New species of 65-million-year-old shark ‘accidentally’ discovered in Alabama

The shark lived shortly after the extinction of the dinosaurs, and was discovered from a box of teeth collected over 100 years ago.

A new species of shark, which lived shortly after the mass extinction of the dinosaurs, was discovered when palaeontologist Jun Ebersole came across a 100-year-old box of teeth at the Geological Survey in Alabama, USA.

“Having documented hundreds of fossil fish species over the last decade, I found it puzzling that these teeth were from a shark that I didn’t recognise,” says Ebersole, Director of Collections, McWane Science Center, Birmingham, AL, who quickly realised the teeth belong to a new species.

New shark species tooth.
Palaeohypotodus bizzocoi tooth. Credit: McWane Science Center.

The team, consisting of Ebersole, David Cicimurri, Curator of Natural History, South Carolina State Museum in Columbia, and T. Lynn Harrell Jr., Palaeontologist and Fossil Collections Curator at the Geological Survey of Alabama in Tuscaloosa, published their discovery in the open-access journal Fossil Record.

The shark is a new species of Palaeohypotodus (pronounced pale-ee-oh-hype-oh-toe-duss), which means “ancient small-eared tooth,” in reference to the small needle-like fangs present on the sides of the teeth. Scientists believe it may have looked like a modern sand tiger shark.

Moder sand tiger shark.
Modern sand tiger. Credit: Wikimedia commons.

Living approximately 65-million-years ago in the Paleocene era, Palaeohypotodus bizzocoi was likely a leading predator as the oceans recovered following the death of the dinosaurs, when more than 75% of life on Earth went extinct.

In Alabama, much of the southern half of the state was covered by a shallow tropical to sub-tropical ocean during the Paleocene.

New shark species teeth.
Palaeohypotodus bizzocoi teeth. Credit: Ebersole et al.

“This time period is understudied, which makes the discovery of this new shark species that much more significant,” Harrell says. “Shark discoveries like this one give us tremendous insights into how ocean life recovers after major extinction events and also allows us to potentially forecast how global events, like climate change, affect marine life today.”

As part of their study of this ancient fish, the team compared the fossil teeth to those of various living sharks, like Great Whites and Makos. According to Cicimurri, shark teeth differ in shape depending on where they are located in the mouth.

“By studying the jaws and teeth of living sharks, it allowed us to reconstruct the dentition of this ancient species and showed that it had a tooth arrangement that differed from any living shark,” Cicimurri says.

Dr. Bruce Bizzoco.
The late Dr. Bruce Bizzoco (1949-2022), for whom the new species is named.
Credit: McWane Science Center.

The new species has been named Palaeohypotodus bizzocoi for the late Dr. Bruce Bizzoco (1949-2022) of Birmingham, AL. Bizzoco served as a Dean at Shelton State Community College, archaeologist, and was a long-time volunteer at McWane Science Center.

This discovery is part of an ongoing project led by Ebersole and Cicimurri to document Alabama’s fossil fishes. Together, they have confirmed over 400 unique species of fossil sharks and bony fishes, which, according to Ebersole, makes Alabama one of the richest places in the world in terms of fossil fish diversity.

Research paper

Ebersole JA, Cicimurri DJ, Harrell Jr. TL (2024) A new species of Palaeohypotodus Glickman, 1964 (Chondrichthyes, Lamniformes) from the lower Paleocene (Danian) Porters Creek Formation, Wilcox County, Alabama, USA. Fossil Record 27(1): 111-134. https://doi.org/10.3897/fr.27.e112800

Follow Fossil Record on X and Facebook.

Pensoft collaborates with R Discovery to elevate research discoverability

Pensoft and R Discovery’s innovative connection aims to change the way researchers find academic articles.

Leading scholarly publisher Pensoft has announced a strategic collaboration with R Discovery, the AI-powered research discovery platform by Cactus Communications, a renowned science communications and technology company. This partnership aims to revolutionize the accessibility and discoverability of research articles published by Pensoft, making them more readily available on R Discovery to its over three million researchers across the globe.

R Discovery, acclaimed for its advanced algorithms and an extensive database boasting over 120 million scholarly articles, empowers researchers with intelligent search capabilities and personalized recommendations. Through its innovative Reading Feed feature, R Discovery delivers tailored suggestions in a format reminiscent of social media, identifying articles based on individual research interests. This not only saves time but also keeps researchers updated with the latest and most relevant studies in their field.

