Exceptional catapulting jump mechanism in a tiny beetle could be applied in robotic limbs

The fascinating and highly efficient jumping mechanism in flea beetles is described in a new research article in the open-access journal Zookeys. Despite having been known since 1929, the explosive jump – which is also the reason behind the colloquial name of this group of leaf beetles – has so far not been fully understood.

By joining forces, a team of Chinese and US scientists, led by Dr Xingke Yang, Siqin Ge and Yongying Ruan of the Chinese Academy of Sciences and Dr Alexander Konstantinov of the Agricultural Research Service at the U.S. Department of Agriculture, tested the existing theories, using micro-computed tomography (micro-CT scans), 3D reconstructions, high-speed filming and dissection. Following their experiments, the scientists provided comprehensive insights into the mechanics behind the spectacular jump in flea beetles and reported, for the first time, the role of a structure found in the legs of these insects, known as “elastic plate”.

The flea beetles (members of the tribe Alticini) are plant feeders that belong to a hyperdiverse group of about 9,900 species and occur in various environments worldwide: from lowland tropical rain forests to high-altitude mountain meadows and deserts. Most of them live, feed and procreate on the upper leaf surface of their host plants, thus making them particularly vulnerable to predators, including birds, ants and spiders. One of their defence mechanisms is their incredible jumping skills, which allow the beetles to escape an approaching predator in an instant.

The apparatus responsible for this exceptional jump is hidden inside the beetle’s hind legs and is relatively simple. It contains only three sclerotised parts and a few muscles. Yet, it is, in reality, a highly efficient “catapult”, able to propel the beetle at a distance hundreds of times its body length. Using micro-computed tomography, 3D reconstructions and high-speed filming data, the scientists revealed that the acceleration during the jump can reach an explosive peak of 8,650 m/s2, which is 865 times the acceleration of gravity. The peak power output of the hind legs of the beetle peaked at 2.24 × 105 W/kg (per unit mass). This is about 450 times the capabilities of the fastest known muscle and 100~200 times that of a powerful rally car engine.

The 3D reconstructions revealed two processes inside the hind leg that amplify the power output of the beetle’s muscles and reduce energy waste.

Firstly, the tibial extensor and tibial flexor muscles contract simultaneously and cumulatively build up elastic strain energy inside the femur (the longest segment of an insect’s leg). The energy is stored in a sclerotised structure, called a metafemoral spring, while another two structures inside the leg, previously known as “triangular plate” and “elastic plate”, act together as a trigger for the catapult mechanism. When the trigger is released, the metafemoral spring contracts and converts elastic potential energy into kinetic energy, which allows the flea beetle to attain an extraordinarily high acceleration. Instead of gradual acceleration throughout the jump, the flea beetle employs a ‘high-efficiency mechanism’ at the start, in order to store colossal strain energy to be released later on.

Thus, flea beetles avoid muscle fatigue (energy waste) and improve their jumping performance to the point where they can do over 30 consecutive jumps, as recorded by the scientists in their laboratory experiments. In nature, this mechanism is an adaptation for the insects to escape predators by quickly disappearing from the leaf surfaces where they normally spend their lives. In fact, it is this “explosive” jump that, according to the researchers, is amongst the key traits responsible for the high evolutionary success and remarkable species diversity in flea beetles.

In conclusion, the scientists note that the catapulting jump mechanism in flea beetles is so efficient and yet so simple that it might find an excellent use in robotics, as well as in engineering and industrial installations. In their research paper, they also propose a design of a bionic limb inspired by the studied beetles.

###

Original source:

Ruan Y, Konstantinov AS, Shi G, Tao Y, Li Y, Johnson AJ, Luo X, Zhang X, Zhang M, Wu J, Li W, Ge S, Yang X (2020) The jumping mechanism of flea beetles (Coleoptera, Chrysomelidae, Alticini), its application to bionics and preliminary design for a robotic jumping leg. ZooKeys 915: 87-105. https://doi.org/10.3897/zookeys.915.38348

Citizen scientists discover a new snail and name it after Greta Thunberg

A new to science species of land snail was discovered by a group of citizen scientists working together with scientists from Taxon Expeditions, a company that organises scientific field trips for teams consisting of both scientists and laypeople. Having conducted a vote on how to name the species, the expedition participants and the local staff of the National Park together decided to name the mollusc Craspedotropis gretathunbergae. The species name honors the young Swedish activist Greta Thunberg for her efforts to raise awareness about climate change. The study is published in the open-access journal Biodiversity Data Journal.

