Austrian-Danish research team discover as many as 22 new moth species from across Europe

The last time so many previously unknown moths have been discovered at once in the best-studied continent was in 1887

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

Following a long-year study of the family of twirler moths, an Austrian-Danish research team discovered a startling total of 44 new species, including as many as 22 species inhabiting various regions throughout Europe.

Given that the Old Continent is the most thoroughly researched one, their findings, published in the open access journal ZooKeys, pose fundamental questions about our knowledge of biodiversity. Such wealth of new to science European moths has not been published within a single research article since 1887.

“The scale of newly discovered moths in one of the Earth’s most studied regions is both sensational and completely unexpected,” say authors Dr Peter Huemer, Tyrolean State Museum, and Ole Karsholt of the University of Copenhagen‘s Zoological Museum. To them, the new species come as proof that, “despite dramatic declines in many insect populations, our fundamental investigations into species diversity are still far from complete”.

 

The challenge of taxonomy

Type locality of the new moth species Megacraspedus faunierensis, Cottian Alps, Italy.

For the authors, it all began when they spotted what seemed like an unclassifiable species of twirler moth in the South Tyrolean Alps. In order to confirm it as a new species, the team conducted a 5-year study into the type specimens of all related species spread across the museum collections of Paris, London, Budapest and many in between.

To confirm the status of all new species, the scientists did not only look for characteristic colouration, markings and anatomical features, but also used the latest DNA methods to create unique genetic fingerprints for most of the species in the form of DNA barcodes.

 

What’s in a name?

A particular challenge for the researchers was to choose as many as 44 names for the new species. Eventually, they named one of the species after the daughter of one of the authors, others – after colleagues and many others – after the regions associated with the particular species. Megacraspedus teriolensis, for example, is translated to “Tyrolean twirler moth”.

Amongst the others, there is one which the scientists named Megacraspedus feminensisbecause they could only find the female, while another – Megacraspedus pacificus, discovered in Afghanistan – was dubbed “an ambassador of peace”.

 

Mysterious large twirler moths

One of the newly discovered moths, Megacraspedus faunierensis, in its natural habitat in the Alps.

All new moths belong to the genus of the large twirler moths (Megacraspedus) placed in the family of twirler moths (Gelechiidae), where the common name refers to their protruding modified mouthparts (labial palps).

The genus of the large twirler moths presents an especially interesting group because of their relatively short wings, where their wingspan ranges between 8 and 26 millimetres and the females are often flightless. While it remains unknown why exactly their wings are so reduced, the scientists assume that it is most likely an adaptation to the turbulent winds at their high-elevation habitats, since the species prefer mountain areas at up to 3,000 metres above sea level.

Out of the 85 documented species, however, both sexes are known in only 35 cases.

The scientists suspect that many of the flightless females are hard to spot on the ground. Similarly, caterpillars of only three species have been observed to date.

While one of the few things we currently know about the large twirler moths is that all species live on different grasses, Huemer and Karsholt believe that it is of urgent importance to conduct further research into the biology of these insects, in order to identify their conservation status and take adequate measures towards their preservation.

###

Original source:

Huemer P, Karsholt O (2018) Revision of the genus Megacraspedus Zeller, 1839, a challenging taxonomic tightrope of species delimitation (Lepidoptera, Gelechiidae). ZooKeys 800: 1-278. https://doi.org/10.3897/zookeys.800.26292

Sticky and heavily armed, a tomato-relative is the new ‘star’ of the Brazilian inselbergs

Armed with long thorns and sticky stems, newly described plant Solanum kollastrummight look like a villain by plant standards, but a closer look on this curious new species will reveal its star-like nature in the context of its ecosystem.

Recently described in open access journal PhytoKeys, this newly discovered tomato relative boasts stems densely armed with prickles of up to 17 mm long and to 2.3 mm wide at the base.

In fact, the new species is baptised after yet another showy defence mechanism. The name kollastrum comes from the Greek words for glue and star, referring to the peculiar sticky hairs that end in a star-like formation.

Close-up of the unusual star-like shape of the sticky hairs’ protrusions along the stems of the new species.

