New open access journal Rethinking Ecology publishes novel ideas under Pensoft’s imprint

Needless to say, it is through sharing new ideas and hypotheses that critical issues such as climate change and biodiversity loss can be addressed. However, few scientists are currently in a position to do so, because publishing bold ideas in peer-reviewed journals is very difficult, especially for those who are not world-renowned scientists in their field. At the same time, scientists sharing novel ideas that have not been published yet, carry the risk of being ‘scooped’. This is probably a scientist’s worst nightmare: seeing someone else publish the idea they have been working on. In this context, many innovative ideas are kept secret and it can take years before they are made available to the scientific community.

This is the niche that the novel open access peer-reviewed journal Rethinking Ecology aims to fill by providing a platform for forward thinking and publication of novel ideas in all aspects of ecology, evolution and environmental science.

Adding to its innovative nature, Rethinking Ecology joins the modern technologically advanced Pensoft journals published on next-generation platform ARPHA (abbreviation standing for Authoring, Reviewing, Publishing, Hosting and Archiving). Not only is the platform to provide fast-track and convenient publishing for the authors, reviewers and editors in Rethinking Ecology, as it takes care of a manuscript through all stages from authoring and reviewing to dissemination and archiving, but it is user-friendly to the readers as well, who enjoy publications in three formats (PDF, XML, HTML) and full of semantic enhancements.

The innovative journal aims to encourage all scientists, regardless of their seniority, publication track record, gender, or country of origin, to publish perspective papers, so that they are put in the open for peers to discuss and build on, while credit is given where credit is due. Publishing these ideas early also draws attention from the scientific community, potential collaborators and potential funders. To further avoid potential bias, Rethinking Ecology implements double-blind peer review, with the journal supporting the notion that it is the content of a manuscript that matters. Moreover, reviewers will not be asked for a formal recommendation. Instead, they will comment and evaluate the work against a set of specific questions. Thus, each paper ends up with a score on Novelty, Feasibility, Scholarship and Literacy, so that only perspective papers with an emphasis on novel hypotheses and bold ideas are accepted for publication.

Another innovative feature applied in the new journal is an Author Contribution Index (ACI), meaning that each publication will include a pie chart pointing to the contribution of each of the authors, estimated in percentage. This is the editors’ answer to the so-called ‘guest authorship’ (i.e. inclusion of authors who did not significantly contribute to the work).

logoIt is no coincidence that Rethinking Ecology has a spiral-shaped unfurling fern leaf as a logo. Called Koru in the language of the indigenous Polynesian people of New Zealand – Māori, it symbolises novelty, new life and new beginning, as well as perpetual movement.

“Each publication in Rethinking Ecology can be seen as the beginning of life for a new idea and its metaphorical unfurling as it reaches out to the scientific community,” explain the journal editors in their very first Editorial at Rethinking Ecology.

“We see Rethinking Ecology as an incubator for novel ideas, and a catalyst for new thinking,” says the journal’s Editor-in-Chief Dr Stephane Boyer, Unitec Institute of Technology, New Zealand.

“In a world where scientific publications are increasingly open source and immediately available, it makes no sense to keep our most innovative ideas hidden from the world for years while we secretly test them,” he elaborates. “Bold ideas and new hypotheses need to be shared, they may or may not turn into world-changing paradigm shifts, but they all have the potential to contribute to new thinking.”

“I am pleased to welcome a groundbreaking journal such as Rethinking Ecology to the Pensoft family, which has already built a nice and extensive portfolio of innovations in scholarly publishing,” says Pensoft’s founder and CEO Prof. Lyubomir Penev. “Seeing genuine ideas and hypotheses yet to be tested, and possibly, yet to revolutionise the ecological science is certainly a thing worthy of eager anticipation.”

 

###

 

About ARPHA:

ARPHA is the first end-to-end journal publishing solution that supports the full life cycle of a manuscript, from authoring through submission, peer review, publication and dissemination. With ARPHA, journals and publishers enjoy a complete set of services, which enable tailored, technologically advanced publishing solutions. The platform enables a variety of publishing models through a number of options for branding, production and revenue models to choose from.

Claims that declines of pollinator species richness are slowing down in Europe revisited

Having conducted a thorough interpretation of the results of a recent study that inferred decrease in the biodiversity loss among pollinators across Europe, Dr Tom J. M. Van Dooren reveals that this conclusion cannot in fact be drawn. It is only supported for the bee fauna in the Netherlands. His study is published in the open access journal Nature Conservation.