“The newly described snail belongs to the so-called caenogastropods, a group of land snails known to be sensitive to drought, temperature extremes and forest degradation”,

says snail expert and co-founder of Taxon Expeditions, Dr. Menno Schilthuizen.

All individuals were found very close to the research field station (Kuala Belalong Field Studies Centre) at the foot of a steep hill-slope, next to a river bank, while foraging at night on the green leaves of understorey plants.

Citizen scientist J.P. Lim, who found the first specimen of Greta Thunberg’s snail says:

“Naming this snail after Greta Thunberg is our way of acknowledging that her generation will be responsible for fixing problems that they did not create. And it’s a promise that people from all generations will join her to help”.


Taxon Expeditions participant J.P. Lim collecting snails.
Credit: Taxon Expeditions – Pierre Escoubas
License: CC-BY 4.0

The expedition team approached Ms. Thunberg who said that she would be “delighted” to have this species named after her. 

Video about Taxon Expeditions & Greta Thunberg snail
Credit: Taxon Expeditions

However, this is not the first time that Taxon Expeditions team names a species in honour of an environmental advocate. In 2018, they named a new species of beetle after famous actor and climate activist Leonardo DiCaprio. Mr. DiCaprio temporarily changed his profile photo on Facebook to the photo of “his” beetle to acknowledge this honour.


View of the Ulu Temburong National Park in Brunei from the canopy bridge.
Credit: Taxon Expeditions – Pierre Escoubas
License: CC-BY 4.0

Original source:

Schilthuizen M, Lim JP, van Peursen ADP, Alfano M, Jenging AB, Cicuzza D, Escoubas A, Escoubas P, Grafe U, Ja J, Koomen P, Krotoski A, Lavezzari D, Lim L, Maarschall R, Slik F, Steele D, Ting Teck Wah D, van Zeeland I, Njunjić I (2020) Craspedotropis gretathunbergae, a new species of Cyclophoridae (Gastropoda: Caenogastropoda), discovered and described on a field course to Kuala Belalong rainforest, Brunei. Biodiversity Data Journal 8: e47484. https://doi.org/10.3897/BDJ.8.e47484

Fifteen years & 20 million insects later: Sweden’s impressive effort to document its insect fauna in a changing world

The Swedish Malaise Trap Project (SMTP) was launched in 2003 with the aim of making a complete list of the insect diversity of Sweden. Over the past fifteen years, an estimated total of 20 million insects, collected during the project, have been processed for scientific study. Recently, the team behind this effort published the resulting inventory in the open-access journal Biodiversity Data Journal. In their paper, they also document the project all the way from its inception to its current status by reporting on its background, organisation, methodology and logistics.

The SMTP deployed a total of 73 Malaise traps – a Swedish invention designed to capture flying insects – and placed them across the country, where they remained from 2003 to 2006. Subsequently, the samples were sorted by a dedicated team of staff, students and volunteers into over 300 groups of insects ready for further study by expert entomologists. At the present time, this material can be considered as a unique timestamp of the Swedish insect fauna and an invaluable source of baseline data, which is especially relevant as reports of terrifying insect declines keep on making the headlines across the world.

The first author and Project Manager of the SMTP, Dave Karlsson started his academic paper on the project’s results years ago by compiling various tips, tricks, lessons and stories that he had accumulated over his years as SMTP’s Project Manager. Some fun examples include the time when one of the Malaise traps was destroyed by a moose bull rubbing his antlers against it, or when another trap was attacked and eaten by a group of 20 reindeer. The project even had a trap taken out by Sweden’s military! Karlsson’s intention was that, by sharing the details of the project, he would inspire and encourage similar efforts around the globe.

