Integration of Freshwater Biodiversity Information for Decision-Making in Rwanda

Teams from Ghana, Malawi, Namibia and Rwanda during the inception meeting of the African Biodiversity Challenge Project in Kigali, Rwanda. Photo by Yvette Umurungi.

The establishment and implementation of a long-term strategy for freshwater biodiversity data mobilisation, sharing, processing and reporting in Rwanda is to support environment monitoring and the implementation of Rwanda’s National Biodiversity Strategy (NBSAP). In addition, it is to also help us understand how economic transformation and environmental change is affecting freshwater biodiversity and its resulting ecosystem services.

As part of this strategy, the Center of Excellence in Biodiversity and Natural Resource Management (CoEB) at the University of Rwanda, jointly with the Rwanda Environment Management Authority (REMA) and the Albertine Rift Conservation Society (ARCOS), are implementing the African Biodiversity Challenge (ABC) project “Integration of Freshwater Biodiversity Information for Decision-Making in Rwanda.”

The conference abstract for this project has been published in the open access journal Biodiversity Information Science and Standards (BISS). 

The CoEB has a national mandate to lead on biodiversity data mobilisation and implementation of the NBSAP in collaboration with REMA. This includes digitising data from reports, conducting analyses and reporting for policy and research, as indicated in Rwanda’s NBSAP.

The collation of the data will follow the international standards and will be available online, so that they can be accessed and reused from around the world. In fact, CoEB aspires to become a Global Biodiversity Informatics Facility (GBIF) node, thereby strengthening its capacity for biodiversity data mobilisation.

Data use training for the African Biodiversity Challenges at the South African National Biodiversity Institute (SANBI), South Africa. Photo by Yvette Umurungi.

The mobilised data will be organised using GBIF standards, and the project will leverage the tools developed by GBIF to facilitate data publication. Additionally, it will also provide an opportunity for ARCOS to strengthen its collaboration with CoEB as part of its endeavor to establish a regional network for biodiversity data management in the Albertine Rift Region.

The project is expected to conclude with at least six datasets, which will be published through the ARCOS Biodiversity Information System. These are to include three datasets for the Kagera River Basin; one on freshwater macro-invertebrates from the Congo and Nile Basins; one for the Rwanda Development Board archive of research reports from protected areas; and one from thesis reports from master’s and bachelor’s students at the University of Rwanda.

The project will also produce and release the first “Rwandan State of Freshwater Biodiversity”, a document which will describe the status of biodiversity in freshwater ecosystems in Rwanda and present socio-economic conditions affecting human interactions with this biodiversity.

The page of Center of Excellence in Biodiversity and Natural Resource Management (CoEB) at University of Rwanda on the Global Biodiversity Information Facility portal. Image by Yvette Umurungi.

***

The ABC project is a competition coordinated by the South African National Biodiversity Institute (SANBI) and funded by the JRS Biodiversity Foundation. The competition is part of the JRS-funded project, “Mobilising Policy and Decision-making Relevant Biodiversity Data,” and supports the Biodiversity Information Management activities of the GBIF Africa network.

 

Original source:

Umurungi Y, Kanyamibwa S, Gashakamba F, Kaplin B (2018) African Biodiversity Challenge: Integrating Freshwater Biodiversity Information to Guide Informed Decision-Making in Rwanda. Biodiversity Information Science and Standards 2: e26367. https://doi.org/10.3897/biss.2.26367

In a hole in a tunicate there lived a hobbit: New shrimp species named after Bilbo Baggins

Digital illustration by Franz Anthony.

Two new species of tiny symbiotic shrimps are described, illustrated and named by biology student at Leiden University Werner de Gier as part of his bachelor’s research project, supervised by Dr. Charles H. J. M. Fransen, shrimp researcher of Naturalis Biodiversity Center (Leiden, the Netherlands).

Inspired by the extremely hairy feet of one of the species, the authors decided that they should honour Middle Earth’s greatest halfling, Bilbo Baggins.

Aptly named Odontonia bagginsi, the new shrimp joins the lines of other species named after Tolkien’s characters such as the cave-dwelling harvestman Iandumoema smeagol, the golden lizard Liolaemus smaug and the two subterranean spiders Ochyrocera laracna and Ochyrocera ungoliant.