While all this heavy armour might at first fool you that this new species lives in isolation, a closer look has revealed that, contrary to the expectations, S. kollastrum starts as the good guy in its ecosystem.

Field observations of the new species have suggested that it’s preferred by medium- to large-sized bees with buzzing behaviour. The fruit structure of S. kollastrum, with fruits hanging outside its foliage on long axes, along with the numerous relatively small seeds and the release of a mild sweetish scent, suggest that fruits eaten by bats.

The heavy armour is, in fact, not that unusual in the group of ‘spiny solanums’ to which the new species belongs. With approximately 110 species of spiny solanums, the Brazilian Solanum flora is exceedingly diverse.

In its own right, Solanum is an extremely diverse plant genus to which important crops such as potatoes, tomatoes and eggplants belong.

Endemic to eastern Brazil, the known records of the armed new species are mostly concentrated along the Mucuri River watershed, where it inhabits edge of small forest fragments. In fact, the species is especially seen in areas at the base or on the peculiar and gigantic geological formations known as inselbergs or ‘sugar loaves’). Some populations were also found in disturbed sites near these rock outcrops, such as borders of unpaved roads and pastures.

“The discovery of S. kollastrum, a robust and conspicuous plant growing at the roadsides in regions close to large urban centres, highlights how insufficiently known the Brazilian flora is,” explain authors from the Universidade Federal de Minas Gerais and Universidade Federal do Oeste do Pará, Brazil.

“This highlights how urgent the need is to describe, study and conserve the country’s plant diversity. Thus, we hope that this discovery encourages the study on the most diverse aspects of this species’ biology.”

A small village along the typical for the region inselbergs — a preferred habitat of S. kollastrum.

###

Original Source:

Gouvêa YF, Giacomin LL, Stehmann JR (2018) A sticky and heavily armed new species of Solanum (Solanum subg. Leptostemonum, Solanaceae) from eastern Brazil. PhytoKeys 111: 103-118. https://doi.org/10.3897/phytokeys.111.28595

 

New promising compound against heart rhythm disorders and clogged arteries

The pharmacological agent outperforms current drugs in most of cases, show multiple experiments

A new pharmacological agent demonstrates promising results for the prevention of a wide range of heart rhythm disorders, including both cardiac and brain injury-induced arrhythmias. Furthermore, the compound (SS-68) demonstrates significant activity in conditions of reduced blood flow to the heart caused by obstructed arteries.

The study, conducted by a research team led by Dr Saida Bogus of the Kuban State Medical University in Russia, is published in the open-access journal Research Results in Pharmacology.

Each year, more than 17 million people from around the globe (mostly Europe and the USA) die of cardiovascular diseases and related complications, according to the World Health Organization. In Russia, about 3 out of 1,000 people suffer from the most common and malignant heart rhythm disorder: atrial fibrillation (AF), where the count is expected to at least double in the next 30 years. While sometimes lacking symptoms, atrial fibrillation could generally be recognised by a racing, irregular heartbeat, dizziness, fatigue, shortness of breath and chest pain, thereby largely compromising the quality of one’s life. The disorder could also lead to various complications, including dementia, stroke and heart failure.

Currently, the drugs administered to AF patients have major deficiencies, including narrow therapeutic windows, which means that even minimal imprecision in the dosage could result in unacceptable toxicity. Hence, patients need to be closely monitored and have their doses adjusted on a regular basis.

In their study, the team turned to the aminoindole derivatives to look for an alternative compound. This chemical group has already shown a significant potential in terms of cardio-pharmacological activity.

Having tested the SS-68 compound on multiple occasions in different animals, the researchers report that it has a pronounced antiarrhythmic effect and is able to bring the electrical activity of the heart back to normal and, in most cases, outperforming the reference drugs used in clinical practice: amiodarone, lidocaine, aymaline, ethacizine, etmozine and quinidine anaprilin.

Further, in brain injury-induced arrhythmias, the compound was found to reduce the episodes of epilepsy. It was also observed to have a positive effect in clogged blood vessels where it is reported to have successfully increased the coronary blood flow. In addition, the compound managed to decrease the area of necrosis in the heart tissue caused by a heart attack.

