Flying jewels spell death for tarantulas: Study of a North American spider fly genus

Spider flies are usually a rarely encountered group of insects, except in Western North America, where the North American jewelled spider flies (the Eulonchus genus) can be locally abundant in mountainous areas such as the Sierra Nevada of California. The brilliantly coloured adults (also known as ‘sapphires’ and ’emeralds’) are important pollinators of flowers.

The North American jewelled spider flies typically have large rounded bodies covered with dense hairs and metallic green to blue or even purple colouration, giving them a jewel-like appearance. Together, the elongated mouthparts, the metallic coloration and the eyes, covered with soft hairs, immediately set these flies apart from any other group of tarantula fly. The mouthparts are greatly elongated to help them feed on nectar from the flowers of more than 25 different plant families and 80 species.

However, their larvae are more insidious, seeking out and inserting themselves into tarantula hosts and slowly eating away their insides until they mature and burst out of the abdomen, killing the spider, and leaving behind only the skin. Once they have emerged from the host, they pupate to develop into adults.

image-1In the present study, published in the open access journal ZooKeys, six species of the genus are recognized in North America, including one from the Smokey Mountains, and five from the West, ranging from Mexico to Canada. Drs Christopher J. Borkent and Shaun L. Winterton, and PhD student Jessica P. Gillung, all affiliated with the California State Collection of Arthropods, USA, have redescribed all of them using cybertaxonomic methods of natural language description. A phylogenetic tree of the relationships among the species is also presented.

The examined individuals include many from the collection amassed by the late Dr. Evert Schlinger (1928-2014) over the span of more than 60 years. Today, the collection resides at the California Academy of Sciences (CAS). “Dr. Evert I. Sclinger was a world renowned expert on spider fly taxonomy and biology,” write the authors in the paper, which they dedicate to the scientist and his legacy.

All of the studied flies are relatively widely distributed, and locally abundant, except for a single species (E. marialiciae), which is known from only a few specimens, collected within a small contiguous area in the Great Smoky Mountains. However, the scientists suggest that future studies are needed to explore whether this is actually their full range.

###

Original source:

Borkent CJ, Gillung JP, Winterton SL (2016) Jewelled spider flies of North America: a revision and phylogeny of Eulonchus Gerstaecker (Diptera, Acroceridae). ZooKeys 619: 103-146. doi: 10.3897/zookeys.619.8249

Thousands of illegally traded wild animals at risk due to gaps in data

The fate of over 64,000 live wild animals officially reported to have been confiscated by CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora) enforcement agencies between 2010 and 2014 remains untraceable, according to a new report released by the University of Oxford Wildlife Conservation Research Unit (WildCRU) and World Animal Protection.

In their publication in the open access journal Nature Conservation, the researchers document merely one in three partnering to CITES countries providing any data on seizures, and also highlight the importance of having this changed.

Although the reported number of confiscated animals is staggering, the researchers warn that these are likely to be only a fraction of the actual seizures. The study found two out of three countries did not report any live wildlife seizures, despite poaching of endangered species and supplying the illicit global wildlife trade being estimated to be worth between $8-10 billion per year.ball-python-ndc-6929

The figures have prompted calls for better reporting of seizures and what happens to confiscated live wild animals.

The ultimate fate of seized live wild animals is unknown, the researchers found. Once animals have been confiscated, national authorities must decide whether to: keep them in captivity, return them to the wild or euthanize them. CITES provides guidelines to aid this decision-making based on the conservation status and welfare needs of the animals.

However, information about the fate of these wild animals is not a formal CITES requirement and as a result, there are no official numbers on just how many were euthanized, placed in captivity or returned to the wild.

Researchers are concerned this lack of data is placing the well-being and survival of seized wildlife at risk – many wild animals could be re-entering the wildlife trafficking industry as they simply can’t be accounted for.

University of Oxford‘s Professor David Macdonald, senior researcher for the study, said:

“We fear this staggering number is just the tip of the iceberg. Only a relatively small proportion of wild animals involved with illegal trade are thought to be intercepted by enforcement agencies – confiscation records were completely missing for 70% of countries Party to CITES. Given the rapidly growing global trends in illegal wildlife trade activity, it is highly unlikely that no live wildlife seizures were made on their borders.

spur-thighed-tortoise-cites-ndc-7068“The records that were provided show that around 20% of all live wild animals reported as seized are currently considered to be threatened by extinction. We strongly recommend that the CITES trade database should include information on the fate of all live wild animal seizures, so we know what happens to these animals, and we can reduce the risk of them re-entering the illegal wildlife trade.”