Animals were not as kind to our traps as humans,” recall the scientists behind the project. One of the Malaise traps, located in the Brännbergets Nature Reserve in Västerbotten, was destroyed by a bull moose rubbing his antlers against it.
Photo by Anna Wenngren

Karlsson has worked with and trained dozens of workers in the SMTP lab over the past decade and a half. Some were paid staff, some were enthusiastic volunteers and a good number were researchers and students using SMTP material for projects and theses. Thus, he witnessed first-hand how much excitement and enthusiasm the work on insect samples under a microscope can generate, even in those who had been hesitant about “bugs” at first.

Stressing the benefits of traditional morphological approaches to inventory work, he says: “Appreciation for nature is something you miss when you go ‘hi-tech’ with inventory work. We have created a unique resource for specialists in our sorted material while fostering a passion for natural history.”

Sorted SMTP material is now available to specialists. Hundreds of thousands of specimens have already been handed over to experts, resulting in over 1,300 species newly added to the Swedish fauna. A total of 87 species have been recognised as new to science from the project thus far, while hundreds more await description.

The SMTP is part of the Swedish Taxonomy Initiative, from where it also receives its funding. In its turn, the latter is a project by the Swedish Species Information Center, a ground-breaking initiative funded by the Swedish Parliament since 2002 with the aim of documenting all multicellular life in Sweden.

The SMTP is based at Station Linné, a field station named after the famous Swedish naturalist and father of taxonomy, Carl Linneaus. Situated on the Baltic island of Öland, the station is managed by Dave Karlsson. Co-authors Emily Hartop and Mathias Jaschhof are also based at the station, while Mattias Forshage and Fredrik Ronquist (SMTP Project Co-Founder) are based at the Swedish Museum of Natural History.

###

Original source:

Karlsson D, Hartop E, Forshage M, Jaschhof M, Ronquist F (2020) The Swedish Malaise Trap Project: A 15 Year Retrospective on a Countrywide Insect Inventory. Biodiversity Data Journal 8: e47255. https://doi.org/10.3897/BDJ.8.e47255

Faster than a speeding bullet: Asian hornet invasion spreads to Northern Germany

Known to prey on many insects, including honey bees and other beneficiary species, the Asian hornet, which had recently invaded parts of Europe, presents a serious threat to apiculture and even to ecosystems. In their paper, published in the open-access journal Evolutionary Systematics, German scientists share concerns about this fast invader spreading to the north. In early September 2019, a single specimen was collected alive in Hamburg (Germany), representing the northernmost find of the species so far.

In early September 2019, an Asian hornet (Vespa velutina nigrithorax) was collected alive in Hamburg, Germany, representing the northernmost find of the species so far in Europe and indicating its further spread to the north. The paper by the research group from Hamburg, which also serves to update the occurrence of the dangerous invader, was published in the open-access journal Evolutionary Systematics

Known to prey on many insects, including honey bees and other beneficiary species, the Asian hornet, which had already invaded parts of Southern and Central Europe, is a potential threat to apiculture and even to ecosystems. 

The first specimen was captured in south-western France in 2005 and started to spread quickly. Over the next years, it invaded large parts of France and regions of Spain, Portugal, Belgium, Italy, the Netherlands, Great Britain and south-western parts of Germany. The estimated invasion speed for France has been estimated at around 78 km/year, but in reality, the species spread might be occurring much faster due to anthropogenic factors.

It’s not yet clear if the collected Asian hornet belonged to an already settled population or it’s rather the first record of a new invasion. Nevertheless, considering the fast invasion speed of the species and its relatively high climatic tolerance, it’s quite possible that it had reached Hamburg on natural routes and now reproduces there.

Even though other models suggest that the Hamburg area is not suitable for the species today, the new find might be a sign that the Asian hornet has begun spreading at a speed above that previously known and even in climatically less favourable regions.

“Therefore, the current find needs to be taken seriously, no matter if it is only a single specimen or a member of an established population”, shares the lead researcher Martin Husemann from Centrum für Naturkunde, University of Hamburg.

Invasive species are one of the great challenges in the modern world. Their occurrence can be considered as one of the key important ecological and evolutionary drivers.