Changes in pollinator abundances and diversity are of major concern. Pollinator diversity is quantified by their species richness: the number of species from a specific taxonomic group of pollinating animals present at a given time in a given area. A recent study, adopted in the recent UN IPBES Pollination Report draft summary, inferred that pollinator species richnesses are decreasing more slowly in recent decades in several taxonomic groups and European countries.

However, Dr Tom J. M. Van Dooren, affiliated with both Naturalis Biodiversity Center, the Netherlands, and the Institute of Ecology and Environmental Sciences of Paris, France, has now published his own study to show in detail the inaccuracies that the earlier conclusion has been based on.

Among other points, the scientist notes that the earlier study contained no explicit statistical comparisons between species richness changes in different periods. The earlier study also treated richness changes at country level and small spatial resolution as equivalent, while they probably represent different processes.

“Plants in Great Britain at the smallest spatial scales suggest a reduced rate of changes, but the results for larger spatial scales are not significant,” he illustrates. “The same holds for butterflies in the Netherlands.”

Dr Tom J. M. Van Dooren only finds support in the results of the earlier publication for a decelerating decline in bumblebees and other wild bees in the Netherlands. “This is in fact one taxon, the bees Anthophila, in a single country, the Netherlands”, he notes.

“The lack of robustness points again to the possibility that results found in the data can be due to changes in the shapes of species accumulation curves,” Dr Tom J. M. Van Dooren summarises. “Therefore the status of the statement on decelerating declines in the Pollination Report should be adjusted accordingly.”

###

Original source:

Van Dooren TJM (2016) Pollinator species richness: Are the declines slowing down? Nature Conservation 15: 11-22. doi: 10.3897/natureconservation.15.9616

 

Photo credit: 

Aiwok, Wikimedia Commons, CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)

Living together in mud: New bivalve species dwelling on a sea cucumber discovered in Japan

Most bivalves live in sand or mud or attached to rock surface. However, a new bivalve species described from Japan lives on a sea cucumber.

Ryutaro Goto, postdoctoral fellow in Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, and Hiroshi Ishikawa, amateur malacologist in Japan, have their paper, describing the new species, published in the open access journal ZooKeys.

The new species, named Borniopsis mortoni(Galeommatoidea), was discovered in mudflats at the mouth of the Souzu River, southwestern Shikoku Island, Japan.

This bivalve has tiny brownish shells (up to 4.1 mm in length). The species lives attached by both its foot and byssal threads to the body surface of the earthworm-like sea cucumberPatinapta ooplax (Synaptidae). Individuals of B. mortoni are often found on the same host, yet sometimes there could be more than 10 individuals existing side-by-side.image_3_hishikawa

The new species is dedicated to a famous British malacologist Brian Morton, emeritus professor of University of Hong Kong. He has described many interesting Pseudopythina species from mudflats in Hong Kong, now assigned to the genus Borniopsis.

Host sea cucumbers burrow in mudflats. Most likely, the B. mortoni bivalve uses the host burrows as shelter from predators.

The new species is one of the smallest species in this genus. With the burrow of the host sea cucumber being very narrow, the small body size of B. mortoni is probably a corresponding adaptation.

###

Original source:

Goto R, Ishikawa H (2016) Borniopsis mortoni sp. n. (Heterodonta, Galeommatoidea, Galeommatidae sensu lato), a new bivalve commensal with a synaptid sea cucumber from Japan. ZooKeys 615: 33-45. doi: 10.3897/zookeys.615.8125

Bee populations expanded during global warming after the last Ice Age

The Australian small carpenter bee populations appear to have dramatically flourished in the period of global warming following the last Ice Age some 18,000 years ago.

The bee species is found in sub-tropical, coastal and desert areas from the north-east to the south of Australia. Researchers Rebecca Dew and Michael Schwarz from the Flinders University of South Australia teamed up with Sandra Rehan, the University of New Hampshire, USA, to model its past responses to climate change with the help of DNA sequences. Their findings are published in the open access Journal of Hymenoptera Research.

“You see a rapid increase in population size from about 18,000 years ago, just as the climate began warming up after the last Ice Age,” says lead author Rebecca Dew. “This matches the findings from two previous studies on bees from North America and Fiji.”

“It is really interesting that you see very similar patterns in bees around the world,” adds Rebecca. “Different climate, different environment, but the bees have responded in the same way at around the same time.”