“To date, there have been significant achievements of Russian and foreign pharmacologists, chemists and clinicians in creating and introducing into the practical medicine a number of antiarrhythmic drugs different by their chemical structure, nature, spectrum, activity and mechanism of action; nevertheless, one of the most important tasks of modern pharmacology is searching for and developing new highly active substances of the corresponding action,” explain the scientists.

“Special attention should be paid to an in-depth study of the molecular mechanisms of action of this compound,” they conclude.

A paper looking further into the molecular mechanisms of the antiarrhythmic action of SS-68 prepared by the same research team is currently in press with Research Results in Pharmacology.

###

Original source:

Bogus SK, Galenko-Yaroshevsky PA, Suzdalev KF, Sukoyan GV, Abushkevich VG (2018) 2-phenyl-1-(3-pyrrolidin-1-il-propyl)-1 H-indole hydrochloride (SS-68): Antiarrhythmic and cardioprotective activity and its molecular mechanisms of action (Part I). Research Results in Pharmacology 4(2): 133-150. https://doi.org/10.3897/rrpharmacology.4.2859

Advanced computer technology & software turn species identification interactive

Important group of biocontrol wasps from Central Europe are used to demonstrate the perks and advantages of modern, free-to-use software

Representing a group of successful biocontrol agents for various pest fruit flies, a parasitic wasp genus remains largely overlooked. While its most recent identification key dates back to 1969, many new species have been added since then. As if to make matters worse, this group of visually identical species most likely contains many species yet to be described as new to science.

Having recently studied a species group of these wasps in Central Europe, scientists Fabian Klimmek and Hannes Baur of the Natural History Museum Bern, Switzerland, not only demonstrate the need for a knowledge update, but also showcase the advantages of modern taxonomic software able to analyse large amounts of descriptive and quantitative data.

Published in the open access Biodiversity Data Journal, the team’s taxonomic paper describes a new species – Pteromalus capito – and presents a discussion on the free-to-use Xper3, developed by the Laboratory of Informatics and Systematics of Pierre-and-Marie-Curie University. The software was used to create an openly available updated key for the species group Pteromalus albipennis.

The fully illustrated interactive database covers 27 species in the group and 18 related species, in addition to a complete diagnosis, a large set of body measurements and a total of 585 images, displaying most of the characteristic features for each species.

“Nowadays, advanced computer technology, measurement procedures and equipment allow more sophisticated ways to include quantitative characters, which greatly enhance the delimitation of cryptic species,” explain the scientists.

“Recently developed software for the creation of biological identification keys like Xper3, Lucid or Delta could have the potential to replace traditional paper-based keys.”

To put the statement into context, the authors give an example with one of the studied wasp species, whose identification would take 16 steps if the previously available identification key were used, whereas only 6 steps were needed with the interactive alternative.

One of the reasons tools like Xper3 are so fast and efficient is that the key’s author can list all descriptive characters in a specific order and give them different weight in species delimitation. Thus, whenever an entomologist tries to identify a wasp specimen, the software will first run a check against the descriptors at the top, so that it can exclude non-matching taxons and provide a list of the remaining names. Whenever multiple names remain, a check further down the list is performed, until there is a single one left, which ought to be the one corresponding to the specimen. At any point, the researcher can access the chronology, in order to check for any potential mismatches without interrupting the process.

Being the product of digitally available software, interactive identification keys are not only easy, quick and inexpensive to publish, but they are also simple to edit and build on in a collaborative manner. Experts from all around the world could update the key, as long as the author grants them specific user rights. However, regardless of how many times the database is updated, a permanent URL link will continue to provide access to the latest version at all times.

To future-proof their key and its underlying data, the scientists have deposited all raw data files, R-scripts, photographs, files listing and prepared specimens at the research data Zenodo, created by OpenAIRE and CERN.