World Animal Protection’s Dr Neil D’Cruze, lead researcher for the study, said:

“The illegal wildlife trade is a big, complex and dirty business. National authorities play a key role, facing some tough choices when they seize animals – whether they release them in the wild, place them in care in captivity or euthanize them.

“Improved data recording is critical to knowing what happens to each animal, and can help in looking at the challenges and issues enforcement agencies face in managing animals after seizure. Without this transparency, there’s a real possibility that endangered species may be put back into the hands of the same criminals whom they were taken from. We need to be able to account for these wild animals.

“If we’re really serious about protecting wildlife, action needs to be taken at all levels. It’s unfathomable that 70% of countries recorded no seizures when we know a global, multi-billion wildlife trafficking industry is flourishing.”

###

The findings and recommendations of this research were presented at the 17th meeting of the Conference of the Parties (CoP) in Johannesburg, South Africa on 27 September 2016 during a side event focused on the confiscation of live wild animals organised by the Species Survival Network (SSN).wap-tipofaniceberg-infographic-a4-2-0-03

###

Original source:

Citation: D’Cruze N, Macdonald DW (2016) A review of global trends in CITES live wildlife confiscations. Nature Conservation 15: 47-63. doi: 10.3897/natureconservation.15.10005

First description and video of a rainbow boa preying on a vampire bat in a cave in Ecuador

While snakes are well-known enemies to bats, their preying on the winged mammals has hardly been recorded. Furthermore, no bat as big and heavy as the common vampire, has been described being killed and eaten prior to the present study, published in the open access journal Subterranean Biology.

The study, where scientists, led by Sarah Martin-Solano, Universidad de las Fuerzas Armadas, ESPE, Ecuador, record a rainbow boa catching the bat, is the first known such case to have taken place on a cave’s floor. The documented observation serves to confirm that snakes do predate on bats in caves, and is also the first such case known from Ecuador.

Apart from the detailed description, the scientists also provide a film, showing almost in full the event of a rainbow boa catching, killing and swallowing an adult female common vampire bat.

The predation has been observed in a 450-metre-long cave in Tena, Ecuador. There, an adult female common vampire bat, one of the three bat species to feed exclusively on blood, was seen to fly into the cave right over the boa’s head and its waiting open jaws, raised some 30-35 centimetres above the ground.

The approximately 140-centimetre-long snake snatched the bat by the head and immediately brought it down to the floor. Having been strangled by the boa, the bat appeared to give up its resistance about two minutes later, although the predator did not let it go for another seven minutes. Once assured the mammal is dead, the snake started trying different positions from which to fit the bat in its mouth. However, this seemed particularly difficult due to the mammal’s size and the stiffness of its shoulder joints.

Eventually, the rainbow boa began constricting the body once again. Then, starting from the head, the snake managed to swallow the whole bat in 4 minutes and 50 seconds, with the predation measured to last about 25 minutes in total.

In conclusion, the authors suggest that more research needs to be undertaken, so that scientists can find out how common is for snakes to prey on bats in caves.

###

Original source:

Martin-Solano S, Toulkeridis T, Addison A, Pozo-Rivera WE (2016) Predation of Desmodus rotundus Geoffroy, 1810 (Phyllostomidae, Chiroptera) by Epicrates cenchria (Linnaeus, 1758) (Boidae, Reptilia) in an Ecuadorian Cave. Subterranean Biology 19: 41-50. doi:10.3897/subtbiol.19.8731

Cost-benefit analysis of strategies against severely harmful giant hogweed in Germany

While invasive species are considered to be a primary driver of biodiversity loss across the globe, species such as the alien for Germany giant hogweed pose even greater risks, including health hazards to humans, limited accessibility to sites, trails and amenity areas, as well as ecological damages.

Since 1st January 2015, EU member states are obligated to develop concrete action plans against (further) spread of invasive alien species. In order to do so, however, policymakers need adequate knowledge about data of the current spread situation as well as information about costs and benefits of control measures. Therefore, German researchers analyse the present situation and control measures, as well as the cost-effectiveness of the possible eradication strategies. Their analysis is published in the open access journal NeoBiota.

