Newly discovered moth named Icarus sports a flame-shaped mark and prefers high elevations

The paper describing the new species is part of a special issue dedicated to macro moths of the New World published in the open-access journal ZooKeys

Newly-recognized species of owlet moth recently discovered to inhabit high-elevation mountains in western North America was named after the Greek mythological character Icarus. From now on, scientists will be referring to the new insect as Admetovis icarus.

In their paper, Dr Lars Crabo, Washington State University, USA, and Dr Christian Schmidt, Agriculture and Agri-Food Canada, explain that the combination of the distinct flame-shaped mark on the moth’s forewing and its high-elevation habitat were quick to remind them of Icarus, who is said to have died after flying so close to the sun that his wings made of wax and feathers caught fire.

The study is part of the seventh volume of the “Contributions to the systematics of New World macro-moths” series, where all previous volumes have also been published as special issues in ZooKeys.

Found in the town of Nederland, Colorado, the moth was collected at an elevation of 2,896 m above sea level. The species has also been recorded all the way from central Utah and central Colorado to the Selkirk Mountains of southeastern British Columbia, including a record from northeastern Oregon. It can be spotted between June and August at night.

In fact, it turns out that the moth has been collected during surveys in the past on multiple occasions, but has been misidentified with another closely related species: Admetovis oxymorus.

While the flame mark is a characteristic feature in all three species known in the genus (Admetovis), in the newly described species it is darker. When compared, the wings of the Icarus moth are also more mottled.

Despite the biology of the larvae being currently unknown, the scientists believe they are climbing cutworms and feed on woody shrubs, similarly to the species Admetovis oxymorus.

“Finding undiscovered moths is not that unusual, even though scientists have been naming insects since the eighteenth century,” says lead author Dr Lars Crabo.

“The Contributions series, edited by Don Lafontaine and Chris Schmidt, in which this discovery is published, really encourages professional and citizen scientists alike to go through the steps necessary to properly name the species that they have discovered. This series of seven volumes also includes a new check list for the United States and Canada, which has led to a re-kindling of interest in moths during the last decade.”

###

Original source:

Crabo LG, Schmidt BC (2018) A revision of Admetovis Grote, with the description of a new species from western North America (Noctuidae, Noctuinae, Hadenini). In: Schmidt BC, Lafontaine JD (Eds) Contributions to the systematics of New World macro-moths VIIZooKeys788: 167-181. https://doi.org/10.3897/zookeys.788.26480

The first drywood termite known to use snapping stick-like mandibles to defend its colony

Tasked to defend the colony from attackers, the specialised soldier caste in some termite species has evolved various impressive mechanisms, including plug-like heads – meant to block intruding ants trying to invade their lairs, and mouthparts designed to bite and pierce.

Still, there are even more spectacular soldiers, such as a recently discovered drywood termite species, whose unique long and slender, stick-like snapping mandibles produce one of the highest acceleration speeds measured in a living organism. Rather than bite, these peculiar ‘jaws’ deliver powerful strikes at enemies bold enough to stand in the way of the soldier termite and its colony.

The scientists describe the new termite’s specialty in detail:

“Roisinitermes employs a unique strategy of snapping, achieved by long and slender mandibles pressed against each other in a defensive encounter. When this potential energy is released, the left mandible springs over the right and the resultant snap is forced onto the opponent if it is in the path of the strike.”

Discovered in Cameroon, this striking species is the first drywood termite found to rely on snapping mandibles as a defense strategy. Given that until now there had been a single subfamily (Termitinae) known to have developed such, the very existence of the new insect poses a whole new set of questions before scientists. Have snapping mandibles evolved independently in two evolutionary lineages? Or, is it that these groups share a distant kin relationship which has gone unnoticed for that long?

The new drywood termite, which is also assigned to a new genus, is named Roisinitermes ebogoensis, and is described in the open access journal ZooKeys by an international team of researchers, led by Dr Rudolf Scheffrahn of the Institute for Food and Agricultural Sciences at University of Florida, Davie, USA. Although this particular species is not thought to be a pest, some drywood termites cause serious damage to wooden structures around the world.