Open Science is much more than cost-free access to research output.

Lyubomir Penev

One of R Discovery’s standout features is its ability to provide paper summaries, audio readings, and language translation, enabling users to quickly assess a paper’s relevance and enhance their research reading experience significantly.

With over 2.5 million app downloads and upwards of 80 million journal articles featured, the R Discovery database is one of the largest scholarly content repositories.

At Pensoft, we do realise that Open Science is much more than cost-free access to research outputs. It is also about easier discoverability and reusability, or, in other words, how likely it is for the reader to come across a particular scientific publication and, as a result, cite and build on those findings in his/her own studies. By feeding the content of our journals into R Discovery, we’re further facilitating the discoverability of the research done and shared by the authors who trust us with their work,” said ARPHA’s and Pensoft’s founder and CEO Prof. Lyubomir Penev.

Abhishek Goel, Co-Founder and CEO of Cactus Communications, commented on the collaboration, “We are delighted to work with Pensoft and offer researchers easy access to the publisher’s high-quality research articles on R Discovery. This is a milestone in our quest to support academia in advancing open science that can help researchers improve the world.

So far, R Discovery has successfully established partnership with over 20 publishers, enhancing the platform’s extensive repository of scholarly content. By joining forces with R Discovery, Pensoft solidifies its dedication to making scholarly publications from its open-access, peer-reviewed journal portfolio easily discoverable and accessible.

Two new freshwater fungi species in China enhance biodiversity knowledge

The discoveries from the southwest of the country add to the impressive diversity of freshwater fungi in China.

Researchers have discovered two new freshwater hyphomycete (mould) species, Acrogenospora alangii and Conioscypha yunnanensis, in southwestern China. 

This discovery, detailed in a study published in MycoKeys, marks the addition of these species to the Acrogenospora and Conioscypha genera, further enriching the diversity of freshwater fungi known in the region.

A research team consisting of Lu Li, Hong-Zhi Du and Ratchadawan Cheewangkoon from Chiang Mai University, Thailand, as well as Vinodhini Thiyagaraja and Rungtiwa Phookamsak from Kunming Institute of Botany, China, and Darbhe Jayarama Bhat from King Saud University, Saudi Arabia, employed comprehensive morphological analysis and multi-gene phylogenetic assessments in their study. 

Notably, Acrogenospora alangii was identified on submerged branches of the medicinal plant Alangium chinense, highlighting a unique ecological association.

Hostplant of Acrogenospora alangii growing near water body.

Freshwater fungi are highly diverse in China and frequently reported from submerged wood, freshwater insects, herbaceous substrates, sediments, leaves, foams, and living plants.

Most species are well-known as saprobes (organisms that live on decaying organisms) and they play an important role in ecological functioning as decomposers, but also can be pathogens as well as symbionts on humans and plants.

This research underscores the ecological and taxonomic richness of freshwater fungi in China, a country already recognised for its diverse fungal habitats. The findings contribute valuable insights into the roles these organisms play in freshwater ecosystems and emphasise the importance of ongoing biodiversity studies in these environments.

Research article

Li L, Du H-Z, Thiyagaraja V, Bhat DJ, Phookamsak R, Cheewangkoon R (2024) Two novel freshwater hyphomycetes, in Acrogenospora (Minutisphaerales, Dothideomycetes) and Conioscypha (Conioscyphales, Sordariomycetes) from Southwestern China. MycoKeys 101: 249-273. https://doi.org/10.3897/mycokeys.101.115209

Follow MycoKeys on Facebook and X.

Spiders, snakes and pseudoscorpions: new species published in Pensoft journal

Twelve fascinating newly discovered species were published in Pensoft’s journal Zoosystematics and Evolution in January 2024.

Zoosystematics and Evolution kicked off the year with research papers introducing 12 exciting new species from around the world. The journal, published by Pensoft on behalf of Museum für Naturkunde, is known for being at the forefront of animal research and, in particular, for sharing exciting new discoveries like those below.

Four jumping spiders from India

Four new species of Phintella were discovered in India. Generally striking in appearance, the genus now has 18 recognised species in India – second only to China.

Research paper: https://doi.org/10.3897/zse.100.113049

An ethereal sea slug from British waters

Pleurobranchaea britannica, a newly discovered sea slug, is the first of its genus found in British waters. The unusual translucent creature also represents the second valid Pleurobranchaea species from European seas.