Photo by Charles Fransen.

The newly described shrimps were collected during the Ternate expedition to the Indonesian islands of Tidore and Ternate, organised by Naturalis Biodiversity Center and the Indonesian Institute of Sciences (LIPI) in 2009.

Typically for the Odontonia species, the new shrimps do not reach sizes above a centimetre in length, and were found inside tunicates. It is believed that these symbiotic crustaceans are fully adapted to live inside the cavities of their hosts, which explains their small-sized and smooth bodies.

Photo by Charles Fransen.

Unlike most Odontonia species, which live inside solitary tunicates, the new species Odontonia plurellicola was the first one to be associated with a colonial tunicate. These tunicates have even smaller internal cavities, which explains the tiny size of the new species.

To determine the placement of the new species in the tree of life, the scientists compared the shrimps’ anatomical features, including the legs, mouthparts and carapace. As a result, they were assigned to Odontonia. Further, the available genetic information and Scanning Electron Microscope (SEM) images of the unusual feet of the newly discovered shrimp provided a new updated identification key for all members of the species group.

“Being able to describe, draw and even name two new species in my bachelor years was a huge honour. Hopefully, we can show the world that there are many new species just waiting to be discovered, if you simply look close enough!” says Werner de Gier, who is currently writing his graduate thesis at Naturalis Biodiversity Center and working together with Dr. Charles Fransen on crustaceans.

###

Original source:

de Gier W, Fransen CHJM (2018) Odontonia plurellicola sp. n. and Odontonia bagginsi sp. n., two new ascidian-associated shrimp from Ternate and Tidore, Indonesia, with a phylogenetic reconstruction of the genus (Crustacea, Decapoda, Palaemonidae). ZooKeys 765: 123-160. https://doi.org/10.3897/zookeys.765.25277

Digital illustration by Franz Anthony.

How did coyotes conquer North America?

Coyotes now live across North America, from Alaska to Panama, California to Maine. But where they came from, and when, has been debated for decades.

Using museum specimens and fossil records, researchers from the North Carolina Museum of Natural Sciences and North Carolina State University have produced a comprehensive (and unprecedented) range history of the expanding species that can help reveal the ecology of predation as well as evolution through hybridization. Their findings are published in the open access journal ZooKeys.

The geographic distribution of coyotes has dramatically expanded since 1900, spreading across much of North America in a period when most other mammal species have been declining. Although this unprecedented expansion has been well-documented at the state/provincial scale, continent-wide picture of coyote spread been coarse and largely anecdotal. A more thorough compilation of available records was needed.

“We began by mapping the original range of coyotes using archaeological and fossil records,” says co-author Dr. Roland Kays, Head of the Museum’s Biodiversity Lab and Research Associate Professor in NC State’s Department of Forestry and Environmental Resources. “We then plotted their range expansion across North America from 1900 to 2016 using museum specimens, peer-reviewed reports, and game department records.”

In all, Kays and lead author James Hody, a graduate student at NC State University, reviewed more than 12,500 records covering the past 10,000 years for this study.

 Their findings indicate that coyotes historically occupied a larger area of North America than generally suggested in the literature. Previous maps, as it turns out, had ancient coyotes only located across the central deserts and grasslands. However, fossils from across the arid west link the distribution of coyotes from 10,000 years ago to specimens collected in the late 1800s, proving that their geographic range was not only broader but had been established for hundreds, perhaps thousands of years, which also contradicts some widely-cited descriptions of their historical distribution.

 It wasn’t until approximately 1920 that coyotes began their expansion across North America. This was likely aided by an expansion of human agriculture, forest fragmentation, and hybridization with other species. Eastern expansion, in particular, was aided by hybridization with wolves and dogs, resulting in size and color variation among eastern coyotes.

Before too long, coyotes may no longer be just a North American species. Kays notes that coyotes are continually expanding their range in Central America, having crossed the Panama Canal in 2010. Active camera traps are now spotting coyotes approaching the Darien Gap, a heavily forested region separating North and South America, suggesting that they are at the doorstep of South America.

 “The expansion of coyotes across the American continent offers an incredible experiment for assessing ecological questions about their roles as predators, and evolutionary questions related to their hybridization with dogs and wolves,” adds Hody.