###

Original source:

Klimmek F, Baur H (2018) An interactive key to Central European species of the Pteromalus albipennis species group and other species of the genus (Hymenoptera: Chalcidoidea: Pteromalidae), with the description of a new species. Biodiversity Data Journal 6: e27722. https://doi.org/10.3897/BDJ.6.e27722

Biodiversity Data Journal in Science Citation Index Expanded & Journal Citation Reports

Nearly five years after the launch of the innovative, open access scholarly venue, designed to accelerate biodiversity research by closing the gap between narrative and machine-readable structured data, BDJ is formally recognised as one of the high quality journals in its discipline by Clarivate Analytics.

Following a rigorous evaluation process, Pensoft‘s Biodiversity Data Journal (BDJ) was accepted for a range of Clarivate Analytics products and services, including the Science Citation Index Expanded (SCIE) and the Journal Citation Reports, meaning it is to make use of the Journal Impact Factor and related metrics.

Furthermore, articles published in BDJ are to be abstracted in several databases: Agriculture, Biology, and Environmental SciencesZoological RecordBiological Abstracts and BIOSIS Previews, so that the publications are even easier to find by researchers, while citations are continuously tracked, assessed and analysed.

Unlike conventional scholarly journals, BDJ allows for the integrated publication of data alongside text, made possible through highly automated import and conversion of machine-readable structured data into human-accessible format, resulting in a wide range of article types: data papers, species occurrences, species conservation profiles, software descriptions and others. On the other hand, text published in BDJ can be easily downloaded as data or mined by computers for reuse.

“Going beyond the purposes and capabilities of a traditional scholarly journal, or even a data journal, for five years now, BDJ has been successfully demonstrating how much of a valuable scholarly outlet it really is, especially when it comes to publication of data meant to be optimally findable, accessible, interoperable and reusable to the benefit of the field of biodiversity research,” says Prof. Lyubomir Penev, CEO and founder of both Biodiversity Data Journal and Pensoft.

“This recognition from Clarivate is certainly a great reassurance that BDJ has managed to fulfill its mission in proving its worth on the scholarly scene. After all, it comes with the leading usage metrics, in addition to the already featured AltmetricsDimensionsScopus, and article- and sub-article-level statistics,” he adds.

###

About Biodiversity Data Journal:

Biodiversity Data Journal (BDJ) is a community peer-reviewed, open access journal, designed to accelerate publishing, dissemination and sharing of biodiversity-related data of any kind. All structural elements of the articles – text, morphological descriptions, occurrences, data tables, etc. – are treated and stored as data. BDJ aims at integrating data and narrative in the article content to the maximum extent possible. Supplementary data files that underpin graphs, hypotheses and results should also be published with the article or deposited in trusted open access data repositories. The journal provides rich biodiversity data import and export facilities through the ARPHA Writing Tool and Darwin Core Archives.

The first cave-dwelling centipede from southern China

Chinese scientists recorded the first cave-dwelling centipede known so far from southern China. To the amazement of the team, the specimens collected during a survey in the Gaofeng village, Guizhou Province, did not only represent a species that had been successfully hiding away from biologists in the subterranean darkness, but it also turned out to be the very first amongst the order of stone centipedes to be discovered underground in the country.

Found by the team of Qing Li, Xuan Guo and Dr Hui-ming Chen of the Guizhou Institute of Biology, and Su-jian Pei and Dr Hui-qin Ma of Hengshui University, the new cavedweller is described under the name of Australobius tracheoperspicuus in the open-access journal ZooKeys.

The new centipede is quite tiny, measuring less than 20 mm in total body length. It is also characterised with pale yellow-brownish colour and antennae comprised of 26 segments each. Similar to other cave-dwelling organisms which have evolved to survive away from sunlight, it has no eyes.

In their paper, the authors point out that Chinese centipedes and millipedes remain poorly known, where the statement holds particularly true for the fauna of stone centipedes: the members of the order Lithobiomorpha. As of today, there are only 80 species and subspecies of lithobiomorphs known from the country. However, none of them lives underground.

In addition, the study provides an identification key for all six species of the genus Australobius recorded in China.