***

Original source:
Husemann M, Sterr A, Maack S, Abraham R (2020) The northernmost record of the Asian hornet Vespa velutina nigrithorax (Hymenoptera, Vespidae). Evolutionary Systematics 4(1): 1-4.
https://doi.org/10.3897/evolsyst.4.47358



French mathematician and spider aficionado Cédric Villani honoured with a new orb-weaver

Considered as one of the best studied spiders, the orb-weavers remain poorly known in the central parts of the Palearctic ecozone. Hence, an international research team took to the Caucasus, Middle East and Central Asia. Their article in the open-access peer-reviewed journal ZooKeys documents three new-to- science species, where one is named after the Indo-Iranian god of light Mithra. Another carries the name of the flamboyant French mathematician and spider aficionado Cédric Villani.

With their astonishingly precise spiral webs, orb-weaving spiders are the arachnid analogy of first-class mathematicians, note the researchers behind the study

Despite being considered as one of the best-studied spiders in the Palearctic, the orb-weaver spiders (family Araneidae) remain poorly known in the central parts of the ecozone. To bridge the knowledge gaps, an international research team of researchers took to the Caucasus, Middle East and Central Asia to study two of those genera: Araniella and Neoscona

As a result, in their article, recently published in the open-access scientific journal ZooKeys, arachnologists Alireza Zamani (University of Turku, Finland), Yuri M. Marusik (Institute for Biological Problems of the North RAS, Russia) and Anna Šestáková (The Western Slovakian Museum, Slovakia) describe three new-to-science species, where one: Araniella villanii – carries the name of the flamboyant French mathematician and spider aficionado Cédric Villani, who has been dubbed the “Lady Gaga of Mathematics”. Even if unknown until now, the species turned out to have a wide distribution, ranging from south-western Iran to eastern Kazakhstan and northern India. 

A female specimen of the newly described orb-weaver species Araniella villanii on its web (Kazakhstan)
Photo by Alireza Zamani

“It’s a well-known fact within the arachnological community that spiders are masters of mathematics and architecture. Orb-web spiders, in particular, tend to build beautiful and architecturally aesthetic webs, some of which are formed in spirals in line with the repetitive pattern of the golden ratio,”

explains lead author of the study Alireza Zamani.

The web of the garden orb-web spider Araneus diadematus, for example, usually has 25 to 30 radial threads forming an astonishingly precise angle of about 15°, which the spider carefully measures using its front legs. According to scientific observations, if the front legs are removed, the regularity of the angles between adjacent radial threads is impaired. 

A female specimen of the newly described orb-weaver species Araniella villanii on its web (Kazakhstan)
Photo by Alireza Zamani

For these and many other reasons, spiders must have been an inspiration for mathematicians like Cédric Villani, who has publicly shown a mysterious love for these arachnids. Awarded the Fields Medal (some say it is the Mathematics equivalent of the Nobel Prize) in 2010 and having served as the director of Sorbonne University‘s Institut Henri Poincaré from 2009 to 2017, the Frenchman’s love for spiders is quite evident, thanks to the constant presence of a spider brooch on his lapel. Although he has never explained the reason behind his appreciation of these eight-legged wonders, now he has a real, even scientifically sound connection to them in the real world. 

Apart from Araniella villanii, whose scientific name honours the prominent scientist and recognises his love for spiders, the other two newly-described species also have a story behind their names. One of them: Neoscona isatis, discovered in central Iran, was named after the historical name of its type locality; and Araniella mithra, known from north-western, central and south-western Iran, was named after Mithra, the god of light in the ancient Indo-Iranian mythology.

Curiously, spiders in the genus Araniella are green in colour due to certain bile pigments (biliverdin) that make them very difficult to spot in their natural habitat, as they live mostly on leaves.

French mathematician and spider aficionado Cédric Villani (left) with lead author and discoverer of the three new-to-science orb-weaver spiders Alireza Zamani (right) in Iran (2015)

“I met Mr. Villani in May 2015 at University of Tehran, where he was an invited speaker. We got to briefly talk about our shared interest in spiders, and I had the opportunity to present him an Iranian wolf spider as a souvenir!”

recalls Zamani.