“By collecting and mapping these museum data we were able to correct old misconceptions of their original range, and more precisely map and date their recent expansions.”

“We hope these maps will provide useful context for future research into the ecology and evolution of this incredibly adaptive carnivore,” he concludes.

 

###

(Originally published on Eurekalert! by North Carolina Museum of Natural Sciences.)

 

Original source:

Hody JW, Kays R (2018) Mapping the expansion of coyotes (Canis latrans) across North and Central America. ZooKeys 759: 81–97. https://doi.org/10.3897/zookeys.759.15149

What is a species? British bird expert develops a math formula to solve the problem

Two different kinds of Lachrymose Mountain-Tanager (Anisognathus lacrymosus) occurring in Colombia on different mountain ranges (left: Santa Marta; right: Yariguies). Their measurements and songs were as distinct as those in the group which co-occur. Therefore, they can therefore be treated as different species.

Nature is replete with examples of identifiable populations known from different continents, mountain ranges, islands or lowland regions. While, traditionally, many of these have been treated as subspecies of widely-ranging species, recent studies relying on molecular biology have shown that many former “subspecies” have in fact been isolated for millions of years, which is long enough for them to have evolved into separate species.

Being a controversial matter in taxonomy – the science of classification – the ability to tell apart different species from subspecies across faunal groups is crucial. Given limited resources for conservation, relevant authorities tend only to be concerned for threatened species, with their efforts rarely extending to subspecies.

Figuring out whether co-habiting populations belong to the same species is only as tough as testing if they can interbreed or produce fertile offspring. However, whenever distinct populations are geographically separated, it is often that taxonomists struggle to determine whether they represent different species or merely subspecies of a more widely ranging species.

British bird expert Thomas Donegan has dedicated much of his life to studying birds in South America, primarily Colombia. To address this age-long issue of “what is a species?”, he applied a variety of statistical tests, based on data derived from bird specimens and sound recordings, to measure differences across over 3000 pairwise comparisons of different variables between populations.

Having analyzed the outcomes of these tests, he developed a new universal formula for determining what can be considered as a species. His study is published in the open-access journal ZooKeys.

Essentially, the equation works by measuring differences for multiple variables between two non-co-occurring populations, and then juxtaposing them to the same results for two related populations which do occur together and evidently belong to different “good” species. If the non-co-occurring pair’s differences exceed those of the good species pair, then the former can be ranked as species. If not, they are subspecies of the same species instead.

The formula builds on existing good taxonomic practices and borrows from optimal aspects of previously proposed mathematical models proposed for assessing species in particular groups, but brought together into a single coherent structure and formula that can be applied to any taxonomic group. It is, however, presented as a benchmark rather than a hard test, to be used together with other data, such as analyses of molecular data.

Thomas hopes that his mathematical formula for species rank assessments will help eliminate some of the subjectivity, regional bias and lumper-splitter conflicts which currently pervade the discipline of taxonomy.

“If this new approach is used, then it should introduce more objectivity to taxonomic science and ultimately mean that limited conservation resources are addressed towards threatened populations which are truly distinct and most deserving of our concern,” he says.

The problem with ranking populations that do not co-occur together was first identified back in 1904. Since then, most approaches to addressing such issues have been subjective or arbitrary or rely heavily upon expert opinion or historical momentum, rather than any objectively defensible or consistent framework.

For example, the American Herring Gull and the European Herring Gull are lumped by some current taxonomic committees into the same species (Herring Gull), or are split into two species by other committees dealing with different regions, simply because relevant experts at those committees have taken different views on the issue.

“For tropical faunas, there are thousands of distinctive populations currently treated as subspecies and which are broadly ignored in conservation activities,” explains Thomas. “Yet, some of these may be of conservation concern. This new framework should help us better to identify and prioritize those situations.”

Two different kinds of Three-striped Warblers (Basileuterus tristriatus) occurring in South America (left: East Andes of Colombia; right: a recently discovered population from the San Lucas mountains of Colombia). Note the differences in plumage coloration. While somewhat differing in voice, plumage and some measurements, the couple did not diverge as much as other related warblers that actually co-occur did. These are about as close as subspecies occurring on different mountain ranges could be. However, they marginally failed the proposed new benchmark for species rank.