Both colonies studied by the scientists were found near the Ebogo II village, which also stands behind the name of the species. The first unusual colony to draw the attention of the scientists was collected from a forest on an island in the Nyong River, where it lived in a thin (3 cm) and long (over 3 m) broad-leaf tree branch suspended from a canopy. The second one – in a 15-mm thick dead liana branch hanging from a tree in a nearly pristine rainforest.

The team expects that future research will shed more light on the origins and evolution of the newly discovered termite.

###

Original source:

Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91-105. https://doi.org/10.3897/zookeys.787.28195

Total of 21 new parasitoid wasps following the first ever revision of their genus

As many as twenty-one species of parasitoid wasps are described as new to science, following the first ever revision of their genus since its establishment back in 1893.

The study simultaneously updates the count of species within the genus (Chromoteleia) to 27 in total, produces a systematic revision of the world’s representatives of this group of wasps, expands their biogeographic knowledge, and clarifies their generic concept.

The monograph is published in the open access journal ZooKeys by a team of US and Canadian scientists, led by Hua-yan Chen, graduate student at the Ohio State University.

The wasps in the genus Chromoteleia are easily distinguished thanks to their large size in combination with their vivid colouration. Compared to other species in the family of platygastrid wasps, which normally measure merely 1 – 2 mm in length, the species in the studied genus range between 3 and 9 mm. Their uncommonly large, robust and elongated bodies is why the scientists assume that these wasps likely parasitise the eggs of orthopterans, such as grasshoppers, crickets and katydids.

A focal point in the study is the intriguing distribution of the wasps. While the genus is widespread throughout continental Mesoamerica, Central America and South America, and its distribution ranges from the Mexican state of Jalisco in the north all the way to Itapúa Department in Paraguay and Paraná in southern Brazil, the species C. congoana is a lone representative of the genus in Africa.

The ‘lone’ African representative of the genus, Chromoteleia congoana.

While dispersal from South America to Africa has been observed in the past in another genus of parasitoid wasps (Kapala), the scientists are not willing to reject the possibility of Chromoteleia wasps having been widely distributed across the Old World during a previous geological epoch. Such phenomenon, also known as a relict population, would not mean that the wasp group has subsequently ‘conquered’ the Neotropics and current species inhabiting the New World are rather remainders of once widespread insects.

To conclude their findings, the scientists examined specimens hosted in collections at twenty natural history institutions from around the globe, including the American Entomological InstituteAmerican Museum of Natural HistoryBernice P. Bishop MuseumCalifornia Academy of SciencesCanadian National Collection of InsectsCalifornia State Collection of ArthropodsFlorida State Collection of ArthropodsInstituto Alexander von HumboldtIllinois Natural History SurveyKansas University’s Natural History MuseumMuseo del Instituto de Museo del Instituto de Zoologia AgricolaMuseum National d’Histoire NaturelleMuseu Paraense Emílio GoeldiLund Museum of Zoology at Lund UniversityTriplehorn Insect Collection at the Ohio State UniversitySouth African MuseumTexas A&M University’s Insect CollectionBohart Museum of EntomologyUniversity of Colorado; and Smithsonian National Museum of Natural History.

###

Original source:

Chen H-y, Talamas EJ, Valerio AA, Masner L, Johnson NF (2018) Revision of the World species of the genus Chromoteleia Ashmead (Hymenoptera, Platygastridae, Scelioninae). ZooKeys 778: 1-95. https://doi.org/10.3897/zookeys.778.25775

Right under our noses: A novel lichen-patterned spider found on oaks in central Spain

It happened again, a previously unknown spider species, whose home is a strongly humanised European country, appears to have been quietly and patiently waiting to get noticed until very recently.