Largely spread across Germany, the giant hogweed (H. mantegazzianum) grows in a wide range of habitats, including roadsides, grasslands, riparian habitats and woodland margins. The highest invasion percentage (18.5%) was found for abandoned grasslands, field and grassland margins, and tall-forb stands.

While the species poses a serious threat on native biodiversity through competitive displacement of native plants, it is particularly dangerous to human health. Its watery sap contains several chemical agents. In contact with the skin, this sap can cause severe blistering if the person is simultaneously exposed to sunlight. Furthermore, the hypersensitivity of the skin towards sunlight may persist for a number of years. Additionally, the giant hogweed can limit public accessibility to sites, trails and amenity areas, as well as inflict ecological damages, such as erosion at riverbanks.

In order to provide policymakers with the information needed for adequate control measures, Dr. Sandra Rajmis from the Julius Kühn-Institute, Dr. Jan Thiele from the University of Münster, and Prof. Dr. Rainer Marggraf from Georg-August-Universität Göttingen examine costs and benefits of controlling giant hogweed in Germany.

To address these challenges, the scientists firstly study the present state and costs of control measures, based on survey data received from German nature authorities. Then, they analyse the identified control options in terms of cost effectiveness with regard to the invaded area types and sizes in the infested German districts. To estimate the benefits of the eradication strategies, they turn to a choice experiment survey conducted in German households.

“Only in light of these findings, policymakers can properly understand about the societal costs and benefits of alternatives and decide about societal favored control options in Germany,” point out the researchers.

The team also notes that cost-effectiveness of eradication strategies depends on the length of the period over which they are implemented and observed.

“As this is the first cost-benefit analysis estimating welfare effects and societal importance of giant hogweed invasion control, it could serve as guideline for assessments of eradication control in other European countries and support the implementation of the EU directive 1143/2014,” they conclude.

###

Original source: Rajmis S, Thiele J, Marggraf R (2016) A cost-benefit analysis of controlling giant hogweed (Heracleum mantegazzianum) in Germany using a choice experiment approach.NeoBiota 31: 19-41. doi: 10.3897/neobiota.31.8103

In the belly of the Devil: New rare ant species found in the stomach of a poison frog

While new ant species are usually discovered in surveys involving researchers searching through leaf litter, it turns out that sifting through the stomach contents of insect-eating frogs might prove no less effective, especially when it comes to rare species. Such is the case of a new species of rarely collected long-toothed ant, discovered in the belly of a Little Devil poison frog in Ecuador.

The international team of Drs Christian Rabeling and Jeffrey Sosa-Calvo, both affiliated with University of Rochester, USA, Lauren A. O’Connell, Harvard University, USA, Luis A. Coloma, Fundación Otonga and Universidad Regional Amazónica Ikiam, Ecuador, and Fernando Fernández, Universidad Nacional de Colombia, have their study published in the open access journal ZooKeys.

The new ant species, named Lenomyrmex hoelldobleri after renowned myrmecologist Bert Hölldobler on the occasion of his 80th birthday, was described based on a single individual – a female worker, recovered from a Little Devil poison frog. It is the seventh known species in this rarely collected Neotropical genus.  

Similarly to its relatives within the group, this ant amazes with its slender and elongate mouthpart, yet it is larger than all of them. The remarkable jaws speak of specialised predatory habits, however, so far, nothing is known about these ants’ feeding behavior.in-full-face

The amphibian, whose diet majorly consists of ants, was collected from the Ecuadorian region Choco, which, unfortunately, despite being one of the most biologically diverse areas in the world with exceptionally high levels of endemism, is also one of Earth’s most threatened areas.

In conclusion, the authors point out that “studying vertebrate stomach contents is not only a way of studying the trophic ecology” (meaning the feeding relationships between organisms), “but also an interesting source of cryptic and new arthropod species, including ants.”

Furthermore, the scientists note that nowadays there is no need to kill a frog, in order to study its stomach. “Stomach flushing methods have been developed and successfully applied in numerous studies, which avoids killing individuals.”