###

Original source:

Donegan TM (2018) What is a species? A new universal method to measure differentiation and assess the taxonomic rank of allopatric populations, using continuous variables. ZooKeys 757: 1-67. https://doi.org/10.3897/zookeys.757.10965

Additional information:

Donegan’s proposals were first presented orally at a joint meeting for members of the Neotropical Bird ClubBritish Ornithologists’ Club and Natural History Museum in London.

Scientists dive into museum collections to reveal the invasion route of a small crustacean

Biological invasions are widely recognised as one of the most significant components of global change. Far-reaching and fast-spreading, they often have harmful effects on biodiversity.

Therefore, acquiring knowledge of potentially invasive non-native species is crucial in current research. In particular, it is important that we enhance our understanding of the impact of such invasions.

To do so, Prof Sabrina Lo Brutto and Dr Davide Iaciofano, both working at the Taxonomy Laboratory of the University of Palermo, Italy, performed research on an invasive alien crustacean (Ptilohyale littoralis) known to have colonised the Atlantic European Coast. Their findings are published in the open access journal ZooKeys.

The studied species belongs to a group of small-sized crustaceans known as amphipods. These creatures range from 1 to 340 mm in length and feed on available organic matter, such as dead animals and plants. Being widely distributed across aquatic environments, amphipods have already been proven as excellent indicators of ecosystem health.

While notable for their adaptability and ecological plasticity, which secure their abundance in various habitats, these features also make amphipods especially dangerous when it comes to playing the role of invaders.

Having analysed specimens stored at the Museum of Natural History of Verona and the Natural History Museum in Paris, the scientists concluded that the species has colonised European waters 24 years prior to the currently available records.

The problem was that, back in 1985, when the amphipod was first collected from European coasts, it was misidentified as a species new to science instead of an invader native to the North American Atlantic coast.

A closer look into misidentified specimens stored in museum collections revealed that the species has been successfully spreading along the European coastlines.

Male of the invasive amphipod species (Ptilohyale littoralis), sampled in October 2015, from Bay of Arcachon, France.

Moreover, it was predicted that the amphipod could soon reach the Mediterranean due to the high connectivity between the sea and the eastern Atlantic Ocean through the Straits of Gibraltar – a route already used by invasive marine fauna in the past.

In the event that the invader reaches the Mediterranean, it is highly likely for the crustacean to meet and compete with a closely related “sister species” endemic to the region. To make matters worse, the two amphipods are difficult to distinguish due to their appearance and behaviour both being extremely similar.

However, in their paper, the scientists have also provided additional information on how to distinguish the two amphipods – knowledge which could be essential for the management of the invader and its further spread.

The authors believe that their study demonstrates the importance of taxonomy – the study of organism classification – and the role of natural history collections and museums.

“Studying and monitoring biodiversity can acquire great importance in European aquatic ecosystems and coastal Mediterranean areas, where biodiversity is changing due to climate change and invasions of alien species,” Prof Lo Brutto says. “In this context, specific animal groups play a crucial role in detecting such changes and they, therefore, deserve more attention as fundamental tools in biodiversity monitoring.”

“Regrettably, the steadily diminishing pool of experts capable of accurately identifying species poses a serious threat in this field.”

###

Original source:

Lo Brutto S, Iaciofano D (2018) A taxonomic revision helps to clarify differences between the Atlantic invasive Ptilohyale littoralis and the Mediterranean endemic Parhyale plumicornis(Crustacea: Amphipoda). ZooKeys, 754: 47-62. https://doi.org/10.3897/zookeys.754.22884

Canadian scientist names a new species of cuckoo bee after Sir David Attenborough

A total of fifteen new species of bees, where one honors the English broadcaster and naturalist Sir David Attenborough, are described by Thomas Onuferko, PhD candidate at York University in Toronto, Canada. His paper is published in the open access journal ZooKeys.

The new species, called Attenborough’s epeolus (pronounced ee-pee-oh-lus), is rare and known from only nine specimens observed at two localities, in Colorado and New Mexico.

