A remarkable bioluminescent click beetle was discovered in the subtropical evergreen broadleaf forests in southwest China. Having prompted the description of a brand new subfamily, the species is the very first bioluminescent click beetle known from the continent.
A remarkable bioluminescent click beetle was discovered in the subtropical evergreen broadleaf forests in southwest China. Scientists Mr. Wen-Xuan Bi, Dr. Jin-Wu He, Dr. Xue-Yan Li, all affiliated with the Chinese Academy of Sciences (Kunming), Mr. Chang-Chin Chen of Tianjin New Wei San Industrial Company, Ltd. (Tianjing, China) and Dr. Robin Kundrata of Palacký University (Olomouc, Czech Republic) published their findings in the open-access journal ZooKeys.
Even though the family of click beetles (Elateridae) contain approximately 10,000 species worldwide, it is only about 200 species able to emit light, and they inhabit Latin America and Oceania. Interestingly, the position of the luminous organs varies amongst the different click beetle lineages. In some, they are found on the foremost of the three thoracic segments of the body (prothorax), in others – on both the prothorax and the abdomen, and in few – only on the abdomen.
“In 2017, during an expedition to the western Yunnan in China, we discovered a dusk-active bioluminescent click beetle with a single luminous organ on the abdomen, ” recalls lead scientist Mr. Wen-Xuan Bi.
Since no bioluminescent click beetle had previously been recorded in Asia, the team conducted simultaneous morphological and molecular analyses in order to clarify the identity of the new species and figure out its relationship to other representatives of its group.
Co-author Dr. Xue-Yan Li explains:
“The morphological investigation in combination with the molecular analysis based on 16 genes showed that our taxon is not only a new species in a new genus, but that it also represents a completely new subfamily of click beetles. We chose the name Sinopyrophorus for the new genus, and the new subfamily is called Sinopyrophorinae.”
In conclusion, the discovery of the new species sheds new light on the geographic distribution and evolution of luminescent click beetles. The authors agree that as a representative of a unique lineage, which is only distantly related to the already known bioluminescent click beetles, the new insect group may serve as a new model in the research of bioluminescence within the whole order of beetles.
###
Original source:
Bi W-X, He J-W, Chen C-C, Kundrata R, Li X-Y (2019) Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys 864: 79-97. https://doi.org/10.3897/zookeys.864.26689
A study of parasitic crustaceans attaching themselves inside the branchial cavities (the gills) of their fish hosts was recently conducted in order to reveal potentially unrecognised diversity of the genus Elthusa in South Africa.
While there had only been one species known from the country, a new article published in the open-access journal ZooKeys adds another three to the list.
For one of them, the research team from North-West University (South Africa): Serita van der Wal, Prof Nico Smit and Dr Kerry Hadfield, chose the name of the fictional character Xena, the warrior princess. The reason was that the females appeared particularly tough with their characteristic elongated and ovoid bodies. Additionally, the holotype (the first specimen used for the identification and description of the previously unknown species) is an egg-carrying female.
Formally recognised as Elthusa xena, this new to science species is so far only known from the mouth of the Orange River, Alexander Bay, South Africa (Atlantic Ocean). It is also the only Elthusa species known to parasitise the intertidal Super klipfish (Clinus supercilious). In fact, this is the first time an Elthusa species has been recorded from any klipfish (genus Clinus).
van der Wal S, Smit NJ, Hadfield KA (2019) Review of the fish parasitic genus Elthusa Schioedte & Meinert, 1884 (Crustacea, Isopoda, Cymothoidae) from South Africa, including the description of three new species. ZooKeys 841: 1-37. https://doi.org/10.3897/zookeys.841.32364
The paper describing the new species is part of a special issue dedicated to macro moths of the New World published in the open-access journal ZooKeys
Newly-recognized species of owlet moth recently discovered to inhabit high-elevation mountains in western North America was named after the Greek mythological character Icarus. From now on, scientists will be referring to the new insect as Admetovis icarus.