Research paper: https://doi.org/10.3897/zse.100.113707

A beautiful venomous snake from Thailand

In the Tenasserim Mountain Range of western Thailand, researchers discovered Bungarus sagittatus, a new species of venomous elapid snake. The name sagittatus is derived from sagittata meaning arrow, referencing the dark triangular shape on its subcaudal scales which resembles a barbed arrow.

Research paper: https://doi.org/10.3897/zse.100.116601

Two eels from India

Researchers described two new species, Ariosoma gracile and Ariosoma kannani, from Indian waters, based on the materials collected from the Kochi coast, Gulf of Mannar and the West Bengal coast, along the Bay of Bengal.

Research paper: https://doi.org/10.3897/zse.100.116611

An island-dwelling land snail from Australia

Xanthomelon amurndamilumila

Xanthomelon amurndamilumila was discovered on the North East Isles, offshore from Groote Eylandt, Australia. Its conservation status is of concern on North East Island because of habitat degradation caused by feral deer.

Research paper: https://doi.org/10.3897/zse.100.113243

New fish from Türkiye

A new Eurasian minnow, Phoxinus radeki, was discovered in the Ergene River (Aegean Sea Basin). Salmo brunoi, a new species of trout, was discovered in the Nilüfer River, a tributary of the Susurluk River.

Research papers: https://doi.org/10.3897/zse.100.113467 (Phoxinus radeki),
https://doi.org/10.3897/zse.100.112557 (Salmo brunoi)

An Indian pseudoscorpion

Ditha shivanparaensis

Ditha shivanparaensis may look like a scorpion, but looks can be deceiving. Rather, it is an arachnid, newly discovered from the tropical montane cloud forests or ‘sholas’ of the Western Ghats of India.

Research paper: https://doi.org/10.3897/zse.100.110020

With all these discoveries published in January, we anticipate many more exciting new species to come from Zoosystematics and Evolution in 2024!

Follow Zoosystematics and Evolution on X and Facebook for more!

Celebrating scientific excellence: Dr. Paul D. N. Hebert awarded the Benjamin Franklin Medal

Dr. Paul D. N. Hebert, known as “the father of DNA barcoding,” has been honoured with the prestigious Benjamin Franklin Medal, a testament to his trailblazing contributions to biodiversity science.

Dr. Paul D. N. Hebert. Photo credit Åge Hojem, NTNU Vitenskapsmuseet/NTNU University Museum, used under a CC BY 2.0 licence

Dr. Hebert’s innovative work has advanced our understanding of global biodiversity, making the identification of species easier, which in turn helps support global conservation efforts. By devising a method that allows the quick and efficient discerning of species, he has transformed biodiversity science.

DNA barcoding has many applications in the classification and monitoring of biodiversity. It can help protect endangered species, control agriculture pests, and identify disease vectors.

Founder and Director of the Centre for Biodiversity Genomics and Chief Executive Officer of the International Barcode of Life consortium (iBOL), Dr. Hebert is one of the leading voices of today’s biodiversity innovation and research.

Dr. Hebert is also chair of the advisory board of Pensoft’s journal Metabarcoding and Metagenomics. He has authored 13 papers in ZooKeys, substantially contributing to untangling the taxonomy of braconid wasps, butterflies, and other insects.

Acylomus ergoti, one of the many insect species Dr. Hebert has worked on.

His work has also appeared in other Pensoft-published journals, such as Biodiversity Data Journal, Nota Lepidopterologica, and Deutsche Entomologische Zeitschrift.

His innovative approach has sparked discussions and debates around the role of novel methodologies in taxonomy.

Dr. Hebert’s recognition with the Benjamin Franklin Medal demonstrates the critical role of biodiversity studies in dealing with global challenges such as the biodiversity crisis. He has inspired a generation of scientists to push the boundaries of knowledge and drive innovation in research technology.

We at Pensoft extend our heartfelt congratulations to Dr. Paul D. N. Hebert on this well-deserved recognition. He continues to lead the way in unravelling the complexities of global biodiversity.

First database of the impacts of invasive plants in Europe

Freely accessible, the database provides useful contextual information and identifies key gaps in European invasive-plant research.

A team of experts has created the first database of field studies on the impacts of invasive plants on native species, communities and ecosystems in Europe.