To name the other new species, the author referred to colleagues or relatives, the species’ physical appearance, their collectors, or the flowers on which the insects have been found.

Currently, not much is known about any of the newly described species, except that they belong to a specialized group of bees called cuckoo bees. Much like cuckoo birds, these bees sneakily lay their eggs in the nests of other species. When they hatch, the younglings seek out and kill the host egg or larva and then feed on the pollen stored by the female who has built the nest.

Female of the newly described cuckoo bee species, Epeolus attenboroughi . This specimen is the holotype for the species, meaning it is the one used to describe the new bee.

All new species belong to the cuckoo bee genus Epeolus, known to invade nests of polyester bees in the genus Colletes. In his publication, Thomas speculates that the name ‘epeolus’ is probably a diminutive of Epeus/Epeius, the soldier in Greek mythology said to have come up with the Trojan Horse. The sinister nature of these cleptoparasitic bees must have been compared to the Greek’s famous war strategy.

Cuckoo bees are difficult to recognize as bees because they lack the characteristic fuzzy look, which comes from the numerous long branched hairs evolved to efficiently pick up pollen. Instead, cuckoo bees rely on other bees to collect pollen for their offspring, leading to the trait being lost.

While, as a result, these species would rather be likened to wasps, their appearance is not plain at all. Cuckoo bees, including Attenborough’s epeolus, possess very short black, white, red, and yellow hairs that form beautiful patterns.

“It only seemed appropriate to name a species with such an unusual life strategy and attractive appearance after someone who has dedicated his life to illustrating the beauty and complexity of the natural world,” explains Thomas.

Including the new species, there are now 43 known Epeolus species in North America.

“It may seem surprising to some that in well-researched places like Canada and the United States there is still the potential for the discovery of new species,” says the scientist.

Male of the newly described cuckoo bee species, Epeolus attenboroughi , with its proboscis (i.e. mouthparts) extended. These are elongated in order to reach and feed on the nectar within flowers.

Since cuckoo bees are rarer than their hosts – as predators are rarer than their prey – and relatively small (5.5–10.0 mm in body length), they are likely to go undetected, which partly explains why it’s taken so long to identify these new ones.

***

Original source:

Onuferko TM (2018) A revision of the cleptoparasitic bee genus Epeolus Latreille for Nearctic species, north of Mexico (Hymenoptera, Apidae). ZooKeys 755: 1–185. https://doi.org/10.3897/zookeys.755.23939.

Citizen scientists discover a new water beetle and name it after Leonardo DiCaprio

New animal species are sometimes named after celebrities because of their trademark looks. That’s how we got the blonde-haired Donald Trump moth and the big-armed Arnold Schwarzenegger fly, to name a few. However, some well-known people are enshrined in animal names not for their looks, but rather for what they do for the environment.

This is exactly how a newly discovered water beetle, described in the open access journal ZooKeys, was given the name of Hollywood actor and environmentalist Leonardo DiCaprio. The tribute marks the 20th anniversary of the celebrity’s Leonardo DiCaprio Foundation (LDF) and its efforts towards biodiversity preservation.

The Leonardo DiCaprio Foundation has become one of the world’s foremost wildlife charities, having contributed to over 200 grassroots projects around the globe devoted to climate change mitigation, wildlife conservation, and habitat preservation.

“We can all have an impact,” says DiCaprio in a special LDF video, “but we have to work together to protect our only home.”

Leo DiCaprio beetleGoing by the scientific name of Grouvellinus leonardodicaprioi, the new water beetle was discovered at a waterfall in the remote Maliau Basin, Malaysian Borneo, during the first field trip initiated by Taxon Expeditions – an organisation which arranges scientific surveys for untrained laypeople with the aim to discover previously unknown species and bridge the gap in biodiversity knowledge.

Having identified a total of three water beetle species new to science, the expedition participants and the local staff of the Maliau Basin Studies Centre voted to name one of them after DiCaprio in honour of his efforts to protect untouched, unexplored wildernesses just like Maliau Basin itself.

“Tiny and black, this new beetle may not win any Oscars for charisma, but in biodiversity conservation, every creature counts,” said Taxon Expeditions’ founder and entomologist Dr. Iva Njunjic.