In their paper, Dr Lars Crabo, Washington State University, USA, and Dr Christian Schmidt, Agriculture and Agri-Food Canada, explain that the combination of the distinct flame-shaped mark on the moth’s forewing and its high-elevation habitat were quick to remind them of Icarus, who is said to have died after flying so close to the sun that his wings made of wax and feathers caught fire.
The study is part of the seventh volume of the “Contributions to the systematics of New World macro-moths” series, where all previous volumes have also been published as special issues in ZooKeys.
Found in the town of Nederland, Colorado, the moth was collected at an elevation of 2,896 m above sea level. The species has also been recorded all the way from central Utah and central Colorado to the Selkirk Mountains of southeastern British Columbia, including a record from northeastern Oregon. It can be spotted between June and August at night.
In fact, it turns out that the moth has been collected during surveys in the past on multiple occasions, but has been misidentified with another closely related species: Admetovis oxymorus.
While the flame mark is a characteristic feature in all three species known in the genus (Admetovis), in the newly described species it is darker. When compared, the wings of the Icarus moth are also more mottled.
Despite the biology of the larvae being currently unknown, the scientists believe they are climbing cutworms and feed on woody shrubs, similarly to the species Admetovis oxymorus.
“Finding undiscovered moths is not that unusual, even though scientists have been naming insects since the eighteenth century,” says lead author Dr Lars Crabo.
“The Contributions series, edited by Don Lafontaine and Chris Schmidt, in which this discovery is published, really encourages professional and citizen scientists alike to go through the steps necessary to properly name the species that they have discovered. This series of seven volumes also includes a new check list for the United States and Canada, which has led to a re-kindling of interest in moths during the last decade.”
Nature is replete with examples of identifiable populations known from different continents, mountain ranges, islands or lowland regions. While, traditionally, many of these have been treated as subspecies of widely-ranging species, recent studies relying on molecular biology have shown that many former “subspecies” have in fact been isolated for millions of years, which is long enough for them to have evolved into separate species.
Being a controversial matter in taxonomy – the science of classification – the ability to tell apart different species from subspecies across faunal groups is crucial. Given limited resources for conservation, relevant authorities tend only to be concerned for threatened species, with their efforts rarely extending to subspecies.
Figuring out whether co-habiting populations belong to the same species is only as tough as testing if they can interbreed or produce fertile offspring. However, whenever distinct populations are geographically separated, it is often that taxonomists struggle to determine whether they represent different species or merely subspecies of a more widely ranging species.
British bird expert Thomas Donegan has dedicated much of his life to studying birds in South America, primarily Colombia. To address this age-long issue of “what is a species?”, he applied a variety of statistical tests, based on data derived from bird specimens and sound recordings, to measure differences across over 3000 pairwise comparisons of different variables between populations.
Having analyzed the outcomes of these tests, he developed a new universal formula for determining what can be considered as a species. His study is published in the open-access journal ZooKeys.
Essentially, the equation works by measuring differences for multiple variables between two non-co-occurring populations, and then juxtaposing them to the same results for two related populations which do occur together and evidently belong to different “good” species. If the non-co-occurring pair’s differences exceed those of the good species pair, then the former can be ranked as species. If not, they are subspecies of the same species instead.
The formula builds on existing good taxonomic practices and borrows from optimal aspects of previously proposed mathematical models proposed for assessing species in particular groups, but brought together into a single coherent structure and formula that can be applied to any taxonomic group. It is, however, presented as a benchmark rather than a hard test, to be used together with other data, such as analyses of molecular data.
Thomas hopes that his mathematical formula for species rank assessments will help eliminate some of the subjectivity, regional bias and lumper-splitter conflicts which currently pervade the discipline of taxonomy.
“If this new approach is used, then it should introduce more objectivity to taxonomic science and ultimately mean that limited conservation resources are addressed towards threatened populations which are truly distinct and most deserving of our concern,” he says.