The dataset comprises 266 peer-reviewed publications reporting 4,259 field studies on 104 invasive species across 29 European countries. It is the first harmonised database of its kind at continental scale, and is freely accessible to the scientific community for future studies. Notably, one third of the studies focused on just five species that invade several central European countries.

Japanese knotweed (Reynoutria japonica) in a garden in Brastad, Lysekil Municipality, Sweden.

Published in NeoBiota, the project was mainly funded through the European Regional Development Fund (SUMHAL, LIFEWATCH, POPE). It was executed by researchers from the Spanish institutes, Estación Biológica de Doñana, Universidad de Sevilla, Instituto Pirenaico de Ecología and Universidad de Alcalá, as well as the University of Fribourg, Switzerland.

The comprehensive database indicates that invasive plants impact other plants, animals and microbes, all trophic levels (herbivores, parasites, plants, pollinators, predators, omnivores, decomposers and symbionts) and numerous ecosystem processes.

Map of locations (red dots) of field studies on the ecological impacts of invasive plant species in Europe.
Map of locations (red dots) of field studies on the ecological impacts of invasive plant species in Europe. Credit: Vilà et al.

More than half of the studies were conducted in temperate and boreal forests and woodlands and temperate grasslands. Major knowledge gaps are found in Baltic and Balkan countries, in desert and semi-arid shrublands, subtropical forests and high mountains.

Prof. Montserrat Vilà, coordinator of this task, highlights that the database provides information on whether the invasive species increase, decrease or have a neutral effect on the ecological variable of study. This allows investigation into the circumstances in which the invader has contrasting effects.

Himalayan balsam (Impatiens glandulifera). Credit: Guptaele via Wikimedia Commons, CC BY-SA 4.0.

The database will be updated as new field studies on the ecological impacts of invasive species are published. “We hope for more studies on species that are still locally rare and with restricted distribution,” Prof. Montserrat Vilà says, “this database is of interest for academic, management and policy-related purposes.”

The PLANTIMPACTSEUROPE database can be accessed at: https://figshare.com/s/0a890d22bf5632fe5cb5

Research article:

Vilà M, Trillo A, Castro-Díez P, Gallardo B, Bacher S (2024) Field studies of the ecological impacts of invasive plants in Europe. NeoBiota 90: 139-159. https://doi.org/10.3897/neobiota.90.112368

Follow NeoBiota on X and Facebook.

Brand new journal Estuarine Management and Technologies streamlines innovation in ecosystems conservation

There has been an increasing need to support the exchange of research related to the conservation and sustainable management of estuarine ecosystems by means of new-age technologies and approaches.

Where freshwater rivers meet seas and oceans lies a scientifically intriguing and ecologically important type of ecosystem. As estuarine ecosystems provide various and diverse services to humanity and the planet at large, including food security and natural buffers and filters in the events of storms and water pollution, there has been an increasing need to facilitate and support the exchange of research findings and ideas related to their conservation and sustainable management by means of new-age technology and novel approaches.

This is how a team of renowned and passionate scientists, headed by Dr. Soufiane Haddout (Ibn Tofail University, Morocco), took the decision to launch a brand new open-access, peer-reviewed scholarly, aptly titled Estuarine Management and Technologies. They explain the rationale behind the journal in a new editorial, published to mark the official launch of the journal.

Having already worked closely with the scientific publisher and technology provider Pensoft on the fine touches of the concept of the new academic title, the team opted to use Pensoft’s publishing platform of ARPHA. As a result, the new journal provides a seamless, end-to-end publishing experience, encompassing all stages between manuscript submission and article publication, indexation, dissemination and permanent archiving. 

Within the collaboration between the journal’s and Pensoft’s teams, Estuarine Management and Technologies will take advantage of various services offered by the ARPHA platform, including full-text automated export in machine-readable and minable JATS-XML format to over 60 relevant databases for scientific literature and data; semantically enriched and multimedia-friendly publications accessible in HTML; and rich statistics about the outreach and usage of each published article and its elements (e.g. figures and tables), including views, downloads, online mentions, and citations. 

The publishing platform’s in-house indexing team will continue their close work with the journal’s editors to ensure that the scholarly outlet retains highest quality and integrity, so that it covers the criteria for indexation at additional key databases that require individual evaluation. In the meantime, ARPHA’s technical and editorial teams will provide technical and customer support to authors, editors and reviewers. The marketing and promotion team of ARPHA will be also joining forces with the journal to boost the visibility and image of the new academic title.

