When cars and wildlife collide: Virtual reality could prevent real-life road accidents

Roadside Animal Detection Systems (RADS), which use sensors to detect large animals on the road and to alert drivers by activating flashing lights on warning signs, could be the answer for preventing numerous wildlife casualties.

Such systems have been tested with varying degrees of success since the 1990s. Researchers from the University of Central Florida have now implemented a novel simulation approach to evaluate their efficiency. The study can be found in the open-access journal Nature Conservation.

The researchers stress that road accidents involving wild animals are posing a real threat to their populations.

Working with the UCF Institute for Simulation and Training, the researchers created a virtual road for test subjects to drive along in a realistic driving simulator. Some subjects were tested with a RADS, while some were not. The researchers evaluated their responses to an animal darting out into the road during the simulated drive.

In addition, the researchers tested whether simple, picture-based warning signs yielded better results than text-based ones. Using a simulator had additional benefits: “We were able to study responses that would be extremely difficult to measure using field observations, such as the precise moment a subject started braking,” said Dr. Daniel Smith, a Principal Investigator on the study.

Although picture-based warning signs outperformed word-based warning signs, both RADS versions were better than nothing at all, causing drivers to reduce their speed and brake earlier in response to an animal than drivers who had no warning system.

“There are different types of RADS that vary in how warnings are conveyed to drivers, but they are installed in completely different locations, so their performance can’t be directly compared,” said Molly Grace, a PhD candidate at UCF. “So, it was decided that rather than just performing traditional, on-the-ground monitoring of a single RADS, we would conduct a carefully-controlled simulation study in which we could vary aspects of the system.”

The simulated road was modeled after Highway 41 in Big Cypress National Park, Florida, where a RADS was installed in 2012 to reduce road-kill of the endangered Florida panther. “Road-kill is the largest controllable source of mortality for the Florida panther, and has been increasing virtually every year,” said the study’s other PI, Dr. Reed Noss.

“As more is learned about Roadside Animal Detection Systems, it is possible that we may start to see more of them at roadkill hotspots like the one in Big Cypress, hopefully making roads safer not just for panthers and other wildlife, but for humans as well,” he added.

###

Original source:

Grace MK, Smith DJ, Noss RF (2015) Testing alternative designs for a roadside animal detection system using a driving simulator. Nature Conservation doi: 10.3897/natureconservation.11.4420

A centipede from hell

An international team of scientists has discovered the deepest underground dwelling centipede. The animal was found by members of the Croatian Biospeleological Society in three caves in Velebit Mts, Croatia. Recorded as deep as -1100 m the new species was named Geophilus hadesi, after Hades, the God of the Underworld in the Greek Mythology. The research was published in the open access journal ZooKeys.

Lurking in the dark vaults of some of the world’s deepest caves, the Hades centipede has also had its name picked to pair another underground-dwelling relative named after Persephone, the queen of the underworld.

Centipedes are carnivores that feed on other invertebrate animals. They are common cave inhabitants but members of this particular order, called geophilomorphs, usually find shelter there only occasionally. Species with an entire life cycle confined to cave environments are exceptionally rare in the group.

In fact, so far the Hades and Persephone centipedes are the only two geophilomorphs that have adapted to live exclusively in caves, thus rightfully bearing the titles of a queen and king of the underworld.

Like most cave-dwellers, the newly discovered centipede shows unusual traits, some of which commonly found in cave-dwelling arthropods, including much elongated antennae, trunk segments and leg claws. Equipped with powerful jaws bearing poison glands and long curved claws allowing to grasp and tightly hold its prey, the Hades centipede is among the top predators crawling in the darkness of the cave.

The new species is yet another addition to the astonishing cave critters that live in the Velebit, a mountain that stretches over 145 km in the Croatian Dinaric Karst, which is as a whole considered a hot spot of subterranean diversity. The deepest record comes from the Lukina jama – Trojama cave system, which is 1431 meters deep and is currently ranked the 15th deepest cave in the world.

Just like Hades who ruled over the kingdom of shadows, the new centipede dwells among an extraordinary number of pallid cavernicolous animals, some known to science and many yet to be discovered.

“When I first saw the animal and its striking appearance, I immediately realized that this is a new, hitherto unnamed and highly adapted to cave environment species. This finding comes to prove once again how little we know about the life in caves, where even in the best prospected areas, one can still find incredible animals” says the lead author Pavel Stoev, Pensoft Publishers and National Museum of Natural History, Sofia.

###

Original Source:

Stoev P, Akkari N, Komerički A, Edgecombe GD, Bonato L (2015) At the end of the rope:Geophilus hadesi sp. n. – the world’s deepest cave-dwelling centipede (Chilopoda, Geophilomorpha, Geophilidae). In: Tuf IH, Tajovský K (Eds) Proceedings of the 16th International Congress of Myriapodology, Olomouc, Czech Republic. ZooKeys 510: 95-114. doi: 10.3897/zookeys.510.9614