 

Original source:

Rabeling C, Sosa-Calvo J, O’Connell LA, Coloma LA, Fernández F (2016) Lenomyrmex hoelldobleri: a new ant species discovered in the stomach of the dendrobatid poison frog, Oophaga sylvatica (Funkhouser). ZooKeys 618: 79-95. doi: 10.3897/zookeys.618.9692

As Good as Gold: Publishing platform ARPHA is proud supporter of Peer Review Week 2016 and Gold star sponsor of Publons’ Sentinels of Science

In the heat of this year’s Peer Review Week, themed “Recognition for Review”, we would like to express how and why we are so proud to be part of it and Publons’ initiative Sentinels of Science, meant to recognize the true guardians of quality science, or in other words, the peer reviewers.

peer-review-week-2016-close

Being a high-tech and modern publishing solution, developed by Pensoft with the mindset that to adapt to the future, means to innovate, ARPHA itself was set to take the quite stagnant current peer review practice forward from day one.

This is why and how we provide a range of peer review options for every author submitting their work to any journal, published on the ARPHA platform. For example, here are the four-stages of the open peer review process operating in our flagship Research Ideas and Outcomes (RIO) Journal:

  1. Author-organised, pre-submission review, available to all journals that make use of our ARPHA Writing Tool, which is our way to take the common get-a-friend-to-proofread-your-work practice to a whole new, transparent and technologically facilitated level. The review happens in real time with the author and the reviewers being able to work together in the ARPHA online environment. It is not mandatory, but we encourage it strongly. All pre-submission reviews provided on authors’ request in RIO can be published along with the article, bearing DOI and citation details.
  2. Pre-submission technical and editorial check is another benefit, provided by the journal’s editorial office to those who are using the ARPHA Writing Tool. If necessary, it can take up several rounds, until the manuscript is improved to the level appropriate for direct submission to the journal.
  3. The community-sourced, post-publication, open peer review is the next review stage provided to all articles published in RIO and all other ARPHA journals.
  4. In addition, RIO also provides journal-organised, post-publication open peer review upon author’s request. In all other ARPHA journals this review stage happens mandatory before publication.

To facilitate peer review in any journal published on the platform, ARPHA consolidates every review automatically into a single online file, which makes it possible for reviewers to comment in real time, even during the authoring process. Once posted, the whole peer review history is archived along with the associated files.

To recognize peer review even further, ARPHA registers automatically each of our peer reviewers, along with their work, on Publons, thanks to the integration of all Pensoft journals with the platform, created to credit reviewers and their contributions.

With this vision of peer review, we simply could not stay clear of the aspiring Sentinels of Science initiative, started by Publons. It only made sense for us to step in, which logically led to the ARPHA logo appearing in the Gold star sponsors list.peerrevwk16-sentinels-of-science

On Friday, 23rd September, Publons will announce the recipients of the inaugural Sentinels of Science Award – the top reviewers and editors for the past year. So, tune in this Friday at 4:00 P.M. (BST) and do not forget to join the Twitter conversation via hashtags #PeerRevWk16 and #RecognizeReview.

 

Living together in mud: New bivalve species dwelling on a sea cucumber discovered in Japan

Most bivalves live in sand or mud or attached to rock surface. However, a new bivalve species described from Japan lives on a sea cucumber.

Ryutaro Goto, postdoctoral fellow in Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, and Hiroshi Ishikawa, amateur malacologist in Japan, have their paper, describing the new species, published in the open access journal ZooKeys.

The new species, named Borniopsis mortoni(Galeommatoidea), was discovered in mudflats at the mouth of the Souzu River, southwestern Shikoku Island, Japan.

This bivalve has tiny brownish shells (up to 4.1 mm in length). The species lives attached by both its foot and byssal threads to the body surface of the earthworm-like sea cucumberPatinapta ooplax (Synaptidae). Individuals of B. mortoni are often found on the same host, yet sometimes there could be more than 10 individuals existing side-by-side.image_3_hishikawa

The new species is dedicated to a famous British malacologist Brian Morton, emeritus professor of University of Hong Kong. He has described many interesting Pseudopythina species from mudflats in Hong Kong, now assigned to the genus Borniopsis.

Host sea cucumbers burrow in mudflats. Most likely, the B. mortoni bivalve uses the host burrows as shelter from predators.

The new species is one of the smallest species in this genus. With the burrow of the host sea cucumber being very narrow, the small body size of B. mortoni is probably a corresponding adaptation.

