastic pollution and its potential impact on the plants themselves, as well as organisms bound to them by ecological relations.”

They suggest that, due to their abundance and theoretical ability to capture microplastics in several ways from the environment, teasel phytotelmata could be a good indicator of microplastic presence.

“Our publication therefore not only brings the first discovery of microplastic pollution of habitats of this type, but also the first proposal of a new approach to the use of teasel phytotelmata and similar micro-ecosystems provided by plants (or artificially created), as bioindicators of the presence of microplastics in the environment, possible sources and pathways of their spread through the environment and spatio-temporal changes in microplastic contamination.”

Research article:

Fogašová K, Manko P, Oboňa J (2022) The first evidence of microplastics in plant-formed fresh-water micro-ecosystems: Dipsacus teasel phytotelmata in Slovakia contaminated with MPs. BioRisk 18: 133-143. https://doi.org/10.3897/biorisk.18.87433

Images by Katarína Fogašová.

Follow BioRisk on Facebook and Twitter.

Novel research seeks to solve environmental challenges in BioRisk’s latest issue

The special issue features 35 studies presented at the International Seminar of Ecology 2021

Guest blog post by Prof. Stephka Chankova, PhD

The new special issue of BioRisk compiles materials presented at the International Seminar of Ecology – 2021. The multidisciplinary nature of modern ecology was demonstrated by the main topics of the Seminar: biodiversity and conservation biology, biotic and abiotic impact on the living nature, ecological risk and bioremediation, ecosystem research and services, landscape ecology, and ecological agriculture.

Research teams from various universities, institutes, organizations, and departments, both from Bulgaria and abroad, took part in the Seminar. Foreign participants included: Environmental Toxicology Research Unit (Egypt), Pesticide Chemistry Department, National Research Centre (Giza, Egypt); National Institute for Agrarian and Veterinary Research (Oeiras, Portugal), Centre for Ecology, Evolution and Environmental Changes (Lisbon, Portugal); Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences (Moscow, Russia).

Biorisk’s latest issue: Current trends of ecology

Some of the reports presented joint research of Bulgarian scientists and scientists from Germany, the Czech Republic, Lithuania, Romania, Slovenia, Spain, and the USA. After assessment by independent reviewers, the articles published in the journal cover the topics presented and discussed at the Seminar. 

A set of reports were focused on the anthropogenic and environmental impacts on the biota. Soil properties were shown as a factor that can modulate the effect of heavy metals, present in chronically contaminated soils. Different ap­proaches to overcome environmental pollution were presented and discussed: zeolites as detoxifying tools, microalgae for the treatment of contaminated water bodies, and a newly developed bio-fertilizer, based on activated sludge combined with a bacte­rial strain with detoxifying and plant growth-promoting properties. The clear need for the enlargement of existing monitoring program by including more bioindicators and markers was pointed out.

It was shown that, by using various markers for the evaluation of environmentally induced stress response at different levels (microbiological, molecular, biochemical), it is possible to gain insights of the organisms’ protection and the mechanisms involved in resistance formation. The contribution of increased DNA repair capacity and AOS to the development of environmental tolerance or adaptation was also shown.

Important results for understanding the processes of photoprotection in either cyanobacteria or algae, and higher plants were obtained by in vitro reconstitution of complexes of stress HliA protein with pigments. The crucial role of the cellular physiological state, as a critical factor in determining the resistance to environmental stress with Q cells was demonstrated.

Several papers were focused on the action of bioactive substances of plants origin. The bioactivity was shown to depend strongly on chemical composition. Origanum vulgare hirtum essential oil was promoted as a promising candidate for the purposes of “green” technologies. Analyzing secondary metabolites of plants, it was shown that their productivity in vitro is a dynamic process closely related to the plant growth and development, and is in close relation with the interactions of the plant with the environment.

Origanum vulgare hirtum. Photo by cultivar413 under a CC-BY 2.0 license

The influence of the agricultural system type on essential oil production and antioxidant activity of industrially-cultivated Rosa damascena in the Rose valley (Bulgaria) was reported, comparing organic vs conventional farming. The rose extracts from organic farming were shown to accumulate more phenolic compounds, corresponding to the higher antioxidant potential of organic roses.

A comparative study, based on official data from the statistics office of the EU and the Member countries, concerning viral infection levels in intensive and organic poultry farming, demonstrated that free-range production had a higher incidence of viral diseases with a high zoonotical potential.

Pollinators of Lavandula angustifolia, as an important factor for optimal production of lavender essential oil, were analyzed. It was concluded that, although lavender growers tend to place beehives in the fields for optimal essential oil production, it was crucial to preserve wild pollinators, as well.

Lavandula angustifolia inflorescence excluded from pollinators.

New data reported that essential oils and alkaloid-rich plant extracts had the strongest acetylcholinesterase inhibitory activity and could be proposed for further testing for insect control.

It was reported that the vegetation diversity of Bulgaria had still not been fully investigated. Grasslands, broad-leaved forests, and wetlands are the best investigated habitats, while data concerning ruderal, shrubland, fringe, and chasmophytic vegetation in Bulgaria are scarce.