Living on the trunks of oaks in Spain, the new species would have probably been spotted decades ago, had it not been for its sophisticated camouflage, which allows the small arachnid to perfectly blend with the lichens naturally growing on the tree.

Going by the name Araneus bonali, the new species was discovered on isolated trees at the borders of cereal fields by the scientists Eduardo Morano, University of Castilla-La Mancha, and Dr Raul Bonal, University of Extremadura. Their study is published in the open access journal ZooKeys.

Curiously enough, this is the same habitat, where the team found another new spider in 2016.

“How many new species remain unknown in these isolated oaks that once formed vast forests now becomes one even more intriguing question,” say the researchers.

“Anyone going for a walk around any village or park in central Spain would have been close to the new species. However, noticing it requires not only curiosity, but also a good sight, as its lichen-like colours make up an excellent mimicry.”

Lichens growing on an oak trunk at the study site in central Spain.

The similarity between the adults and the lichens that cover the oak trunks they inhabit is remarkable. Meanwhile, the greenish juveniles live amongst the green new shoots in the oak canopy until they reach maturity.

Whether the spider uses its mimicry to avoid predators or rather surprise its prey remains open for further investigation.

The description of this new species that belongs to the popular group of orb-weavers once again stresses the need of working harder on completing the list of spiders living in the Old World, such as the countries in the Mediterranean basin – a region that certainly keeps more taxonomic surprises up his sleeve.

***

Original source:

Morano E, Bonal R (2018) Araneus bonali sp. n., a novel lichen-patterned species found on oak trunks (Araneae, Araneidae). ZooKeys 779: 119-145. https://doi.org/10.3897/zookeys.779.26944

Mosquito populations give a new insight into the role of Caucasus in evolution

We know that the Caucasus is a relatively large mountainous region, situated between Black and the Caspian seas. In its turn, it is divided into three subregions: Ciscaucasia, Greater Caucasus and Transcaucasia, also known as South Caucasus.

A closer look into the chromosome structure of mosquito larvae of a curious group of species (Chironomus “annularius” sensu Strenzke (1959)), collected from the three localities, has allowed Dr Mukhamed Karmokov of the Tembotov Institute of Ecology of Mountain territories at the Russian Academy of Science to figure out how the specificity of the Caucasian region has simultaneously unified its fauna geographically, yet has divided it evolutionarily. His paper is published in the open access journal Comparative Cytogenetics.

Having collected a sufficient amount of mosquito larvae, the researcher managed to study the chromosome structure, rearrangements and possible peculiarities of the separate Caucasian populations, in order to compare them.

Additionally, he analysed their relations to earlier known populations from Europe, Siberia, Kazakhstan and North America.

Amongst the curious peculiarities Karmokov identified in the chromosome structure of the studied larvae were some rearrangements which appear unique to Caucasus. Furthermore, he found that despite the close geographic proximity, the genetic distance between the Caucasian populations is quite significant, even While not enough to determine them as separate species, it could prove them as separate subspecies.

In conclusion, the scientist notes that the obtained data confirm that the Caucasian populations of the studied species have complex genetic structure and provide evidence for microevolution processes in the region.

###

Original source:

Karmokov MKh (2018) Karyotype characteristics and chromosomal polymorphism of Chironomus “annularius” sensu Strenzke (1959) (Diptera, Chironomidae) from the Caucasus region. Comparative Cytogenetics 12(3): 267-284. https://doi.org/10.3897/CompCytogen.v12i3.25832

How many sharks, chimaeras, skates, and rays inhabit Mexico?

Worldwide, Mexico is well-known for a lot of things: its cuisine, tequila, mariachis, pyramids, and beaches, as well as being the country with the most Spanish-speaking residents (more than 120 million people).

In contrast, however, little is known for the country’s chondrichthyan fauna: a class of fishes containing the sharks, chimaeras, rays, and skates.