Maliau Basin Aerial - Photo by Sylvia Yorath

###

Original source:

Freitag H, Pangantihon CV, Njunjic I (2018) Three new species of Grouvellinus Champion, 1923 from Maliau Basin, Sabah, Borneo, discovered by citizen scientists during the first Taxon Expedition (Insecta, Coleoptera, Elmidae). ZooKeys 754: 1-21. https://doi.org/10.3897/zookeys.754.24276

Four Cheers for Marine Diversity: New species from Pensoft journals float their way up to the ‘TOP 10’ charts of WoRMS

The Harry Potter ‘hero’ crab, Palau president’s colonial anemone and the ‘living fossil’ octocoral published in ZooKeys along with the Bob Marley’s intertidal spider from the pages of Evolutionary Systematics made it to the top in the two lists compiled by the World Register of Marine Species (WoRMS). The ‘TOP 10’ charts mark the 10th anniversary of the organisation dedicated to noting down all creatures splashing around Earth’s marine habitats.

While the three species in the ‘Ten remarkable new marine species from 2017’ list have been bathing in glory mostly thanks to their prominent human namesakes, the octocoral from Japan found a place amongst the ‘Ten astounding marine species of the last decade (2007-2017)’ after being identified as a ‘living fossil’.

To compile the lists, WoRMS first invited all their editors to nominate their favourites in the two disciplines, and then asked a small committee of taxonomists and data managers to provide their votes.

Without further ado, let’s dive into a little bit of a reminder to find out exactly why and how those particular species turned up at the top.

 

  • Harry Potter ‘hero’ crab (Harryplax severus)

Harryplax severus 2

To the delight of the millions of fans of the iconic fantasy franchise Harry Potter around the world, a new species of charming crab discovered in the coral reefs of the island of Guam, the Pacific Ocean, was named after not one, but two of their favourite characters – protagonist Harry Potter and the villain-turned-hero Professor Severus Snape.

Luckily for lead author and self-confessed ‘Potterhead’ Dr. Jose Christopher E. Mendoza, the crustacean was simultaneously identified as a new species and a new genus, which made it possible to have the genus name (Harryplax) ‘reserved’ for the famous fictional wizard, while the species name (severus) remains dedicated to his secretive teacher.

Furthermore, the two scientists – Dr. Jose Christopher E. Mendoza and Dr. Peter Ng, both affiliated with the National University of Singapore – used the scientific name of their rubble-inhabiting discovery to pay tribute to its initial collector – Harry Conley. About 20 years ago, the “soft-spoken ex-Marine with a steely determination and a heart of gold” collected a curious-looking crab from the waters of Guam to unknowingly hand his successors with a piece of nature’s undescribed gems.

***

Learn more about Harryplax severus on our blog or read the study published in our open access journal ZooKeys.

 

  • Bob Marley’s intertidal spider (Desis bobmarleyi)

Female Desis bobmarleyi

It’s true – underwater spiders are for real!

Keep calm, though, they tend to be tiny and harmless to humans, so you are highly unlikely to get in contact with them by pure chance.

Scientists Drs. Barbara Baehr, Robert Raven and Danilo Harms, affiliated with Queensland Museum and the University of Hamburg, themselves, had to stay alert and wait for the low tide at the coastline of Australia’s “Sunshine State” of Queensland, in order to spot and collect the several-millimetre spider now known as the Bob Marley’s intertidal spider (or Desis bobmarleyi if you stumble upon it in the academic books).

Fans of the legendary reggae musician, the biologists were quick to link the emergence of the arachnid to a favourite song – “High Tide or Low Tide” – and its underlying message about love and friendship through all struggles of life.

***

Check out our blog post on Desis bobmarleyi or go read the full study appearing in the open access Evolutionary Systematics and its first issue published since the journal joined Pensoft last December.

 

  • Palau president’s colonial anemone (Antipathozoanthus remengesaui)

159664

Yes, the species in the picture is an animal living in the sea, even though Anemone is also a genus of flowering plants growing on the ground. Confused? In fact, the two have nothing to do with each other, apart from their ‘flowery’ appearance.