Other important topics were reported and discussed in this session: the possibility of pest control using pteromalids as natural enemies of pests in various crops; the main reasons responsible for the population decrease of bumblebees – habitat destruction, loss of floral resources, emerging diseases, and increased use of pesticides (particularly neonicotinoids); the strong impact of temperature and wind on the distribution of zooplankton complexes in Mandra Reservoir, in Southeastern Bulgaria; an alternative approach for the ex-situ conservation of Stachys thracica based on in vitro shoot culture and its subsequent adaptation under ex vitro conditions.

Bombus hortorum/subterraneus collecting nectar in 1991, and B B. wurflenii/lapidarius worker robbing nectar of Gentiana asclepiadea in 2017

New information was presented concerning pre-monitoring geochemical research of river sediments in the area of Ada Tepe gold mining site (Eastern Rhodopes). The obtained results illustrate that the explored landscapes have been influenced by natural geochemical anomalies, as well as, impacted by human activity. The forests habitat diversity of Breznik Municipality was revealed, following the EUNIS Classification and initial data from the Ministry of Environment and Water and the Forestry Management Plans. It was shown that, in addition to the dominant species Quercus dalechampii, Quercus frainetto, Fagus sylvatica, Carpinus betulus, some artificial plantations with Pinus nigra and Pinus sylvestris were also present, as well as non-native species, such as Robinia pseudoacacia and Quercus rubra.

Models for Predicting Solution Properties and Solid-Liquid Equilibrium in Cesium Binary and Mixed Systems were created. The results are of great importance for the development of strategies and programs for nuclear waste geochemical storage. In conclusion, many results in different areas of ecology were presented in the Seminar, followed by interesting discussions. A lot of questions were answered, however many others remained open. A good platform for further discussion will be the next International Seminar of Ecology – 2022, entitled Actual Problems of Ecology.

Citizen scientists help expose presence of invasive Asian bamboo longhorn beetle in Europe

A worryingly high number of Asian bamboo longhorn beetles turn out to have been emerging across Europe for about a century already, finds an international research team. Curiously, the records of the invasive, non-native to the Old Continent species are mostly sourced from citizen scientists and online platforms, which proves the power of involving the public in species monitoring. The study is published in the open-access, peer-reviewed scientific journal BioRisk.

A worryingly high number of Asian bamboo longhorn beetles (Chlorophorus annularis) turn out to have been emerging across Europe for about a century already, finds an international research team, headed by researchers from the Center of Natural History, University of Hamburg, Germany. Curiously, the recent records of the invasive, non-native to the Old Continent species are mostly sourced from citizen scientists and online platforms, which proves the power of involving the public in species monitoring. The study is published in the open-access, peer-reviewed scientific journal BioRisk.

In our globalised world, which has already become victim to climate change and biodiversity loss, non-native species present a further threat to our ecosystems. Thus, the rising accounts of newly recorded alien species are of serious concern to both scientists and (inter)national institutions. However, surveying non-native species remains limited to a small fraction of species: those known to be particularly invasive and harmful.

One of the multitude of non-native species that are currently lacking efficient and coordinated surveying efforts is the Asian bamboo longhorn beetle (Chlorophorus annularis). Naturally occurring in temperate and tropical Southeast Asia, the insect feeds on a variety of plants, but prefers bamboo. Thus, due to the international trade of bamboo and the insects ‘travelling’ with the wood, the species has continuously been expanding its distribution around the world. Its first appearance in Europe was recorded back in 1924, when it was identified in England.

Bamboo longhorn beetle captured in Braintree, United Kingdom
Photo by Stephen Rolls

Back to our days, during a fieldwork practice for students at the University of Hamburg, held within the city because of the COVID-19 travelling restrictions, the team stumbled across a longhorn beetle, later identified by scientists as the Asian bamboo borer. Furthermore, it became clear that there were even more recent records published across different citizen science platforms, such as iNaturalist, iRecord and Waarneming.nl. Having taken the contacts of the citizen scientists from there, the researchers approached them to ask for additional collection details and images, which were readily provided. As a result, the researchers formally confirmed the presence of the Asian bamboo borer in Belgium and the Netherlands. In total, they reported thirteen new introductions of the species in Europe, which translates to a 42% increase of the records of the species for the continent.

“In light of the warming climate and a growing abundance of ornamental bamboo plants in Europe, the beetle might get permanently established. Not only could it become a garden pest, but it could also incur significant costs to the bamboo-processing industry,”

comments Dr Matthias Seidel, lead author of the study.

Having realised the potential of citizen science for bridging the gaps in invasive species monitoring, the researchers now propose for specialised platforms to be established with the aim to familiarise non-professional scientists with non-native species of interest and provide them with more sophisticated reporting tools. The aim is to speed up the identification of important alien species by collating records of specific species of interest, which are flagged and regularly exported from other citizen science databases and platforms. 