The problem with ranking populations that do not co-occur together was first identified back in 1904. Since then, most approaches to addressing such issues have been subjective or arbitrary or rely heavily upon expert opinion or historical momentum, rather than any objectively defensible or consistent framework.
For example, the American Herring Gull and the European Herring Gull are lumped by some current taxonomic committees into the same species (Herring Gull), or are split into two species by other committees dealing with different regions, simply because relevant experts at those committees have taken different views on the issue.
“For tropical faunas, there are thousands of distinctive populations currently treated as subspecies and which are broadly ignored in conservation activities,” explains Thomas. “Yet, some of these may be of conservation concern. This new framework should help us better to identify and prioritize those situations.”
###
Original source:
Donegan TM (2018) What is a species? A new universal method to measure differentiation and assess the taxonomic rank of allopatric populations, using continuous variables. ZooKeys 757: 1-67. https://doi.org/10.3897/zookeys.757.10965
A mystery has long shrouded the orb-weaving spider genus Opadometa, where males and females belonging to one and the same species look nothing alike. Furthermore, the males appear to be so elusive that scientists still doubt whether both sexes are correctly linked to each other even in the best-known species.
Such is the case for Opadometa sarawakensis – a species known only from female specimens. While remarkable with their striking red and blue colors and large size, the females could not give the slightest hint about the likely appearance of the male Opadometa sarawakensis.
Nevertheless, students taking part in a recent two-week tropical ecology field course organized by the Naturalis Biodiversity Center and Leiden University, and hosted by the Danau Girang Field Centre (DGFC) on the island of Borneo, Malaysia, found a mature male spider hanging on the web of a red and blue female, later identified as Opadometa sarawakensis. Still quite striking, the male was colored in a blend of orange, gray, black, and silver.
At the brink of a long-awaited discovery and eager to describe the male, the students along with their lecturers and the field station scientific staff encountered a peril – with problematic species like the studied orb weaver they were in need for strong evidence to prove that it matched the female from the web. Furthermore, molecular DNA-based analysis was not an option at the time, since the necessary equipment was not available at DGFC.
On the other hand, being at the center of the action turned out to have advantages no less persuasive than DNA evidence. Having conducted thorough field surveys in the area, the team has concluded that the male’s observation on that particular female’s web in addition to the fact that no other Opadometa species were found in the area, was enough to prove they were indeed representatives of the same spider.
Adapting to the quite basic conditions at the DGFC laboratory, the students and their mentors put in use various items they had on hand, including smartphones paired up with headlights mounted on gooseneck clips in place of sophisticated cameras.
In the end, they gathered all the necessary data to prepare the formal description of the newly identified male.
Once they had the observations and the data, there was only one question left to answer. How could they proceed with the submission of a manuscript to a scholarly journal, so that their finding is formally announced and recognised?
Thanks to the elaborated and highly automated workflow available at the peer-reviewed open access Biodiversity Data Journal and its underlying ARPHA Writing Tool, the researchers managed to successfully compile their manuscript, including all underlying data, such as geolocations, and submit it from the field station. All in all, the authoring, peer review and publication – each step taking place within the ARPHA Platform‘s singular environment – took less than a month to complete. In fact, the paper was published within few days after being submitted.
This is the second publication in the series “Dispatch from the field”, resulting from an initiative led by spider taxonomist Dr Jeremy Miller. In 2014, another team of students and their mentors described a new species of curious one-millimetre-long spider from the Danau Girang Field Center. Both papers serve to showcase the feasibility of publication and sharing of easy to find, access and re-use biodiversity data.
“This has been a unique educational experience for the students,” says Jeremy. “They got to experience how tropical field biologists work, which is often from remote locations and without sophisticated equipment. This means that creativity and persistence are necessary to solve problems and complete a research objective. The fact that the students got to participate in advancing knowledge about this remarkable spider species by contributing to a manuscript was really exciting.”