While researchers from the University of the Ryukyus, Kagoshima University, Japan and the Palau International Coral Reef Center were studying the sea anemones living on top of black coral colonies in the Indo-Pacific Ocean, they discovered a total of three new lovely species (allegedly, even more!), where one, Antipathozoanthus obscurus, was spectacular with its preference for hiding in the narrow reef cracks, rather than ‘perching’ proudly on corals.

Amazed by the quantity of yet to be explored biodiversity at the studied localities, including the island country of Palau, the scientists took the occasion to say Thank you to Palau’s President Tommy Remengesau for his nation’s support.

By naming one of the new species A. remengesaui, the scientists also pay tribute to the politician’s vision on nature conservation which has already placed Palau “at the forefront of marine conservation”, as noted by senior author Dr. James Reimer.

***

Find more about the new anemones from our blog post or check out the full study openly accessible in ZooKeys.

 

  • The ‘living fossil’ octocoral (Nanipora kamurai)

living fossil

Dubbed ‘living fossil’ for having much more in common with extinct species than it has with its ‘living’ relatives, this octocoral discovered in Okinawa, Japan, comes to show that sometimes it’s staying calm and still on the (shallow reef) surface that takes you places.

Here, the extraordinary, in modern sense, octocoral species landed a spot among the ten most astounding marine species of the decade.

The ‘living fossil’ resembles the extraordinary blue corals, which are said to have been widely distributed around the globe during the Cretaceous period. Much like its ancestors, it sports a hard skeleton of calcium-carbonate, explain graduate student Yu Miyazaki and associate professor Dr James Davis Reimer, University of the Ryukyus.

Planning a trip to Okinawa? Keep an eye open, as this unusual species prefers depths of less than a meter, which is once again quite the contrary to the habitats picked by its contemporaries.

***

Check out our blog post on the ‘living fossil’ octocoral and find the study in our open access journal ZooKeys.

Five new blanket-hermit crab species described 130 years later from the Pacific

A blanket-hermit crab grasping an anemone.
A blanket-hermit crab grasping an anemone.

Since 1888, a lone crab species living in an extraordinary symbiosis has been considered to be one of its kind

At the turn of the twentieth century, two independent marine scientists – JR Henderson in 1888, and A Alcock in 1899, described two unusual blanket-hermit crabs from the Indo-West Pacific.

Unlike other hermit crabs, these extraordinary crustaceans do not search for empty shells to settle in for protection. Instead, they have developed a symbiotic relationship with sea anemones to cover their soft bellies. To do this, the crabs use highly specialized chelipeds to pull back and forth the anemone’s tissue to cover their soft bodies and heads whenever necessary – much like hiding under a blanket.

Among the numerous specimens collected during the famous HMS Challenger Expedition in 1874, there were two hermit crab specimens obtained from the Philippines. They amazed Henderson with their unusual physical characters, including an abdomen bent on itself rather than spirally curved, and the lack of any trace of either a shell or other kind of protective structure for their body.

As a result, in 1888, JR Henderson established a brand new genus and new species for it as Paguropsis typicus. The ending of the species name was subsequently grammatically corrected to Paguropsis typica.

image 1

A decade later, unaware of the previous discovery, A Alcock stumbled upon hundreds of hermit crab specimens off southern India, which exhibited quite spectacular behaviour. Having observed their symbiotic relations with sea anemones, the researcher also formally described in 1899 a new species and a new genus for his specimens.

However, shortly thereafter and upon learning of JR Henderson’s earlier work, A Alcock concluded that his hermit crab specimens and those of JR Henderson must be one and the same species, so the two scientific names were officially synonymized in 1901 in a publication with his colleague AF McArdle, with JR Henderson’s name taking precedence as required by the principle of priority set forth in the International Code of Zoological Nomenclature.

Now, 130 years later, an international team of scientists, led by invertebrate zoologist Dr Rafael Lemaitre of the National Museum of Natural HistorySmithsonian Institution, USA, not only found that A Alcock’s Indian specimens were indeed a separate species, leading to the resurrection of its name as Paguropsis andersoni, but that blanket-hermit crabs are not as rare as previously thought.

In their recent publication in the open access journal ZooKeys, the biologists described a total of five new species and a new genus of closely related blanket-hermit crabs. Furthermore, they expect that other species are to be discovered, since there are many vast marine shelf areas and deep-sea habitats spread across the Indo-West Pacific yet to be sampled.