Bamboo longhorn beetle captured in Lincoln, United Kingdom
Photo by Sheena Cotter

Original source: 

Seidel M, Lüttke M, Cocquempot C, Potts K, Heeney WJ, Husemann M (2021) Citizen scientists significantly improve our knowledge on the non-native longhorn beetle Chlorophorus annularis (Fabricius, 1787) (Coleoptera, Cerambycidae) in Europe. BioRisk 16: 1–13. https://doi.org/10.3897/biorisk.16.61099

The EU not ready for the release of Gene drive organisms into the environment

Gene drive organisms (GDOs) have been suggested as an approach to solve some of the most pressing environmental and public health issues. Currently, it remains unclear what kind of regulations are to be used to cover the potential risks. In their study, published in the open-access journal BioRisk, scientists evaluate the options for an operational risk assessment of GDOs before their release into environments across the EU.

EU scientists are taking a closer look into the CRISPR/Cas-9-induced population-wide genetic modifications before introducing it into practice

Within the last decades, new genetic engineering tools for manipulating genetic material in plants, animals and microorganisms are getting large attention from the international community, bringing new challenges and possibilities. While genetically modified organisms (GMO) have been known and used for quite a while now, gene drive organisms (GDO) are yet at the consideration and evaluation stage. 

The difference between these two technologies, where both are meant to replace certain characters in animals or plants with ones that are more favourable for the human population, is that, even though in GDO there is also foreign “synthetic” DNA being introduced, the inheritance mode differs. In GDO, the genome’s original base arrangements are changed, using CRISPR/Cas-9 genome editing. Once the genome is changed, its alterations are carried down the organism’s offspring and subsequent generations. 

In their study, published in the open-access journal Biorisk, an international group of scientists led by Marion Dolezel from the Environment Agency Austria, discuss the potential risks and impacts on the environment. 

The research team also points to current regulations addressing invasive alien species and biocontrol agents, and finds that the GMO regulations are, in principle, also a useful starting point for GDO.

There are three main areas suggested to benefit from gene drive systems: public health (e.g. vector control of human pathogens), agriculture (e.g. weed and pest control), environmental protection and nature conservation (e.g. control of harmful non-native species).

In recent years, a range of studies have shown the feasibility of synthetic CRISPR-based gene drives in different organisms, such as yeast, the common fruit fly, mosquitoes and partly in mammals. 

Given the results of previous research, the gene drive approach can even be used as prevention for some zoonotic diseases and, hence, possible future pandemics. For example, laboratory tests showed that release of genetically modified mosquitoes can drastically reduce the number of malaria vectors. Nevertheless, potential environment and health implications, related to the release of GDO, remain unclear. Only a few potential applications have so far progressed to the research and development stage.

“The potential of GDOs for unlimited spread throughout wild populations, once released, and the apparently inexhaustible possibilities of multiple and rapid modifications of the genome in a vast variety of organisms, including higher organisms such as vertebrates, pose specific challenges for the application of adequate risk assessment methodologies”,

shares the lead researcher Mrs. Dolezel.

In the sense of genetic engineering being a fastly developing science, every novel feature must be taken into account, while preparing evaluations and guidances, and each of them provides extra challenges.

Today, the scientists present three key differences of gene drives compared to the classical GMO:

1. Introducing novel modifications to wild populations instead of “familiar” crop species, which is a major difference between “classic” GMOs and GDOs.

“The goal of gene drive applications is to introduce a permanent change in the ecosystem, either by introducing a phenotypic change or by drastically reducing or eradicating a local population or a species. This is a fundamental difference to GM crops for which each single generation of hybrid seed is genetically modified, released and removed from the environment after a relatively short period”,

shares Dolezel.

2. Intentional and potentially unlimited spread of synthetic genes in wild populations and natural ecosystems.

Gene flow of synthetic genes to wild organisms can have adverse ecological impact on the genetic diversity of the targeted population. It could change the weediness or invasiveness of certain plants, but also threaten with extinction the species in the wild.

3. Possibility for long-term risks to populations and ecosystems.

Key and unique features of GDOs are the potential long-term changes in populations and large-scale spread across generations. 

In summary, the research team points out that, most of all, gene drive organisms must be handled extremely carefully, and that the environmental risks related to their release must be assessed under rigorous scrutiny. The standard requirements before the release of GDOs need to also include close post-release monitoring and risk management measures.

It is still hard to assess with certainty the potential risks and impact of gene drive applications on the environment, human and animal health. That’s why highly important questions need to be addressed, and the key one is whether genetically driven organisms are to be deliberately released into the environment in the European Union. The High Level Group of the European Commission’s Scientific Advice Mechanism highlights that within the current regulatory frameworks those risks may not be covered.

The research group recommends the institutions to evaluate whether the regulatory oversight of GMOs in the EU is accomodate to cover the novel risks and challenges posed by gene drive applications.

“The final decision to release GDOs into the environment will, however, not be a purely scientific question, but will need some form of broader stakeholder engagement and the commitment to specific protection goals for human health and the environment”,

concludes  Dolezel.

***

Original source:
Dolezel M, Lüthi C, Gaugitsch H (2020) Beyond limits – the pitfalls of global gene drives for environmental risk assessment in the European Union. BioRisk 15: 1-29. https://doi.org/10.3897/biorisk.15.49297

Contact:
Marion Dolezel
Email: marion.dolezel@umweltbundesamt.at