In the face of future global warming these finding could be a good sign for some of our bees.

However, the news may not all be positive. There are other studies showing that some rare and ancient tropical bees require cool climate and, as a result, are already restricted to the highest mountain peaks of Fiji. For these species, climate warming could spell their eventual extinction.

“We now know that climate change impacts bees in major ways,” says Rebecca, “but the challenge will be to predict how those impacts play out. They are likely to be both positive and negative, and we need to know how this mix will unfold.”

Bees are major pollinators and are critical for many plants, ecosystems, and agricultural crops.Image2

###

Original source:

Dew RM, Rehan SM, Schwarz MP (2016) Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera, Apidae) since the last glacial maximum. Journal of Hymenoptera Research 49: 25-41. doi: 10.3897/JHR.49.8066

From a bulletin to a modern open access journal: Italian Botanist in Pensoft’s portfolio

Established in the distant 1888, the Italian Botanical Society has gone a long way towards publishing its achievements and research. Originated as a bulletin within an Italian journal, they have been growing ever since to now form a new international journal in its own right. Covering both Italian and international research in botany and mycology, the online open access journal Italian Botanist, published by Pensoft, is now officially launched via its first papers.

Although what was later to become Italian Botanist, published its first issue as an independent journal, called Informatore Botanico Italiano in 1969, the publications were still rather bulletin-style. It consisted of a mixture of administrative and scientific proceedings of the Society, the yearbook of the members, as well as scientific notes.

Nevertheless, such a major transition has been set to change everything fundamentally. Establishing its name, the journal started picking up, so that it was not long before the scientific contributions were prevailing. Impressively, for the Society’s centenary the journal published a celebratory 331-page contribution.

Gradually, its scope was expanded to cover several scientific fields. It hosted several themed columns, including cytotaxonomic contributions on the Italian flora, relevant new floristic records for Italy, conservational issues concerning the Italian flora and mycology.

However, the Directive Council of the Italian Botanical Society has not seemed to be ready to give up on their journal’s evolution. Last year, the botanists decided that they need to transform the journal to an an online, open access journal written in English and called Italian Botanist, in order to boost the scientific value and international visibility of Informatore Botanico Italiano.

italian botanist editorial PR

Under the name Italian Botanist, the journal has now joined Pensoft’s portfolio of peer-reviewed open access journals, all of which take advantage of the advanced technologies and innovations developed by the publisher.

The new journal’s scope ranges from molecular to ecosystem botany and mycology. The geographical coverage of Italian Botanist is specially focused on the Italian territory, but studies from other areas are also welcome.

Staying faithful to its spirit and philosophy, it keeps its column-format, with each issue to contain five columns, namely Chromosome numbers for the Italian flora, Global and Regional IUCN Red List Assessments, Notulae to the Italian flora of algae, briophytes, fungi and lichens, Notulae to the Italian native vascular flora and Notulae to the Italian alien vascular flora.

“Our hope is that this renewed version of the journal will serve the Italian – and foreign – botanical community more efficiently and provide readers worldwide with an easier access to knowledge concerning the Italian flora,” says Italian Botanist‘s Editor-in-Chief Lorenzo Peruzzi.

###

Original source:

Peruzzi L, Siniscalco C (2016) From Bullettino della Società Botanica Italiana to Italian Botanist, passing through Informatore Botanico Italiano. A 128 years-long story. Italian Botanist 1: 1-4. doi: 10.3897/italianbotanist.1.8646

Two brand new dung beetle species from montane grazing sites and forests in Mexico

While carrying out a biodiversity study, a Mexican-Italian research team discovered three new dung beetle species in montane forests disturbed by livestock grazing. Mexico has been a mecca for naturalists, and its dung beetle species are among the best known in the world. This is why the discovery of new species there is noteworthy. The present study, published in the open-access journal ZooKeys, describes two of them and highlights the need to further explore the biodiversity of disturbed ecosystems.

Mexico is a country that holds a vast number of creatures and ecosystems. There is in fact a fascinating phenomenon: tropical forests that have close affinities with South America co-occurring with temperate and arid areas shared with North America. Thus, Mexico has been particularly attractive to explorers ever since the 19th century.

A group of animals that has woken up a special interest for studies in Mexico is the so-called ‘dung beetles’. As their name suggests, dung beetles are insects that feed mainly on mammal faeces.