###

Original source:

Li Q, Pei S-j, Guo X, Ma H-q, Chen H-m (2018) Australobius tracheoperspicuus sp. n., the first subterranean species of centipede from southern China (Lithobiomorpha, Lithobiidae). ZooKeys 795: 83-91. https://doi.org/10.3897/zookeys.795.28036

Recipe for Reusability: Biodiversity Data Journal integrated with Profeza’s CREDIT Suite

Through their new collaboration, the partners encourage publication of dynamic additional research outcomes to support reusability and reproducibility in science

In a new partnership between open-access Biodiversity Data Journal (BDJ) and workflow software development platform Profeza, authors submitting their research to the scholarly journal will be invited to prepare a Reuse Recipe Document via CREDIT Suite to encourage reusability and reproducibility in science. Once published, their articles will feature a special widget linking to additional research output, such as raw, experimental repetitions, null or negative results, protocols and datasets.

A Reuse Recipe Document is a collection of additional research outputs, which could serve as a guidelines to another researcher trying to reproduce or build on the previously published work. In contrast to a research article, it is a dynamic ‘evolving’ research item, which can be later updated and also tracked back in time, thanks to a revision history feature.

Both the Recipe Document and the Reproducible Links, which connect subsequent outputs to the original publication, are assigned with their own DOIs, so that reuse instances can be easily captured, recognised, tracked and rewarded with increased citability.

With these events appearing on both the original author’s and any reuser’s ORCID, the former can easily gain further credibility for his/her work because of his/her work’s enhanced reproducibility, while the latter increases his/her own by showcasing how he/she has put what he/she has cited into use.

Furthermore, the transparency and interconnectivity between the separate works allow for promoting intra- and inter-disciplinary collaboration between researchers.

“At BDJ, we strongly encourage our authors to use CREDIT Suite to submit any additional research outputs that could help fellow scientists speed up progress in biodiversity knowledge through reproducibility and reusability,” says Prof. Lyubomir Penev, founder of the journal and its scholarly publisher – Pensoft. “Our new partnership with Profeza is in itself a sign that collaboration and integrity in academia is the way to good open science practices.”

“Our partnership with Pensoft is a great step towards gathering crucial feedback and insight concerning reproducibility and continuity in research. This is now possible with Reuse Recipe Documents, which allow for authors and reusers to engage and team up with each other,” says Sheevendra, Co-Founder of Profeza.

An overlooked giant: useful and abundant, African ‘Zam’ palm newly described for science

Common sight along road sides in south Cameroon and western Gabon, and growing in hard-to-be-missed dense colonies, it remains a mystery how this locally useful new palm species Raphia zamiana (locally known as “Zam”) has been missed by botanists until now, with its first collection dating to 2012. The overlooked giant has been recently described in the open access journal PhytoKeys, alongside a shy and rare endemic from the same genus.

Curiously, it might have been exactly the large size of Raphia zamiana that has discouraged botanists from collecting and cataloguing this species, according to the multinational team of researchers from the University of Yaoundé, Cameroon, National Herbarium of Gabon, Gabon, the Conservatoire et Jardin botaniques – Ville de Genève, Switzerland, the Institut de Recherche pour le Développement, IRD, France.

While this theory might sound strange at first, it is plausible, given that a single leaf of this large palm can reach up to 21 meters long and forms dense colonies in swampy areas. Large leaves are not uncommon among the representatives of, what is known as the most diverse genus of African palms, Raphia, with one species, R. regalis, having leaves up to 25 meters, a record in the plant kingdom!

Newly described and named to science, this species is, just like many other representatives of the genus, well-known and heavily used across its range. Uses, of what is locally known as “Zam” include: timber, locally referred to as “bamboo”, used for construction, and fruits – for consumption and medicine. Finally, Zam is also used for wine tapping in certain parts.

“It is indeed incredible that such a large and useful palm has remained unknown to science until now,” comments author Thomas Couvreur, Institut de Recherche pour le Développement, IRD, France.

“This curious fact, however, underlines a bigger problem. While biodiversity is being destroyed at unprecedented rates, we still have a lot to discover and describe, even species that are common, well known and useful. This comes as a surprise to many people and underlines how much remains to be discovered in the tropics. Scientifically describing species, especially useful ones, is very important, as it “puts then on the map”, which allows them to be studied and managed. In this sense, field work remains key.”, concludes Thomas Couvreur.