###

Original source:

Goto R, Ishikawa H (2016) Borniopsis mortoni sp. n. (Heterodonta, Galeommatoidea, Galeommatidae sensu lato), a new bivalve commensal with a synaptid sea cucumber from Japan. ZooKeys 615: 33-45. doi: 10.3897/zookeys.615.8125

Crab from the Chinese pet market turns out to be a new species of a new genus

Shimmering carapaces and rattling claws make colourful freshwater crabs attractive to pet keepers. To answer the demand, fishermen are busy collecting and trading with the crustaceans, often not knowing what exactly they have handed over to their client.

oo_102037Luckily for science and nature alike, however, such ‘stock’ sometimes ends up in the hands of scientists, who recognise their peculiarities and readily dig into them to make the next amazing discovery. Such is the case of three researchers from University of New South Wales, Australia, The Australian Museum, Sun Yat-sen University, China, and National Chung Hsing University, Taiwan, who have found a new species and even a new genus of freshwater crab, and now have it published in the open access journal ZooKeys.

Knowing about the growing demand for eye-catching freshwater crabs from southern China, the authors took a look at the ornamental fish market to eventually identify an individual with unusually structured male gonopod, which in crustaceans is a swimming appendage modified to serve as a reproductive organ. Having their interest drawn by the peculiar crab, lead author Chao Huang managed to persuade the fish dealer to let them survey the collection site located in northern Guangdong, southern China.

Despite superficial resemblance to an already existing freshwater crab genus, at second glance, the crab turned out to be quite distinct thanks to a unique set of features including the carapace, the gonopod and the relatively long and slender legs. Once the molecular analyses’ results were also in, the authors had enough evidence to assign the freshwater crab as a species and even a genus new to science.

oo_102036Being a primarily aquatic species, the new crab prefers the pools of limestone hillstreams, therefore its name Yuebeipotamon calciatile, where calciatile means ‘living on limestone’. To adapt to the habitat, the species seems to have developed its characteristic slender legs, which make it easier for the crab to climb and move around whenever the short-lived limestone hillstreams make it search for a new home.

The carapace of the new crab is usually coloured in maroon to dark brown, while the claws and legs are reddish to purplish. Interestingly, the adults are much more vivid compared to the juveniles.

###

Original source:

Citation: Huang C, Shih H-T, Mao SY (2016) Yuebeipotamon calciatile, a new genus and new species of freshwater crab from southern China (Crustacea, Decapoda, Brachyura, Potamidae). ZooKeys 615: 61-72. doi: 10.3897/zookeys.615.9964

New species of butterflyfish in the deep reefs of now Earth’s largest protected area Papahānaumokuākea

In the midst of the ongoing IUCN World Conservation Congress in Honolulu, scientists from Bishop Museum and NOAA published a description of a new species of butterflyfish from deep reefs of the Papahānaumokuākea Marine National Monument in the remote Northwestern Hawaiian Islands, which was recently expanded by President Barack Obama to become world’s largest protected area. The study is published in the open-access scientific journal ZooKeys.

“Butterflyfish are among the most conspicuous fishes on the reefs,” said Richard Pyle, Bishop Museum researcher and first author on the publication. “They are colorful, beautiful, and have been well-studied worldwide. Thus, finding a new species of butterflyfish is a rare event.”

RPyleCollectingHolotypeP.basabei
Author Dr Richard Pyle collecting an individual of the new butterflyfish P. basabei

Coral reefs at depths of 100 to 500 feet, also known as mesophotic coral ecosystems or the coral-reef “twilight zone,” are among the most poorly explored of all marine ecosystems. Deeper than scuba divers can safely venture, and shallower than most submersible-based exploration, these reefs represent a new frontier for coral-reef research.

“Discoveries such as this underscore how poorly explored our deep coral reefs are,” said Randall Kosaki, NOAA scientist and co-author of the study. “Virtually every deep dive reveals a reef that no human being has ever laid eyes on.” Pyle and Kosaki have pioneered the use of advanced mixed-gas diving systems known as rebreathers (because they recycle the diver’s breathing gas). Rebreathers allow deeper and longer dives, enabling new opportunities for exploring and documenting deep coral reef habitats throughout the world’s tropical seas.