To develop their exceptional symbiosis with sea anemones, the blanket-hermit crabs have obviously needed just as extraordinary evolutionary adaptations. Perhaps the most remarkable of these are their specialized chelate fourth legs that allow for the crustaceans to effectively grab and stretch the thin-walled body of the anemones to cover themselves. For five of the species, the scientists report and unusual grasping shape for this cheliped that is reminiscent of bear claws, while in the other two the shape resembles ice-block tongs.

Unfortunately, the identity of the sea anemone species involved in the symbiotic relationship with any of the studied blanket-hermit crabs is currently uncertain, and their biology remains unknown.

A blanket-hermit crab 'wearing' an anemone.
A blanket-hermit crab ‘wearing’ an anemone.

So far, the genus described by JR Henderson as Paguropsis, contains five species distributed in the subtropical and tropical Indo-West Pacific, and living at depths ranging from 30 to 1125 m. These include the two species discovered in the 19th century, and three new species, one of which, Paguropsis gigas, is the largest known blanket-hermit crab that reaches a body size of 15 cm when fully stretched (a large size by hermit crab standards).

For two of the newly discovered hermit crabs, the new genus Paguropsina is erected to reflect the numerous similarities between the two species and their Paguropsis relatives. The Latin suffix -ina refers to the comparatively smaller size of the two species. Both blanket-hermit species of Paguropsina are found in the subtropical and tropical western Pacific at depth between 52 and 849 m.

“Here there is no shell to play the part of ‘Sir Pandarus of Troy,’ but the sea-anemone settles upon the hinder part of the young hermit-crab’s tail, and the two animals grow up together, in such a way that the spreading zoophytes form a blanket which the hermit can either draw completely forwards over its head or throw half-back, as it pleases,” Alcock once eloquently described his marine discovery.

###

Original source:

Lemaitre R, Rahayu DL, Komai T (2018) A revision of “blanket-hermit crabs” of the genus Paguropsis Henderson, 1888, with the description of a new genus and five new species (Crustacea, Anomura, Diogenidae). ZooKeys 752: 17-97. https://doi.org/10.3897/zookeys.752.23712

Audit finds biodiversity data aggregators ‘lose and confuse’ data

In an effort to improve the quality of biodiversity records, the Atlas of Living Australia (ALA) and the Global Biodiversity Information Facility (GBIF) use automated data processing to check individual data items. The records are provided to the ALA and GBIF by museums, herbaria and other biodiversity data sources.

However, an independent analysis of such records reports that ALA and GBIF data processing also leads to data loss and unjustified changes in scientific names.

The study was carried out by Dr Robert Mesibov, an Australian millipede specialist who also works as a data auditor. Dr Mesibov checked around 800,000 records retrieved from the Australian MuseumMuseums Victoria and the New Zealand Arthropod Collection. His results are published in the open access journal ZooKeys, and also archived in a public data repository.

“I was mainly interested in changes made by the aggregators to the genus and species names in the records,” said Dr Mesibov.

“I found that names in up to 1 in 5 records were changed, often because the aggregator couldn’t find the name in the look-up table it used.”

data_auditAnother worrying result concerned type specimens – the reference specimens upon which scientific names are based. On a number of occasions, the aggregators were found to have replaced the name of a type specimen with a name tied to an entirely different type specimen.

The biggest surprise, according to Dr Mesibov, was the major disagreement on names between aggregators.

“There was very little agreement,” he explained. “One aggregator would change a name and the other wouldn’t, or would change it in a different way.”

Furthermore, dates, names and locality information were sometimes lost from records, mainly due to programming errors in the software used by aggregators to check data items. In some data fields the loss reached 100%, with no original data items surviving the processing.

“The lesson from this audit is that biodiversity data aggregation isn’t harmless,” said Dr Mesibov. “It can lose and confuse perfectly good data.”

“Users of aggregated data should always download both original and processed data items, and should check for data loss or modification, and for replacement of names,” he concluded.

###

Original source:

Mesibov R (2018) An audit of some filtering effects in aggregated occurrence records. ZooKeys 751: 129-146. https://doi.org/10.3897/zookeys.751.24791