###
Original source:
Miller J, Freund C, Rambonnet L, Koets L, Barth N, van der Linden C, Geml J, Schilthuizen M, Burger R, Goossens B (2018) Dispatch from the field II: the mystery of the red and blue Opadometa male (Araneae, Tetragnathidae, Opadometa sarawakensis). Biodiversity Data Journal6: e24777. https://doi.org/10.3897/BDJ.6.e24777
While working on a rare little known group of Oriental wasps that most likely parasitise the eggs of grasshoppers, locusts or crickets, not only did a team of four entomologists discover four previously unknown species, but they also found that another four species within the same genus (Habroteleia) were in fact all one and the same – a fifth species discovered more than a century ago.
Their study, published in the open access journal Zookeys, comes as a fine example illustrating the important role played by taxonomists in puzzling out the Earth’s biodiversity.
Prior to their study, there were only nine species known in the genus that had been described over the last 113 years from India, Japan and the Philippines.
However, following careful analyses, most of those species turned out to be synonyms of another one discovered in distant 1905, H. flavipes. Because of this species having been described and named five times in total through the years, the richness of the genus has been greatly inflated.
In their turn, having identified four new species belonging to the same genus after studying additional material collected from Madagascar, Papua New Guinea, and the Fijian archipelago, the scientists have maintained the species number in the group intact.
Additionally, the team provides a detailed illustrated identification key to all members of the genus in their paper. This list of characteristic features is set to prevent similar taxonomic confusion in the future.
In conclusion, Chen and colleagues have significantly advanced our understanding of the diversity and biogeography of the rare parasitoids, amongst which there might be some that will eventually prove to be helpful in pest management.
“Taxonomic revisions are essential for the fundamental understanding of biodiversity and its conservation. Taxonomists play a critical role in this process,” explains the lead author.
###
Original source:
Chen H-y, Talamas EJ, Masner L, Johnson NF (2018) Revision of the world species of the genus Habroteleia Kieffer (Hymenoptera, Platygastridae, Scelioninae). ZooKeys 730: 87-122. https://doi.org/10.3897/zookeys.730.21846
Scientists described two species of previously unknown stone centipedes from China. Now housed at the Hengshui University, China, where all members of the team work, the studied specimens were all collected in the leaf litter or under rocks in larch forests.
Having conducted their research across China, researchers Dr Sujian Pei, Yanmin Lu, Haipeng Liu, Dr Xiaojie Hou and Dr Huiqin Ma announced the two new species – Lithobius (Ezembius) tetraspinus and Hessebius luculentus – in two articles published in the open access journal ZooKeys.
Stone centipedes are the species which belong to the order Lithobiomorpha. These centipedes are anamorphic, meaning that they grow additional pair of legs as they moult and develop additional body segments. By the time they are fully grown, these count 15 in total. Unlike earlier predecessors, stone centipedes do not have the compound eyes we know from insects. Instead, stone centipedes see through simple eyes, sometimes a group of simple eyes, or, if living exclusively underground, they might have no eyes at all.
One of the newly discovered species, Lithobius (Ezembius) tetraspinus, is recorded from Hami City, Xinjiang Autonomous Region, northwestern China. The studied specimens were collected from moderately moist larch forest habitats at altitude of 950 to 1000. There, the small predominantly brown centipedes, measuring no more than about 13 mm in body length, were hiding under rodeside stones and leaf litter.
The second previously unknown centipede, Hessebius luculentus, discovered in Shandan County, Qinghai-Tibet Plateau, is slightly larger – reaching up to 20 mm. Its colours are a mix of yellow and brown with the odd grey or red hue. While it has the same preference for relatively moist habitats, this species lives at greater altitude. It has been reported from forest floor at about 1400 m above sea level.
In both papers, the authors point out that while the myriapod fauna of China remains generally poorly known, even less attention has been given to the order of stone centipedes.