“It’s important to note that, with the efforts of taxonomists, new species are being discovered and described with an average rate of 18,000 species per year, but simultaneously both known and undescribed species go extinct due to human activities, with the current rate being within or even higher than the range of the newly described ones. A first step towards conservation of biodiversity includes taxonomic research to document species and to define hotspots of species diversity in order to protect such carefully selected habitats,”

he points out.
A female specimen of the newly described orb-weaver species Araniella villanii in its natural habitat (Kazakhstan)
Photo by Anatoliy Ozernoy

“However, with the current situation of low funding for taxonomic research, the number of students doing taxonomic research is in severe decline and the current average ‘shelf life’ (between discovery and description) of a new species remains at about 21 years. Araniella villanii is a great example of how much we don’t know about our biodiversity.”

Despite being discovered all the time, new species mostly have very restricted ranges and are only known from a few nearby localities. Orb-weaver spiders have very good dispersal abilities and it is relatively uncommon to detect new species of them.

Araniella villanii is known from a few localities in southwestern Iran, eastern Kazakhstan and northern India, a distribution range covering at least ten countries, and yet the species was unknown to science until now. I think that the message that this particular discovery implies is that while there are such widely-distributed undescribed species out there, we need more and more taxonomic research, both in the field and in the natural history museum collections, which house a considerable number of undescribed species, in order to preserve the remaining biodiversity on earth, before it’s too late”.

###

Original source:

Zamani A, Marusik YM, Šestáková A (2020) On Araniella and Neoscona (Araneae, Araneidae) of the Caucasus, Middle East and Central Asia. ZooKeys 906: 13-40. https://doi.org/10.3897/zookeys.906.47978

“Oldest bamboo” fossil from Eocene Patagonia turns out to be a conifer

A recent examination revealed that Chusquea oxyphylla, a fossilised leafy branch from the early Eocene in Patagonia, which has been widely cited as the oldest bamboo fossil and as evidence for a Gondwanan origin of bamboos is actually a conifer. The results of the finding are published in the open-access journal Phytokeys.

A fossilised leafy branch from the early Eocene in Patagonia described in 1941 is still often cited as the oldest bamboo fossil and the main fossil evidence for a Gondwanan origin of bamboos. However, a recent examination by Dr. Peter Wilf from Pennsylvania State University revealed the real nature of Chusquea oxyphylla. The recent findings, published in the paper in the open-access journal Phytokeys, show that it is actually a conifer.  

The corrected identification is significant because the fossil in question was the only bamboo macrofossil still considered from the ancient southern supercontinent of Gondwana. The oldest microfossil evidence for bamboo in the Northern Hemisphere belongs to the Middle Eocene, while other South American fossils are not older than Pliocene. 

Over the last decades, some authors have doubted whether the Patagonian fossil was really a bamboo or even a grass species at all. But despite its general significance, modern-day re-examinations of the original specimen were never published. Most scientists referring to it had a chance to study only a photograph found in the original publication from 1941 by the famous Argentine botanists Joaquín Frenguelli and Lorenzo Parodi.

In his recent study of the holotype specimen at Museo de La Plata, Argentina, Dr. Peter Wilf revealed that the fossil does not resemble members of the Chusquea genus or any other bamboo.

There is no evidence of bamboo-type nodes, sheaths or ligules. Areas that may resemble any bamboo features consist only of the broken departure points of leaf bases diverging from the twig. The decurrent, extensively clasping leaves are quite unlike the characteristically pseudopetiolate leaves of bamboos, and the heterofacially twisted free-leaf bases do not occur in any bamboo or grass,” wrote Dr. Wilf.

Instead, Wilf linked the holotype to the recently described fossils of the conifer genus Retrophyllum from the same fossil site, the prolific Laguna del Hunco fossil lake-beds in Chubut Province, Argentina. It matches precisely the distichous fossil foliage form of Retrophyllum spiralifolium, which was described based on a large set of data – a suite of 82 specimens collected from both Laguna del Hunco and the early middle Eocene Río Pichileufú site in Río Negro Province. 

Retrophyllum is a genus of six living species of rainforest conifers. Its habitat lies in both the Neotropics and the tropical West Pacific.