To fill the gap in the knowledge of the Mexican marine fauna, scientists from the Instituto Politécnico Nacional – Centro Interdisciplinario de Ciencias Marinas  (IPN-CICIMAR) conducted a multidisciplinary study on the extant species of the country’s Economic Exclusive Zone (EEZ) and, as a result, reported a total of 217 extant chondrichthyan species. Their findings are published in the open access journal ZooKeys.

In their updated taxonomic list, the team of Dr. José De La Cruz-Agüero, Dr. Jorge Guillermo Chollet-Villalpando, and Venezuelan graduate students Lorem González-González and Nicolás R. Ehemann report eight chimaeras, 111 sharks and 98 ray and skate species. These numbers equate to 18% of the world’s chondrichthyans.

Split between the Mexican coasts there are 92 species recorded from the Mexican Pacific and the Gulf of California, whereas 94 fishes are identified for the Gulf of Mexico and the Caribbean Sea. Additionally, 31 species are known from both coasts.

“The species richness will undoubtedly continue to increase, due to the current investigations in progress, as well as the exploration of deep-water fishing areas in the EEZ,” comment the scientists.

Considered to be primitive fishes, sharks, skates, chimaeras, and rays are believed to have been inhabiting the planet for the last 420-450 million years. To put it in perspective, the earliest evidence of our species – Homo sapiens – is pretty ‘young’ at 315,000 years.

Not only do these species are peculiar with their lack of a bony skeleton when compared to the more recently evolved fishes, but they also have an unusual digestive system, featuring a spiral valve, where the lower intestine is twisted like a corkscrew to increase the surface area. They don’t have a swimming bladder either. Further, there are about 650 extant species, whereas the known bony fishes are estimated to be over 35,000.  

Most of the chondrichthyans are considered either ‘Critically Endangered’ (a classification a step below ‘Extinct’) or ‘Endangered’, according to the Red List of the International Union for Conservation of Nature (IUCN). The majority are also featured in the Convention on International Trade in Endangered Species.

As if to make matters worse, these fishes are also particularly susceptible to overfishing and have a low rate of growth and fecundity (females give birth to between 1 and 25 pups a year).

 

Original source:

Ehemann NR, González-González LV, Chollet-Villalpando JG, Cruz-Agüero JDL (2018) Updated checklist of the extant Chondrichthyes within the Exclusive Economic Zone of Mexico. ZooKeys 774: 17-39. https://doi.org/10.3897/zookeys.774.25028

Described 28 years post-collection, new grass species makes a strong case for conservation

Originally collected 28 years ago in Ecuador, new species Poa laegaardiana has been just described, only to find out its prospects for surviving in its type location seem bleak nowadays. The study was published in the open access journal PhytoKeys.

When roaming in the Cordillera de los Andes of Ecuador, near the village of Facundo Vela, little did Smithsonian scientist and author, Dr. Paul M. Peterson, know that a small grass specimen will not only turn out to be an intriguing new species, but will also make a big statement on the importance of conservation.

Scientific drawing showing what makes new species P. laegaardiana distinct from its congeners

Almost three decades after its original collection the new species P. laegaardiana has finally emerged from its herbarium collection, but the story took an unexpected twist.

It took the authors a single Google Earth search to find out that what used to be the natural habitat of the newly found densely tufted bunchgrass, is now occupied predominantly by small farms.

Heavy agricultural use of the terrain, poses a good possibility for P. laegaardiana to have already been extirpated from this location. With the species currently known only from this area, chances are that this newly described species, might in fact turn out to be already extinct.

“Further studies are needed to search the area and browse collections for specimens from different locations,” explains Dr. Peterson. “But, in fact, it may well be that with our study we are documenting a possible extinction of a species, happening in the space of just 30 years. The story of P. laegaardiana serves to show how human-induced habitat loss can indeed be a major threat to the survival of life on Earth.”

The new species was named after renowned Danish botanist Simon Laegaard, who has made extensive collections in South America, Greenland, Ecuador, and Bolivia (accompanied by the authors) contributing to the documentation of the flora to make informed conservation and management plans.