The new butterflyfish was first seen in submersible video over twenty years ago, at depths exceeding 600 feet. At the time, Pyle and University of Hawai‘i marine biologist E.H. “Deetsie” Chave recognized it as a potential new species. However, because of the extreme depths, it was years before technical divers using rebreather technology were able to collect specimens for proper scientific documentation.  

Using this technology, NOAA and Museum researchers have encountered the new butterflyfish regularly during deep exploratory dives up to 330 feet on NOAA expeditions to the Monument, where the specimens for the scientific description were collected

The new fish, Prognathodes basabei, is named after Pete Basabe, a veteran local diver from Kona, Hawai‘i who, over the years, has assisted with the collection of reef fishes for numerous scientific studies and educational displays. Basabe, an experienced deep diver himself, was instrumental in providing support for the dives that produced the first specimen of the fish that now bears his name.

 

The Holotype, the Author, the Publisher Author Dr Richard Pyle (left) with Pensoft's and ZooKeys' founder Prof Lyubomir Penev (right) with the new butterflyfish P. basabei
The Holotype, the Author, the Publisher
Author Dr Richard Pyle (left) and Pensoft’s and ZooKeys’ founder Prof Lyubomir Penev (right) with the new butterflyfish P. basabei

At the urging of Native Hawaiian leaders, conservationists, and many marine scientists, President Obama recently expanded the Papahānaumokuākea Marine National Monument. At 582,578 square miles, Papahānaumokuākea is now the largest protected area on Earth.

“This new discovery illustrates the conservation value of very large marine protected areas,” said Kosaki. “Not only do they protect the biodiversity that we already know about, they also protect the diversity we’ve yet to discover. And there’s a lot left to discover.”

 

Original source:
Pyle RL, Kosaki RK (2016) Prognathodes basabei, a new species of butterflyfish (Perciformes, Chaetodontidae) from the Hawaiian Archipelago. ZooKeys 614: 137-152. doi: 10.3897/zookeys.614.10200

Species conservation profile of a critically endangered endemic for the Azores spider

Subject to continuing population decline due to a number of factors, an exclusively cave-dwelling (troglobitic) spider endemic to the Azores is considered as Critically Endangered according to the IUCN Red List criteria.

To provide a fast output, potentially benefiting the arachnid’s survival, scientists from the IUCN – Spider and Scorpion Specialist Group and the Azorean Biodiversity Group (cE3c) at University of Azores, where the main objective is to perform research that addresses societal challenges in ecology, evolution and the environment, also known as the three E’s from the centre’s name abbreviation, teamed up with colleagues from University of Barcelona, Spain, and the Finnish Museum of Natural History.

Together, they make use of a specialised novel publication type feature, called Species Conservation Profile, created by the open access journal Biodiversity Data Journal, to provide scholarly credit and citation for the IUCN Red List species page, as well as pinpoint the population trends and the reasons behind them.

The studied spider species (scientifically called Turinyphia cavernicola) is a pale creature with long legs, large eyes and a total size of merely 2 mm in length. These spiders never leave their underground habitats, which are strictly humid lava tubes and volcanic pits. There they build sheet webs in small holes and crevices on the walls of the caves.

The volcanic pit Algar do Carvão (Terceira, Azores), the main location of the species Turyniphia cavernicola.Not only is the species restricted to a single island within the Azorean archipelago (Portugal), but it is only found in three caves. Furthermore, out of the three, only one of them is home to a sustainable large population. These caves are under severe threat due to pasture intensification, road construction and tourist activities.

Although there is not much information about the species distribution through the years, with the spider having been discovered as recently as in 2008, the authors make the assumption that originally there have been significantly greater populations. Not only have they studied thoroughly another fifteen caves located on the island without finding any individuals, but they have identified increasing anthropogenic impact on the habitat.

“The species original distribution was potentially very large compared with the current,” the scientists explain. “Relatively intensive searches in and around the current caves where the species occurs have failed to find additional subpopulations.”

“The trend of decline is based on the assumption that this species can occur in all these caves and that the absence is due to anthropogenic disturbance on caves during the last 50 years,” they note.

 

###

Original source:

Borges P, Crespo L, Cardoso P (2016) Species conservation profile of the cave spiderTurinyphia cavernicola (Araneae, Linyphiidae) from Terceira Island, Azores, Portugal.Biodiversity Data Journal 4: e10274. doi: 10.3897/BDJ.4.e10274