For decades, an international research team, led by Dr Gonzalo Halffter, has studied dung beetles across the world, especially in Mexico. As a consequence, the Mexican species are some of the best-known. However, Dr Halffter and his team are not interested exclusively in dung beetles, but also in evolutive phenomena, the effects of land-use change, ecosystems modification by human activities, and conservation biology. Such concerns seem to be of particular importance now that the terrestrial ecosystems in Mexico have been severely destroyed and disturbed by people.

Image 2

Livestock is one of the major drivers of biodiversity loss worldwide, which makes the present discovery particularly impressive. With at least 58% of the area of Mexico occupied with livestock farming, dung beetles are essential in cleaning up. While studying their diversity at conserved forests and cattle grazing sites across the mountains of Mexico, the researchers found some new species of dung beetles.

The first to discover these new dung beetles was Victor Moctezuma, a student of Dr Gonzalo’s at the Instituto de Ecología of Mexico.

“I was carrying out sampling for my Masters Degree studies, but I had no idea that new dung beetles could be found in a forest that is disturbed by human activities, such as livestock grazing and land-use change,” recalls Moctezuma. “So I was really surprised when I discovered three dung beetle species.” One of these species has already been published.

Apart from the two new dung beetles, formally called Onthophagus clavijeroi and Onthophagus martinpierai, the present paper also provides theories about the current distributions of these insects across the Mexican mountains and their putative evolutive relationships. As a whole, the study highlights the importance of disturbed forest for species discovery and conservation.

###

Original source:

Moctezuma V, Rossini M, Zunino M, Halffter G (2016) A contribution to the knowledge of the mountain entomofauna of Mexico with a description of two new species of Onthophagus latreille, 1802 (Coleoptera, Scarabaeidae, Scarabaeinae). ZooKeys 572: 23-50. doi:10.3897/zookeys.572.6763

Global Plant Conservation’s Phase 1: The world checklist of hornworts and liverworts

Although it was Charles Darwin himself who more than a century ago voiced his intention to support a complete catalogue of all known plant species, such is yet to be realised. In the present paper, however, an international research team present the first ever worldwide checklist of hornworts and liverworts, covering 7485 species from across 396 genera and representing 92 families from the two phyla.

“This group of generally small-sized plants are an important component of the vegetation in many regions of the world, constituting a major part of the biodiversity in moist forest, wetland, mountain and tundra ecosystems,” says Prof. Lars Soderstrom, the lead investigator from the Norwegian University of Science and Technology. The initiative is a part of the Global Strategy for Plant Conservation aiming to list the whole known plant kingdom by 2020. Their work is published in the open-access journal PhytoKeys.

Assembling a working digital list of all known plant species is a staple within the Global Strategy for Plant Conservation, a framework whose ultimate goal is to halt the loss of plant diversity, which, unfortunately, is already a widely recognised fact. Without such a list, few other targets from the strategy would be met, since there would be a lack of baseline information. There would not be accessible and accurate botanical name information to utilise in researches, conservation and sustainability projects. Eventually, it would be impossible for taxonomists to stand their ground in the atmosphere of real-world politics.

“The present checklist is a result of a lengthy endeavour, started in 2008 at an international meeting hosted by The Field Museum, Chicago, and has blossomed to include over 40 authors and numerous individuals worldwide as well as several funding agencies allowing for a joint community effort to bring this to fruition,” says Dr. von Konrat. Working towards a consensus, together they managed to utilise the existing dataset and centralise nomenclature, taxonomy and geography on a global scale – something that had long been deterring such projects.

Liverworts and hornworts are of critical biological and ecological value, and an important component of the vegetation in many regions of the world. Liverworts, for example, are so widespread that can be found all the way from coastal Antarctica to the tundra of the Northern hemisphere and from the quite dry areas of Australia to the rainforest of Amazonia. Growing almost everywhere, they have turned into a microhabitat for a myriad of organisms such as single-celled eukaryotes, protozoa, and a wide range of invertebrates.

Moreover, both liverworts and hornworts play a vital role in the global carbon budget and carbon dioxide exchange. In the past they have even been used as climate change indicators and could be used as such to track potential signs of global warming in future.