The gathered evidence firmly confirms that Chusquea oxyphylla has nothing in common with bamboos. Thus, it requires renaming.  Preserving the priority of the older name, Wilf combined Chusquea oxyphylla and Retrophyllum spiralifolium into Retrophyllum oxyphyllum.

The exclusion of a living New World bamboo genus from the overall floral list for Eocene Patagonia weakens the New World biogeographic signal of the late-Gondwanan vegetation of South America, which already showed much stronger links to living floras of the tropical West Pacific.

“The strongest New World signal remaining in Eocene Patagonia based on well-described macrofossils comes from fossil fruits of Physalis (a genus of flowering plants including tomatillos and ground cherries), which is an entirely American genus,” concludes Dr. Wilf.

Original source:
Wilf P (2020) Eocene “Chusquea” fossil from Patagonia is a conifer, not a bamboo. PhytoKeys 139: 77-89.
https://doi.org/10.3897/phytokeys.139.48717

Second of its kind ‘sharpshooter’ leafhopper from Brazil ‘strikes’ with its colouration

When, in 2014, Brazilian researchers stumbled across a never-before-seen red-eyed leafhopper feeding inside the rosettes of bromeliads, growing in the restingas of southeastern Brazil, they were certain it was a one-of-a-kind discovery. Described as new-to-science species, as well as genus (Cavichiana bromelicola) and added to the sharpshooter tribe Cicadellini, it became the first known case of a leafhopper feeding on otherwise nutrition-poor bromeliads in their natural habitat. 

Newly described sharpshooter species Cavichiana alpina (left) and the only other leafhopper (Cavichiana bromelicola, right) known to feed on bromeliads
Photo by Gabriel Mejdalani

Several years later, however, a team of entomologists from Universidade Federal do Rio de Janeiro carried out fieldwork in a mountainous area of southeastern Brazil and, as a result, another bromelicolous leafhopper species of the genus was discovered: Cavichiana alpina. Only, the new one appeared even more spectacular. 

The new species, described and illustrated in the open-access journal Zoologia, is known from Itatiaia National Park (southeastern Brazil), where it can be found at altitudes above 1,800 m a.s.l. In fact, its characteristic mountainous habitat came to determine its species name (alpina). In contrast, its relative was originally described exclusively from sea level regions, even though the latest field trips have recorded it from a site located at 1,250 m a.s.l. 

Slightly larger than the previously known C. bromelicola and similarly red-eyed, what most remarkably sets apart the newly-described species is its colouration. Rather than a single large yellow blotch contrasting against the dark-brown to black back of the insect, this sharpshooter sports a motley amalgam of red and blue covering most of its upper side.

In conclusion, the researchers explain that the peculiarity of the two known Cavichiana species is best attributed to a putative common ancestor that had likely once been widely distributed in southeastern and southern Brazil. Later, they speculate, a vicariant event, such as the uplift of the southeastern Brazilian mountain ranges during the latest Eocene and Oligocene, might have caused its diversification into two separate species.

Newly described sharpshooter species Cavichiana alpina (top) and the only other leafhopper (Cavichiana bromelicola, bottom) known to feed on bromeliads in their natural habitat
Photo by Gabriel Mejdalani

Original source: 
Quintas V, Takiya DM, Côrte I, Mejdalani G (2020) A remarkable new species of Cavichiana (Hemiptera: Cicadellidae: Cicadellinae) from southeastern Brazil. Zoologia 37: 1-8. https://doi.org/10.3897/zoologia.37.e38783

19th-century bee cells in a Panamanian cathedral shed light on human impact on ecosystems

About 120 clusters of 19th-century orchid bee nests were found during restoration work on the altarpiece of Basilica Cathedral in Casco Viejo (Panamá). Having conducted the first pollen analysis for these extremely secretive insects, the researchers identified the presence of 48 plant species, representing 23 families.

Casco Viejo, Panamá in 1875, as seen from the summit of Cerro Ancón.
A white tower of the Cathedral where bees were nesting is visible in the distant background in the centre of the peninsula.
Photo by Eadweard Muybridge, courtesy of the Smithsonian American Art Museum; gift of Mitchell and Nancy Steir.