Google Earth image comparison between the area of collection in 2011 and today. With the area having been plowed, chances of the grass still existing there are small, however it may still be found along the margins of the fields. CREDIT Left: @2018DigitalGlobe; Right: @2018Google @2018CNES/Airbus

###

Original Source:

Peterson PM, Soreng RJ (2018) Poa laegaardiana, a new species from Ecuador (Poaceae, Pooideae, Poeae, Poinae). PhytoKeys 100: 141-147. https://doi.org/10.3897/phytokeys.100.25387

Out of the darkness: A new spider found deep within an Indiana cave

Lead author Marc Milne in the Stygian River Cave and a male specimen of the newly described Islandiana lewisi 

Spiders are ubiquitous within our forests, fields, and backyards. Although you may be used to seeing the beautiful yellow and black spiders of the genus Argiope in your garden, large ground-scurrying wolf spiders in your yard, or spindly cellar spiders in your basement, this new sheet-web-building spider is probably one you haven’t seen before. The reason is that it’s known from a single cave in the world, Stygeon River Cave, in southern Indiana.

The University of Indianapolis assistant professor, Dr. Marc Milne, described the rare species in the open access journal Subterranean Biology with the help of a University of Indianapolis alumnus, Elizabeth Wells, who illustrated the spider for the manuscript.

Sheet weavers, also known as dwarf spiders or money spiders, are minute creatures growing no larger than a few centimetres in length, which makes them particularly elusive. Their peculiar webs are flat and sheet-like, hence their common English name.

Female of the new species Islandiana lewisi

The new spider, Islandiana lewisi, is an homage. Milne was shown the spider by a fellow scientist, Dr. Julian Lewis, who noticed the critter on one of his many cave expeditions. In appreciation for his help, Milne and Wells named the spider after Lewis.

This is the fifteenth species in its genus (Islandiana) and the fifth known to live exclusively in caves. It has been over 30 years since the last species has been added to this group.

At about 2 mm in size, Islandiana lewisi is thought to feed on even smaller arthropods, such as springtails living in the debris on the cave floor. It is unknown when it reproduces or if it exists anywhere else. The spider is likely harmless to humans.

The collectors of the spider, Milne and Lewis, described the hostile conditions within the cave, which the new species calls home: “because the cave floods from time to time, the insides were wet, muddy, slippery, and dangerous to walk on without the proper equipment.”

Milne and Lewis found the spider in small, horizontal webs between large, mud-caked boulders in the largest room in the cave. It was collected in October 2016 with the permission of the landowner.

Milne hypothesized that he had collected something special, stating, “I didn’t know what the spider was at first, I just thought it was odd that so many were living within this dark cave with no other spider species around.”

After returning to the lab and inspecting the spider under a microscope, Milne initially misidentified the species. However, when he re-examined it months later, he realized that the species was indeed new to science.

###

Original source:

Milne MA, Wells E (2018) A new species of spider (Araneae, Linyphiidae, Islandiana) from a southern Indiana cave. Subterranean Biology 26: 19-26. https://doi.org/10.3897/subtbiol.26.25605

First-ever fern checklist for Togo to help decision makers in the face of threats to biodiversity

Maidenhair fern (Adiantum schweinfurthii) occurring in dense forests.

Ferns and their allied species, which together comprise the pteridophytes, are vascular non-flowering plants that reproduce via spores. Many of their species are admired for their aesthetics.

However, despite being excellent bioindicators that allow for scientists and decision-makers to monitor the state of ecosystems in the face of climate change and global biodiversity crisis, these species are too often overlooked due to their relatively small size and lack of vivid colours.

Spike moss (Selaginella versicolor) with a preference for very humid and shaded forests.

To bridge the existing gaps in the knowledge about the diversity of ferns and their allied species, while also seeking to identify the ways these plants select their habitats and react to the changes occurring there later on, a research team from Togo and France launched an ambitious biodiversity project in 2013. As for the setting of their long-term study, they chose Togo – an amazingly species-rich country in Western Africa, whose flora expectedly turned out to be hugely understudied.