During the launch phase, content accepted for publication following double-blinded peer review will be made public right away for free to both authors and readers, where the journal will be operating under a continuous publication model.

Estuarine Management and Technologies welcomes studies from a wide spectrum of disciplines, including physics, chemistry, geology, biology, and hydrology, with a focus on interdisciplinarity, multifaceted approaches and holistic perspectives.

“One crucial aspect of estuarine management is the sustainable use of resources to balance conservation with human needs. Striking this delicate equilibrium requires a holistic understanding of the intricate web of ecological interactions within estuarine environments. Advanced technologies, such as isotopic techniques, environmental DNA (eDNA) analysis, can provide insights into the biodiversity of estuarine ecosystems with unprecedented precision,”

explain Dr Haddout and his colleagues in the opening editorial.

Amongst the unique features of the new journal are several additional publication types, such as Expert View, Video Paper, Rapid Communication, Mini Review and Estuarine Scientists, where these have been added to traditional publication outputs (e.g. Research Paper, Review Paper, Data Paper) to foster collaboration between researchers and other stakeholders in the field.

The journal is also running an annual Trailblazing Talent in Estuarine Management and Technologies award intended to recognise and encourage young scientists and engineers at the forefront of cutting-edge research in estuarine management and technologies. Nominations and applications are currently open.

Estuarine Management and Technologies also welcomes applications for guest editors in order to further expand the journal and its immediate expert network.

“I am delighted to see the Estuarine Management and Technologies journal already live on the ARPHA platform. We are confident that this particularly important, yet so far quite overlooked area of study will greatly benefit from this highly promising journal,”

says Prof. Lyubomir Penev, CEO and founder of Pensoft and ARPHA.

“I am pleased to announce the launch of the Estuarine Management and Technologies journal on ARPHA, a decision rooted in our commitment to advancing the field. We believe that this strategic partnership will not only enhance the visibility and accessibility of our journal, but will also foster collaboration and innovation within the estuarine management and technologies community. We expect this alliance to be a catalyst for scholarly excellence, providing a robust platform for researchers and practitioners to share insights, address challenges, and propel the field forward. Together with ARPHA, we are confident in the positive impact our journal will have on shaping the future of estuarine management and technologies.”

says Dr. Soufiane Haddout, Editor-in-Chief and founder, Estuarine Management and Technologies.

***

You can visit the journal website and sign up for its newsletter from the homepage.

You can also follow Estuarine Management and Technologies on X (formerly Twitter).

New coffee snake species discovered in Ecuador’s cloud forests

Found by biologist Alejandro Arteaga, this species lives in coffee plantations and is endemic to northwestern Ecuador

Researchers of Khamai Foundation and Liberty University have discovered a new species of coffee snake endemic to the cloud forests of northwestern Ecuador.

The new species is named Ninia guytudori, in honor of naturalist Guy Tudor, in recognition of the impact he has had on the conservation of South America’s birds through his artistry. Photo by Alejandro Arteaga.

Biologist Alejandro Arteaga first found the snake in Ecuador’s Pichincha province, while looking for animals to include in a book on the Reptiles of Ecuador.

“This is species number 30 that I have discovered, out of a target of 100,” he says.

Ninia guytudori from Santa Lucía Cloud Forest Reserve, Pichincha province. Photo by Jose Vieira

Like other coffee snakes, Tudors’s Coffee-Snake often inhabits coffee plantations, especially in areas where its cloud forest habitat has been destroyed. It is endemic to the Pacific slopes of the Andes in northwestern Ecuador, where it lives at elevations of between 1,000 and 1,500 m above sea level.

While it faces no major immediate extinction threats, some of its populations are likely to be declining due to deforestation by logging and large-scale mining.

Photo by Jose Vieira

The researchers hope that its discovery will highlight the importance of preserving the cloud forest ecosystem, and focus research attention on human-modified habitats that surround it such as coffee plantations and pastures.

Photographs of some specimens of Ninia guytudori: top, from Santa Lucía Cloud Forest Reserve, Pichincha province. Bottom, from Río Manduriacu Reserve, Imbabura province. Photos by Jose Vieira

The name of the new snake species honors Guy Tudor, “an all-around naturalist and scientific illustrator with a deep fondness for birds and all animals, in recognition of the impact he has had on the conservation of South America’s birds through his artistry,” the researchers write in their paper, which was recently published in Evolutionary Systematics.