Pei S, Lu Y, Liu H, Hou X, Ma H (2018) Lithobius (Ezembius) tetraspinus, a new species of centipede from northwest China (Lithobiomorpha, Lithobiidae). In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 203-217. https://doi.org/10.3897/zookeys.741.19980
Ma H, Lu Y, Liu H, Hou X, Pei S (2018) Hessebius luculentus, a new species of the genus Hessebius Verhoeff, 1941 from China (Lithobiomorpha, Lithobiidae). In: Stoev P, Edgecombe GD (Eds) Proceedings of the 17th International Congress of Myriapodology, Krabi, Thailand. ZooKeys 741: 193-202. https://doi.org/10.3897/zookeys.741.20061
Evolutionary Systematics is the latest authoritative journal to join the lines of the open access titles published on the Pensoft-developed technologically advanced journal publishing platform ARPHA.
Launched in 1884 and 1912, respectively, University of Hamburg’s journal Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut and Entomologische Mitteilungen are now resurrected under the name of Evolutionary Systematics.
Rebranded and refreshed, the journal has acquired a long list of technological user-friendly innovations, while simultaneously keeping its well-known expertise and devotion to whole-organism biology and collection-related research.
Its first issue in collaboration with Pensoft comprises two editorials dedicated to the extensive tradition and the bright future of the journal along with seven articles are already live on the journal’s new website.
Right underneath the new sleek look and feel welcoming users from the journal’s homepage, there are a lot of high-tech perks to benefit authors, readers, reviewers and editors alike.
Thanks to the fast-track and convenient publishing provided by ARPHA, each manuscript is carried through all stages from submission and reviewing to dissemination and archiving without ever leaving the platform’s singular collaboration-friendly online environment.
Furthermore, all publications are available in three formats (PDF, XML, HTML), complete with a whole set of semantic enhancements, so that the articles are easy to find, accessed and harvested by both humans and machines.
“We are happy to have joined forces with Lyubomir Penev and his professional team at Pensoft Publishers, once again now after having already successfully established together Zoosystematics and Evolution as an international journal of the Berlin Natural History Museum,” say editors Prof. Dr. Matthias Glaubrecht, Prof. Dr. Andreas Schmidt-Rhaesa and Dr. Martin Husemann.
“Certainly, I’m pleased to welcome Evolutionary Systematics to the family of Pensoft,” says the publisher’s founder and CEO Prof. Lyubomir Penev. “Combining our own solid experience in scholarly publishing with their amazing background, dating back to 19th century, will definitely benefit not only the two of us as collaborators, but all our present and future readers and users as well.”
Amongst the first papers, there is the description of the Bob Marley’s Intertidal Spider – a new arachnid species that emerged at low tide to the surprise of the research team of Drs. Barbara Baehr, Robert Raven and Danilo Harms. Once the scientists concluded it was a previously unknown species, they were quick to associate it with the reggae legend’s song “High Tide or Low Tide”.
The first issue also features the description of the Grey Wolf Spider – a common, yet enigmatic new species, which prompted the establishment of a new genus all to itself. The inaugural issue goes on to also announce as many as seven species of goblin spiders new to science . Their discovery results from a genus review involving a significant collection from the Otonga Nature Reserve, Ecuador.
Pensoft is an independent academic publishing company, well-known worldwide for its innovations in the field of semantic publishing, as well as for its cutting-edge publishing tools and workflows. In 2013, Pensoft launched the first ever end to end XML-based authoring, reviewing and publishing workflow, as demonstrated by the Pensoft Writing Tool (PWT) and the Biodiversity Data Journal (BDJ), now upgraded to the ARPHA Publishing Platform. Flagship titles include: Research Ideas and Outcomes (RIO), One Ecosystem, ZooKeys, Biodiversity Data Journal, PhytoKeys, MycoKeys, and more.
A group of rare Asian butterflies which have once inspired an association with Hindu mythological creatures have been quite a chaos for the experts. In fact, their systematics turned out so confusing that in order to decode their taxonomic placement, scientists had to dig up their roots some 43 million years back.