Raphia gabonica in its natural habitat in Alèmbé, Gabon.

The need to further study and conserve this group of palms is evidenced by a second newly described species in the same PhytoKeys paper. Named after its country of origin, Raphia gabonica, is restricted to only two small populations from central Gabon, where it occurs on hillsides and along small rivers.

Right upon description, R. gabonica is already threatened by extinction. It was assigned a preliminary IUCN status of “Endangered”, because it is found in small unprotected pockets of forest along roadsides. It is now amongst the five most threatened palm species for the whole of Africa.

“Our study shows that, despite their economic and cultural importance across tropical Africa and for Africans, we still know too little about Raphia palms. This is very paradoxal and a gap that we need to fill, quickly” adds University of Yaoundé PhD student Suzanne K Mogue.

“We hope that our amazing discoveries continue to stimulate further botanical studies and promote conservation efforts across Cameroon, Gabon and central Africa in general,” concludes Professor Bonaventure Sonké of the University of Yaoundé.

###

For more information on Raphia‘s in Cameroon and Gabon, please see this documentary produced by Joseph Fumtim and Thomas L.P. Couvreur, 28 min. https://www.youtube.com/watch?v=avSoLIusCCs&t=6s

Original Source:

Mogue Kamga S, Niangadouma R, Stauffer FW, Sonké B, Couvreur TLP (2018) Two new species of Raphia (Palmae/Arecaceae) from Cameroon and Gabon. PhytoKeys 111: 17-30. https://doi.org/10.3897/phytokeys.111.27175

Tiny thorn snail discovered in Panama’s backyard

Close-up view of live individuals of the new species crawling on a leaf.

Discoveries of biodiversity at the Lilliputian scale are more tedious than it is for larger animals like elephants, for example. Furthermore, an analysis producing a DNA barcode – a taxonomic method using a short snippet of an organism’s DNA – is not enough to adequately identify it to the species level.

In the case of tiny thorn snails – appearing as minute white flecks grazing in moist, decomposing leaf litter – it is the shell that provides additional and reliable information needed to verify or question molecular assessment of these otherwise, nondescript critters.

Broadleaf forest litter with white arrows indicating the newly described species on the leaves.

However, at 2 mm, thorn snails are too small and fragile to handle and the few, if any, tangible details on the outside of the shells can only be seen using a high-powered microscope and computed tomographic (CT) images.

This is exactly how the interdisciplinary team of Dr Adrienne Jochum, Naturhistorisches Museum der Burgergemeinde Bern (NMBE) and University of Bern, Dr. Bernhard Ruthensteiner, Zoologische Staatssammlung Muenchen, Germany, Dr. Marian Kampschulte, University Hospital of Giessen and Marburg, Gunhild Martels, Justus-Liebig University Giessen, Jeannette Kneubühler, NMBE and University of Bern, and Dr. Adrien Favre, Senckenberg Research Institute and Natural History Museum Frankfurt, managed to clarify the identity of a new Panamanian species. Their study is published in the open-access journal ZooKeys.

Even though the molecular analysis flagged what it was later to be named as the new to science species, Carychium panamaense, the examination left no shell for the description of the new snail to be completed, let alone to serve as tangible, voucher material in a museum collection available to future researchers. The mini forest compost-grazer had to wait for another five years and Dr. A. Favre, who collected fresh material while traveling in Panama.

The new snail is currently the second member of the family Carychiidae to be discovered in Panama. The first Panamanian, and southern-most member of its kind in the Western Hemisphere, is C. zarzaae, which was also described by Dr. A. Jochum and her team along with two sister species from North and Central America. The study was published in ZooKeys last year.

Much like X-rays showing the degree of damage in a broken bone, CT images visualise the degree of sinuosity of the potato chip-like wedge (lamella) along the spindle-like mast (columella) inside the thorn snail’s shell. These structures provide stability and surface area on which the snail exerts muscular traction while manoeuvring the unwieldy and pointed, signature thorn-like shell into tight nooks and crannies. The alignment and degree of waviness of the lamella on the columella is also used by malacologists (mollusc specialists) to differentiate the species.