In conclusion, the authors remind that their completion of the world checklist of hornwort and liverwort species is only the first phase towards the ultimate goal – a worldwide list of accepted plant names. Now, that there is a “virtual instrument with a linked environment both internally (e.g., within an article) and externally (GBIF, IPNI, Tropicos, Wikispecies, etc.) that will undoubtedly help accelerate taxonomic research,” the scientific world can set its sights on the next step – creating an easily accessible and generally recognised online platform for the supplementary information. It includes over 25,000 publications, almost 39,000 published names, and the over 700,000 geographical observations and the researchers believe that it will draw the attention and help of ecologists, conservationists, scientists from other disciplines and general interest groups.

“The broader accessibility to the wealth of auxiliary data will help augment monographic and revisionary work for many taxonomic groups, aid in identifying the need for increased floristic and survey work in many regions throughout the world, and have broad implications and applications beyond taxonomic research such as conservation science,” the scientists summarise. “However, such an effort can only be successful if it comes with sustained funding and infrastructure rather than depending on an ad hoc commitment by a few individuals, however dedicated”.

###

 

Original source:

Soderstrom L, Hagborg A, von Konrat M, Bartholomew-Began S, Bell D, Briscoe L, Brown E, Cargill DC, Costa DP, Crandall-Stotler BJ, Cooper ED, Dauphin G, Engel JJ, Feldberg K, Glenny D, Gradstein SR, He X, Heinrichs J, Hentschel J, Ilkiu-Borges AL, Katagiri T, Konstantinova NA, Larraín J, Long DG, Nebel M, Pocs T, Felisa Puche F, Reiner-Drehwald E, Renner MAM, Sass-Gyarmati A, Schafer-Verwimp A, Moragues JGS, Stotler RE, Sukkharak P, Thiers BM, Uribe J, Vana J, Villarreal JC, Wigginton M, Zhang L, Zhu R-L (2016) World checklist of hornworts and liverworts. PhytoKeys 59: 1-821.doi: 10.3897/phytokeys.59.6261

A centipede from hell

An international team of scientists has discovered the deepest underground dwelling centipede. The animal was found by members of the Croatian Biospeleological Society in three caves in Velebit Mts, Croatia. Recorded as deep as -1100 m the new species was named Geophilus hadesi, after Hades, the God of the Underworld in the Greek Mythology. The research was published in the open access journal ZooKeys.

Lurking in the dark vaults of some of the world’s deepest caves, the Hades centipede has also had its name picked to pair another underground-dwelling relative named after Persephone, the queen of the underworld.

Centipedes are carnivores that feed on other invertebrate animals. They are common cave inhabitants but members of this particular order, called geophilomorphs, usually find shelter there only occasionally. Species with an entire life cycle confined to cave environments are exceptionally rare in the group.

In fact, so far the Hades and Persephone centipedes are the only two geophilomorphs that have adapted to live exclusively in caves, thus rightfully bearing the titles of a queen and king of the underworld.

Like most cave-dwellers, the newly discovered centipede shows unusual traits, some of which commonly found in cave-dwelling arthropods, including much elongated antennae, trunk segments and leg claws. Equipped with powerful jaws bearing poison glands and long curved claws allowing to grasp and tightly hold its prey, the Hades centipede is among the top predators crawling in the darkness of the cave.

The new species is yet another addition to the astonishing cave critters that live in the Velebit, a mountain that stretches over 145 km in the Croatian Dinaric Karst, which is as a whole considered a hot spot of subterranean diversity. The deepest record comes from the Lukina jama – Trojama cave system, which is 1431 meters deep and is currently ranked the 15th deepest cave in the world.

Just like Hades who ruled over the kingdom of shadows, the new centipede dwells among an extraordinary number of pallid cavernicolous animals, some known to science and many yet to be discovered.

“When I first saw the animal and its striking appearance, I immediately realized that this is a new, hitherto unnamed and highly adapted to cave environment species. This finding comes to prove once again how little we know about the life in caves, where even in the best prospected areas, one can still find incredible animals” says the lead author Pavel Stoev, Pensoft Publishers and National Museum of Natural History, Sofia.

###

Original Source:

Stoev P, Akkari N, Komerički A, Edgecombe GD, Bonato L (2015) At the end of the rope:Geophilus hadesi sp. n. – the world’s deepest cave-dwelling centipede (Chilopoda, Geophilomorpha, Geophilidae). In: Tuf IH, Tajovský K (Eds) Proceedings of the 16th International Congress of Myriapodology, Olomouc, Czech Republic. ZooKeys 510: 95-114. doi: 10.3897/zookeys.510.9614