Having concluded their fern project in 2017, scientists Komla Elikplim Abotsi and Kouami Kokou from the Laboratory of Forestry Research, University of Lomé, Togo, who teamed up with Jean-Yves Dubuisson and Germinal Rouhan, both affiliated with the Institute of Systematics Evolution and Biodiversity (UMR 7205), France, have their first findings published in a taxonomic paper in the open access Biodiversity Data Journal.

In this first-of-a-kind checklist of Togolese ferns, the researchers record as many as 73 species previously not known to inhabit the country, including 12 species introduced for horticultural purposes. As a result of their 4-year study, the pteridophyte diversity of Togo – a country barely taking up 56,600 km² – now counts a total of 134 species.

Still, the authors believe that there are even more species waiting to be discovered on both national and global level.

“Additional investigations in the difficult to access areas of the far north of the country, and Togo Mountains are still needed to fill possible biodiversity data gaps and enable decision-makers to make the right decisions,” say the researchers.

The triangular staghorn species Platycerium stemaria living on a coffee tree branch.

In addition to their taxonomic paper, the authors are also set to publish an illustrated guide to the pteridophytes of Togo, in order to familiarise amateur botanists with this fascinating biodiversity.

 

Original source:
Abotsi KE, Kokou K, Dubuisson J-Y, Rouhan G (2018) A first checklist of the Pteridophytes of Togo (West Africa). Biodiversity Data Journal 6: e24137. https://doi.org/10.3897/BDJ.6.e24137

Six new species of goblin spiders named after famous goblins and brownies

 

Fictional characters originally ‘described’ by famous English children’s writer Enid Blyton have given their names to six new species of minute goblin spiders discovered in the diminishing forests of Sri Lanka.

The goblins Bom, Snooky and Tumpy and the brownies Chippy, Snippy and Tiggy made their way from the pages of: “The Goblins Looking-Glass” (1947), “Billy’s Little Boats” (1971) and “The Firework Goblins” (1971) to the scientific literature in a quest to shed light on the remarkable biodiversity of the island country of Sri Lanka, Indian Ocean.

As a result of their own adventure, which included sifting through the leaf litter of the local forests, scientists Prof. Suresh P. Benjamin and Ms. Sasanka Ranasinghe of the National Institute of Fundamental Studies, Sri Lanka, described a total of nine goblin spider species in six genera as new to science. Two of these genera are reported for the very first time from outside Australia.

Their paper is published in the open access journal Evolutionary Systematics.

With a total of 45 species in 13 genera, the goblin spider fauna in Sri Lanka – a country taking up merely 65,610 km2 – is already remarkably abundant. Moreover, apart from their diversity, these spiders amaze with their extreme endemism. While some of the six-eyed goblins can only be found at a few sites, other species can be seen nowhere outside a single forest patch.

“Being short-range endemics with very restricted distributions, these species may prove to be very important when it comes to monitoring the effects of climate change and other threats for the forest habitats in Sri Lanka,” explain the researchers.

In European folklore, goblins and brownies are known as closely related small and often mischievous fairy-like creatures, which live in human homes and even do chores while the family is asleep, since they avoid being seen. In exchange, they expect from their ‘hosts’ to leave food for them.

Similarly, at size of a few millimetres, goblin spiders are extremely tough to notice on the forest floors they call home. Further, taking into consideration the anthropogenic factors affecting their habitat, the arachnids also turn out to be heavily dependent on humans.

###

Original source:

Ranasinghe UGSL, Benjamin SP (2018) Taxonomic descriptions of nine new species of the goblin spider genera CavisternumGrymeusIschnothyreusOpopaeaPelicinus and Silhouettella (Araneae, Oonopidae) from Sri Lanka. Evolutionary Systematics 2: 65-80. https://doi.org/10.3897/evolsyst.2.25200