These are computed tomographic (CT) images of the new thorn snail species.

Normally, a study of a thorn snail’s shell would require drilling out minute ‘windows’ in the shell by using a fine needle under a high microscope magnification.

“This miserable method requires much patience and dexterity and all too often, the shell springs open into oblivion or disintegrates into dust under pressure,” explains Dr. A. Jochum. “By exposing the delicate lamella using non-manipulative CT imaging, valuable shell material is conserved and unknown diversity in thorn snails becomes widely accessible for further study and subsequent conservation measures.”

The authors are hopeful that C. panamaense and C. zarzaae, which both inhabit the La Amistad International Park, Chiriquí, will remain a conservation priority along with other animalian treasures including the Resplendent Quetzal, Three-Wattled Bellbird and the Crested Eagles.

The park is considered the 1st bi-national biosphere reserve, as it occupies land in both Costa Rica and Panama, and constitutes a UNESCO World Heritage Site since 1990.

###

Original Source:

Jochum A, Ruthensteiner B, Kampschulte M, Martels G, Kneubühler J, Favre A (2018) Fulfilling the taxonomic consequence after DNA Barcoding: Carychium panamaense sp. n. (Eupulmonata, Ellobioidea, Carychiidae) from Panama is described using computed tomographic (CT) imaging. ZooKeys 795: 1-12. https://doi.org/10.3897/zookeys.795.29339

Bee diversity and richness decline as anthropogenic activity increases, confirm scientists

The researchers compared wild bee communities in the tropical dry forest of Mexico living in three habitat conditions: preserved vegetation, agricultural sites and urbanised areas

Changes in land use negatively affect bee species richness and diversity, and cause major shifts in species composition, reports a recent study of native wild bees, conducted at the Sierra de Quila Flora and Fauna Protection Area and its influence zone in Mexico.

Having registered a total of 14,054 individual bees representing 160 species, 52 genera, and five families over the span of a year, the scientists conclude that the studied preserved areas demonstrated “significantly greater” richness and diversity.

In their paper, published in the open-access Journal of Hymenoptera Research, a research team from the University of Guadalajara, Mexico, led by Alejandro Muñoz-Urias, compare three conditions within the tropical dry forest study site: preserved vegetation, an agricultural area with crops and livestock, and an urbanised area.

This bee species (Aztecanthidium xochipillium) is known exclusively from Mexico.

The researchers confirm earlier information that an increase in anthropogenic disturbances leads to a decrease in bee richness and diversity. While availability of food and nesting sites are the key factors for bee communities, changes in land use negatively impact flower richness and floral diversity. Thereby, turning habitats into urbanised or agricultural sites significantly diminishes the populations of the bees which rely on specific plants for nectar and pollen. These are the species whose populations are threatened with severe declines up to the point of local extinction.

According to their data, about half of the bees recorded were Western honey bees (49.9%), whereas polyester bees turned out to be the least abundant (1.2 %).

On the other hand, some generalist bees, which feed on a wide range of plants, seem to thrive in urbanised areas, as they take advantage of people watering wild and ornamental plants at times where draughts might be eradicating native vegetation.

“That is the reason why bees that can use a wide variety of resources are often able to compensate when circumstances change, although some species disappear due to land use changes,” explain the scientists.

This is a tropical dry forest in the dry (left) and rainy season (right).

In conclusion, the authors recommend that the tropical dry forests of both the study area and Mexico in general need to be protected in order for these essential pollinators to be conserved.

“Pollinators are a key component for global biodiversity, because they assist in the sexual reproduction of many plant species and play a crucial role in maintaining terrestrial ecosystems and food security for human beings,” they remind.

###

Original source:

Razo-León AE, Vásquez-Bolaños M, Muñoz-Urias A, Huerta-Martínez FM (2018) Changes in bee community structure (Hymenoptera, Apoidea) under three different land-use conditions. Journal of Hymenoptera Research 66: 23-38. https://doi.org/10.3897/jhr.66.27367