“We are trying to raise funds for conservation through the naming of new species. This one helped us protect Buenaventura Reserve.

Research article:

Arteaga A, Harris KJ (2023) A new species of Ninia (Serpentes, Colubridae) from western Ecuador and revalidation of N. schmidti. Evolutionary Systematics 7(2): 317-334. https://doi.org/10.3897/evolsyst.7.112476

Follow Evolutionary Systematics on Facebook and X.

Did European insects invade the world because settlers carried plants?

Researchers suggest European insect invaders may be so abundant due to colonial introductions of non-native plants.

Insects are among the most prolific and successful invaders of new habitats, but not all regions are equal in the numbers of insects that have spread beyond their borders.


Flows of non-native insects between N. America, Europe, and Australasia. Numbers are the total count of species established from donor to recipient.

European insects, in particular, stand out as highly successful invaders into other world regions. Why? Biologists have long understood that species are spread through international trade: insects are frequent stowaways in trade goods, and the value of international trade between world regions can be a good predictor of how many non-native species are exchanged.

However, recent research led by Dr. Rylee Isitt of the University of New Brunswick, and published in the journal NeoBiota, shows that after accounting for patterns of international trade, the number of insects that have spread from Europe into North America, Australia, and New Zealand far exceeds expectations.

Since patterns in international trade can’t explain these insect invasions, the researchers looked for other potential explanations. It’s possible that European insects are simply more numerous or better invaders than their North American or Australasian counterparts. However, Dr. Isitt and his collaborators didn’t find evidence for that – at most, there are only slightly more European species with the capacity to invade compared to North American and Australasian species.

Another possibility is North American and Australasian habitats are easier to invade than European ones. But prior research has shown that Europe has been heavily invaded by Asian insects, suggesting that it is no more resistant to invasion than North America or Australasia.

Instead, Dr. Isitt and collaborators have proposed that the abundance of European insect invaders may be a result of deliberate introductions of non-native plants into Europe’s colonies. Plants introduced into European colonies could have promoted the spread of European insects into North America and Australia by two different means.

First, insects may have been introduced along with the plants. Second, introduced plants may have provided suitable food and habitat for subsequent arrivals of non-native insects, who might have otherwise found the native flora to be unpalatable or unsuitable as a habitat.

Cumulative discoveries (observed and modelled) and establishments (modelled) of non-native insects exchanged between Europe (EU), North America (NA), and Australasia (AU) versus cumulative import value (inflation-corrected to 2020 British pounds sterling, billions), 1827–2014. Alternating background shading indicates decadal increments, with shading omitted prior to the 1940s for clarity.

Although the researchers haven’t completely resolved the mystery of the overabundance of European insects, they have ruled out several possibilities, leaving the connection to introduced plants as the prime suspect. The next steps? Determining to what extent European insects spread through introduced plants compared to insects from other world regions.

Because invasive species are reshaping our world, we need to understand how they move and establish. Evidence is mounting that trade in plants and plant products is responsible for a large proportion of insect invasions. If the researchers’ hypothesis is correct, the spread of European insects may be a remarkable example of the unintended consequences of deliberate plant introductions.

Research article:

Isitt R, Liebhold AM, Turner RM, Battisti A, Bertelsmeier C, Blake R, Brockerhoff EG, Heard SB, Krokene P, Økland B, Nahrung HF, Rassati D, Roques A, Yamanaka T, Pureswaran DS (2024) Asymmetrical insect invasions between three world regions. NeoBiota 90: 35-51. https://doi.org/10.3897/neobiota.90.110942

Follow NeoBiota on X and Facebook.

Hidden biodiversity underfoot: DNA barcoding of Taiwanese forest beetles

The intricate world beneath our feet holds secrets that are only now being unveiled, as researchers embark on a groundbreaking project to explore the hidden diversity of forest leaf litter beetles in Taiwan.

Guest blog post by the research team led by Martin Fikácek and Fang-Shuo Hu, based on their paper published in Deutsche Entomologische Zeitschrift.