Together, Drs. Valentina Todisco, Vazrick Nazari and Paul Hebert arrived at the conclusion that the enigmatic genus (Calinaga) originated in southeast Tibet in the Eocene as a result of the immense geological and environmental impact caused by the collision between the Indian and Asian subcontinents. However, the diversification within the lineage was far from over at that point. In the following epochs, the butterflies had to adapt to major changes when Indochina drifted away, leading to the isolation of numerous populations; and then again, when the Pleistocene climatic changes took their own toll.
To make their conclusions, the scientists studied 51 specimens collected from a wide range of localities spanning across India, South China, Laos, Vietnam, Myanmar and Thailand. For the first time for the genus, the authors conducted molecular data and combined it with an examination of both genitalia and wing patterns – distinct morphological characters in butterflies. While previous estimates had reported existence of anywhere between one and eleven species in the genus, the present study identified only four, while confirming how easy it is to mislabel samples based on earlier descriptions.
However, the researchers note that they have not sampled specimens from all species listed throughout the years under the name of the genus, so they need additional data to confirm the actual number of valid Calinaga species. The authors are to enrich this preliminary study in the near future, analysing both a larger dataset and type specimens in collaboration with the Natural History Museum of London that holds the largest Calinaga collection.
Despite being beautiful butterflies, the examined species belong to a genus whose name derives from the Hindu mythical reptilian creatures Nāga and a particular one of them – Kaliya, which is believed to live in Yamuna river, Uttar Pradesh, and is notorious for its poison. According to the Hindu myths, no sooner than Kaliya was confronted by the major deity Krishna, did it surrender.
“It seems that the modern taxonomy of Calinaga is in need of a Krishna to conquer these superfluous names and cleanse its taxonomy albeit after careful examination of the types and sequencing of additional material,” comment the authors.
###
Original source:
Todisco V, Nazari V, Hebert PDN (2017) Preliminary molecular phylogeny and biogeography of the monobasic subfamily Calinaginae (Lepidoptera, Nymphalidae). Zoosystematics and Evolution 93(2): 255-264. https://doi.org/10.3897/zse.93.10744
With its extraordinary defensive hairs, a Colombian tarantula proved itself as not only a new species, but also a new genus. It is hypothesised that the new spider is the first in its subfamily to use its stinging hairs in direct attack instead of ‘kicking’ them into the enemy.
Described in the open access journal ZooKeys by an international research team, led by Carlos Perafán, University of the Republic, Uruguay, the name of the new spider genus honours an indigenous people from the Caribbean coast region, whose language and culture are, unfortunately, at serious risk of extinction. Meanwhile, its species’ name pays tribute to renowned Colombian author and Nobel laureate for his novel ‘One Hundred Years of Solitude’ Gabriel García Márquez.
The new tarantula, formally called Kankuamo marquezi, was discovered in Sierra Nevada de Santa Marta, Colombia. When examined, the arachnid showed something extraordinary about its defensive hairs and its genitalia. The hairs were noted to form a small oval patch of lance-shaped barbs, hypothesised by the scientists to have evolved to defend their owners by direct contact.
On the other hand, when defending against their aggressors, the rest of the tarantulas in this subfamily need to first face the offender and then vigorously rub their hind legs against their stomachs. Aimed and shot at the enemy, a ball of stinging hairs can cause fatal injuries to small mammals when landed into their mucous membrane (the layer that covers the cavities and shrouds the internal organs in the body). Once thrown, the hairs leave a bald spot on the tarantula’s belly.
“This new finding is a great contribution to the knowledge of the arachnids in Colombia and a sign of how much remains to be discovered,” point out he authors.
“The morphological characteristics present on Kankuamo marquezi open the discussion about the phylogenetics relationship between subfamilies of Theraphosidae tarantulas and the evolutionary pressures that gave rise to the urticating hairs.”
###
Original source:
Perafán C, Galvis W, Gutiérrez M, Pérez-Miles F (2016) Kankuamo, a new theraphosid genus from Colombia (Araneae, Mygalomorphae), with a new type of urticating setae and divergent male genitalia. ZooKeys 601: 89-109. doi: 10.3897/zookeys.601.7704