Despite being “neotropical-forest-loving creatures,” some orchid bees are known to tolerate habitats disturbed by human activity. However, little did the research team of Paola Galgani-Barraza (Smithsonian Tropical Research Institute) expect to find as many as 120 clusters of nearly two-centuries-old orchid bee nests built on the altarpiece of the Basilica Cathedral in Casco Viejo (Panamá). Their findings are published in the open-access Journal of Hymenoptera Research.

Locations of nest cell aggregations of Eufriesea surinamensis within the Cathedral in Casco Viejo, Panamá
Photo by Paola Galgani-Barraza

This happened after restoration work, completed in 2018 in preparation for the consecration of a new altar by Pope Francis, revealed the nests. Interestingly, many cells were covered with gold leaf and other golden material applied during an earlier restoration following an 1870 fire, thus aiding the reliable determination of the age of the clusters. The cells were dated to the years prior to 1871-1876.

The bee species, that had once constructed the nests, was identified as the extremely secretive Eufriesea surinamensis. Females are known to build their nests distant from each other, making them very difficult to locate in the field. As a result, there is not much known about them: neither about the floral resources they collect for food, nor about the materials they use to build their nests, nor about the plants they pollinate.

However, by analysing the preserved pollen for the first time for this species, the researchers successfully detected the presence of 48 plant species, representing 43 genera and 23 families. Hence, they concluded that late-nineteenth century Panama City was surrounded by a patchwork of tropical forests, sufficient to sustain nesting populations of what today is a forest-dwelling species of bee.

Not only did the scientists unveil important knowledge about the biology of orchid bees and the local floral diversity in the 19th century, but they also began to uncover key information about the functions of natural ecosystems and their component species, where bees play a crucial role as primary pollinators. Thus, the researchers hope to reveal how these environments are being modified by collective human behaviour, which is especially crucial with the rapidly changing environment that we witness today.

The orchid bee Eufriesea surinamensis
Photo by Paola Galgani-Barraza

Original source:

Galgani-Barraza P, Moreno JE, Lobo S, Tribaldos W, Roubik DW, Wcislo WT (2019) Flower use by late nineteenth-century orchid bees (Eufriesea surinamensis, Hymenoptera, Apidae) nesting in the Catedral Basílica Santa María la Antigua de Panamá. Journal of Hymenoptera Research 74: 65-81. https://doi.org/10.3897/jhr.74.39191

Viticulture Data Journal: Non-conventional papers foster Open Science & sustainability

Non-conventional, yet pivotal research results: data, models, methods, software, data analytics pipelines and visualisation methods, related to the field of viticulture, find a place in a newly launched, open-access and peer-reviewed Viticulture Data Journal.

Non-conventional, yet pivotal research results: data, models, methods, software, data analytics pipelines and visualisation methods, related to the field of viticulture, find a place in a newly launched, open-access and peer-reviewed Viticulture Data Journal (VDJ). The journal went live with the publication of an introductory editorial and a data paper.

The publishing venue is one of the fruits borne during the collaboration between scholarly publisher and technology provider Pensoft, its self-developed ARPHA Platform and the EU project AGINFRA+, whose mission is to provide a sustainable channel and data infrastructure for the use of cooperating, but not fully connected user communities working within the agricultural and food sciences. 

The novel journal brings together a wide range of topics related to the field of viticulture: from genetic research, food safety of viticultural products to climate change adaptation of grapevine varieties through grape specific research. Amongst these are:

  • Phenotyping and genotyping
  • Vine growth and development
  • Vine ecophysiology
  • Berry yield and composition
  • Genetic resources and breeding
  • Vine adaptation to climate change, abiotic and biotic stress
  • Vine propagation
  • Rootstock and clonal evaluation
  • Effects of field practices (pruning, fertilization etc.) on vine growth and quality
  • Sustainable viticulture and environmental impact
  • Ampelography
  • Plant pathology, diseases and pests of grapevine
  • Microbiology and microbiological risk assessment
  • Food safety related to table grapes, raisins, wine, etc.