Forest leaf litter, often likened to terrestrial coral reefs, supports an astonishing variety of life. Among the myriad arthropods dwelling in this ecosystem, beetles emerge as the most common and speciose group. Despite their abundance, our understanding of leaf litter beetles remains limited due to the challenges posed by their sheer numbers, small sizes, and high local endemism.

Unlocking the Mystery with DNA Barcoding

To overcome these challenges, a team of researchers has initiated the Taiwanese Leaf Litter Beetles Barcoding project. Leveraging DNA barcoding, the project aims to create a comprehensive reference library for these elusive beetles. DNA barcoding, a technique using short mitochondrial fragments, accelerates the analysis of entire faunas and aids in the identification of species. The goal is to provide a valuable resource for researchers, ecologists, conservation biologists, and the public.

DNA voucher collection. Hu et al.

A Collaborative Journey with Taxonomists

The success of the Taiwanese Leaf Litter Beetles Barcoding project hinges on the invaluable contribution of taxonomists, who play a pivotal role in this groundbreaking research. Recognizing the specialized knowledge required for precise genus and species identifications, the researchers diligently consulted with specialists for each family represented in the extensive dataset.

In cases where these taxonomic experts provided crucial assistance, they were not merely acknowledged but offered co-authorship, acknowledging the significant commitment and expertise they bring to the project. Many taxonomists devote their entire lives to the meticulous study of specific beetle groups, and this collaboration underscores the importance of their dedication. The researchers emphasize the fairness of extending co-authorship to these taxonomic experts, acknowledging their indispensable role in advancing our understanding of Taiwan’s leaf litter beetle fauna.

Larva of Oodes (Lachnocrepisjaponicus. Hu et al.

Rich Beetle Diversity in Taiwan

Taiwan, nestled in the western Pacific, boasts a rich biodiversity resulting from its location at the crossroads of the Oriental and Palearctic biogeographical regions. Beetles, with over 7,700 recorded species belonging to 119 families, stand out as a particularly diverse insect order on the island. Despite this wealth of species, taxonomic research on beetles in Taiwan has been fragmented, and the study of leaf litter beetles has relied heavily on collections from past decades.

Larvae of Lagria scutellaris (OTU174) associated with adults by DNA. Hu et al.

The current dataset, based on specimens collected in the Huisun Recreation Forest Area in 2019–2021, comprises 4,629 beetles representing 334 species candidates from 36 families. The DNA barcoding approach has not only allowed for efficient species identification but has also provided a glimpse into the intricate world of beetle larvae, enhancing our understanding of their biology and ecological roles. This comprehensive dataset marks a significant step forward in unraveling the mysteries of Taiwan’s diverse beetle fauna.

Project Goals, Progress, and Future Outlook

The Taiwanese Leaf Litter Beetles Barcoding project is dedicated to a three-fold mission: conducting an extensive study of leaf litter beetles, documenting their diversity in Taiwan, and providing a reliable tool for quick identification. The researchers have published the first set of DNA barcodes, unveiling taxonomic insights such as the description of a new species and several newly recorded taxa.

Map of the samples collected in 2019–2023. Hu et al.

While the dataset is geographically limited to a single forest reserve in central Taiwan, it efficiently demonstrates the challenges of studying subtropical and tropical leaf litter beetle faunas. The integration of DNA barcoding and morphology proves instrumental in unraveling the mysteries of this species-diverse ecosystem. Looking ahead, the team plans to expand their sampling across Taiwan, covering diverse regions, altitudinal zones, and forest types.

Continuous updates to the DNA barcode dataset will serve as a valuable resource for future studies, maintaining a balanced approach that recognizes DNA barcoding as an efficient complement to traditional taxonomic methods.

Research article:

Hu F-S, Arriaga-Varela E, Biffi G, Bocák L, Bulirsch P, Damaška AF, Frisch J, Hájek J, Hlaváč P, Ho B-H, Ho Y-H, Hsiao Y, Jelínek J, Klimaszewski J, Kundrata R, Löbl I, Makranczy G, Matsumoto K, Phang G-J, Ruzzier E, Schülke M, Švec Z, Telnov D, Tseng W-Z, Yeh L-W, Le M-H, Fikáček M (2024) Forest leaf litter beetles of Taiwan: first DNA barcodes and first insight into the fauna. Deutsche Entomologische Zeitschrift 71(1): 17-47. https://doi.org/10.3897/dez.71.112278

Follow Deutsche Entomologische Zeitschrift on Facebook and X.