With the help of the ARPHA Platform’s signature writing tool, authors are able to use a set of pre-defined, yet flexible manuscript templates: Data Paper, Methods, Emerging Techniques, Applied Study, Software Description, R Package and Commentary. Furthermore, thanks to the advanced collaborative virtual environment provided by the tool, authors, but also reviewers, editors and other invited contributors enjoy the convenience of working within the same consolidated online file all the way from the authoring and peer review stages to copy editing and publication.

“The Viticulture Data Journal was created to respond to the major technological and sociological changes that have influenced the entire process of scholarly communication towards Open Science,”

explain the editors.

“The act of scientific publishing is actually the moment when the long effort of researchers comes to light and can be assessed and used by other researchers and the wider public. Therefore, it is little wonder that the main arena of transition from Open Access to Open Science was actually the field of academic publishing,”

they add.

***

The first research publication made available in VDJ is a data paper by the research team from Agricultural University of Athens: Dr Katerina Biniari, Ioannis Daskalakis, Despoina Bouza and Dr Maritina Stavrakaki. In their study, they assess and compare both the qualitative and quantitative characters of the grape cultivars ‘Mavrodafni’ and ‘Renio’, grown in different regions of the Protected Designation of Origin Mavrodafni Patras (Greece). The associated dataset, containing the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries of the two cultivars, is available to download as supplementary material from the article.  

***

During the AGINFRA+ project, ARPHA has been extended to be used from the AGINFRA+ Virtual Research Environment (VRE), which would allow the authors to use the VRE as an additional gate to the AWT and the journal, as well as to benefit from the integration of AWT with several other services offered by the AGINFRA+ platform. The AGINFRA+ platform has been designed as a Gateway providing online access through a one-stop endpoint to services, aiming at the integration of the traditional narrative of research articles with their underlying data, software code and workflows.

***

Viticulture Data Journal is indexed by Altmetric, CrossRef, Dimensions, EBSCOhost, Google Scholar, Mendeley, Microsoft Academic, Naviga (Suweco), OCLC WorldCat, OpenAIRE, OpenCitations, ReadCube, Ulrichsweb™, Unpaywall; and archived at CLOCKSS and Zenodo

***

Follow Viticulture Data Journal on Twitter and Facebook.

Cave fights for food: voracious spiders vs assassin bugs

Killing and eating of potential competitors has rarely been documented in the zoological literature, even though this type of interaction can affect population dynamics. In a recent publication in the open-access journal Subterranean Biology, Brazilian scientists presented their notes regarding the predation of an assassin bug by a spider in Neotropical caves. Underground, where food resources are scarce, such events might be possible as a result of ecological pressures imposed by the hostile environment, hypothesise the researchers.

Killing and eating of potential competitors, also known as intraguild predation, is a rare event that occurs only in specific situations such as severe scarcity of food resources, resulting in the competition between predators.

A recent paper in the open-access journal Subterranean Biology examines the case of a wandering spider species (Enoploctenus cyclotorax) seen to prey upon assassin bugs (Zelurus diasi) in a limestone cave in Brazil.

Even though such type of ecological interaction is uncommon, it is potentially important since it may decrease the competition between apex predators and thus, affect their population dynamics. Zelurus and Enoploctenus are voracious predators with a wide distribution in caves and epigean environment. Both of them have similar diets. In normal conditions, spiders reject assassin bugs as potential prey, so intraguild predation cases occur only in very specific situations.

From the perspective of the participants, intraguild predation is a dangerous strategy because the prey is also a predator, armed and capable to kill. However, in caves, this could be a very useful behaviour since food resources are scarce and have low density.

“This may be an important factor, maintaining the species in that challenging environment”, concludes lead author of the study Dr. Leopoldo Ferreira de Oliveira Bernardi.

The scientists suggest that probably prey scarcity has left little choice for spiders, and that’s why they ended up using unconventional type of prey in their diet.


Intraguild predation between female Enoploctenus cyclotorax and adult Zelurus diasi observed during the study.
Credit: Leopoldo Ferreira de Oliveira Bernardi
License: CC-BY 4.0

***

Original source:

Bernardi LFO, Sperandei VF, Audino LD, Sena CH, Alves JA (2020) Notes on the predation of an assassin bug by a spider in a Neotropical cave. Subterranean Biology 33: 17-22. https://doi.org/10.3897/subtbiol.33.48292