Champions of biodiversity: A weevil genus beats records of explosive evolutive radiation

With as many as 120 recently discovered weevils placed in the genus Laparocerus, it now hosts a total of 237 known species and subspecies. They are all flightless beetles and most of them endemic (living exclusively in one geographic location) to a single island of the archipelagos of Madeira, Selvagens and the Canary Islands (17 islands in total). Only two species inhabit Morocco, the nearest continental land.

Independent Canarian entomologist Dr. Antonio Machado, who has been collecting and studying this genus of weevils for the last sixteen years and researched 46,500 specimens so far, was helped by geneticist Dr. Mariano Hernández, from the University of La Laguna, Tenerife, Canary Islands, Spain, to undertake a phylogenetic study using three mitochondrial genes and one nuclear gene. The resulting phylogenetic tree also allowed for estimating the whole evolutionary process along a timeframe of about 11.2 million years. Their study is published in the open access journal ZooKeys.

The molecular analysis confirms that all Laparocerus weevils have a common evolutionary ancestor (monophyly), but could not clarify whether that ancient founding species arrived from southern Europe or northwestern Africa. The two extant Moroccan species were found to be the result of a back-colonisation from the Canary Islands to Africa, and not the ancestral source lineage, which unfortunately is still unknown.

weevils PR 2Colonisation of Macaronesia started in Porto Santo, Madeiran archipelago, which is the oldest island, and from there it ‘jumped’ to Madeira and the Desertas. The colonisation of the Canary Islands started shortly after, and it basically moved stepwise from the east to the west in line with the decreasing age of the volcanic islands. Yet, there have been several back-colonisations, as well (see map). Large islands, such as Tenerife (2034 km2), ended up with 65 species and subspecies. Globally, there is an outstanding ratio of one endemic Laparocerus for each 35.7 km2; a record not beaten by any other genus of plant or animal in Macaronesia.

The evolutionary process responsible for such richness comprises sequential radiation events in these archipelagoes, each generating several monophyletic groups. These groups, 20 in total, have been recognised as subgenera of Laparocerus, and five of them — Aridotrox, Belicarius, Bencomius, Canariotrox, and Purpuranius — are described as new to science in this study. Colonisation routes, habitat shifts, disruption of populations by volcanism, dispersal by massive landslides, and other relevant aspects for adaptive and non-adaptive radiation, are largely discussed and confronted with previously published data referring to other groups of beetles or to other biological organisms (spiders, bush crickets, plants, etc.).

“If oceanic islands have been traditionally considered as laboratories of evolution and species-producing machines, Laparocerus will become the ideal guinea-pig for broadening studies in dispersal and speciation processes of all kinds,” say the authors. “Working with such a group is like getting a picture of Nature with more pixels. Several intriguing cases highlighted in this contribution may turn into the inspiration for further phylogeographic research.”

The scientists hope that, in near future Laparocerus will merit sharing the podium with Darwin´s finches or Drosophila in the studies of island evolution”.

###

Original source:

Machado A, Rodríguez-Expósito E, López M, Hernández M (2017) Phylogenetic analysis of the genus Laparocerus, with comments on colonisation and diversification in Macaronesia (Coleoptera, Curculionidae, Entiminae). Zookeys 651: 1-77 (02 Feb 2017) https://doi.org/10.3897/zookeys.651.10097

New species of ground beetle described from a 147-year-old specimen

While new species are most commonly described based on recent field collections, undertaken at poorly explored places, some are identified in museum collections, where they have spent decades before being recognised as new to science. Such is the case of an unusually large and likely extinct ground beetle found at the Muséum national d’Histoire naturelle, Paris, whose story began in the distant 1860s with Dr. Eduard Graeffe’s trip to Samoa. Now, a century and a half later, the beetle is finally described by Dr. James K. Liebherr, Cornell University, USA, in the open access journal Zoosystematics and Evolution.

Much like the rest of the species within the genus, the beetle now going under the name Bryanites graeffi showed vestigial flight wings and other traits associated with flight-wing loss. However, at length of 16.2 mm it is the largest for the taxonomic group it is now assigned to. Although this may seem way too obvious for taxonomists to overlook, the beetle’s relatives are just as obscure. The Bryanites genus was previously known from two species represented by two specimens only, collected in 1924 from Savai?i Island by Edwin H. Bryan, Jr., Bernice P. Bishop Museum in Honolulu, during the Bishop Museum’s Whitney South Seas Expedition.

As a result, we now have three species representing an evolutionary radiation in Samoa, all known from single specimens collected long ago. The phylogenetics of these three species link them to other groups from Fiji and New Zealand.

What is the advantage of knowledge about species that existed some 90-150 years ago, but no longer? It might actually point us to the actual level of impact mankind has on natural ecosystems. The cause of the likely extermination of Bryanites graeffi might never be known with certainty, however, the colonization of many Pacific islands by the Polynesian rat has always been followed by the diminution or elimination of native insect species. Thus, we can add another likely victim to the list of species that have been adversely impacted by mankind’s commensal voyagers.

The species bears the name of its original collector to pay tribute to Dr. Graeffe and his hard work while collecting insects in the rain forest of Samoa well over a century ago .

###

Original source:

Liebherr JK (2017) Bryanites graeffii sp. n. (Coleoptera, Carabidae): museum rediscovery of a relict species from Samoa. Zoosystematics and Evolution 93(1): 1-11. https://doi.org/10.3897/zse.93.10802

American scientists discover the first Antarctic ground beetle

Fossilised forewings from two individuals, discovered on the Beardmore Glacier, revealed the first ground beetle known from the southernmost continent. It is also the second beetle for the Antarctic insect fauna with living descendants. The new species, which for now is also the sole representative of a new genus, is to be commonly known as Ball’s Antarctic Tundra Beetle. Scientists Dr Allan Ashworth, North Dakota State University, and Dr Terry Erwin, Smithsonian Institution, published their findings in the open access journal ZooKeys.10535_image-3

The insect fauna in Antarctica is so poor that today it consists of only three species of flightless midges, with one of them having been probably introduced from the subantarctic island of South Georgia. The absence of biodiversity is considered to be a result of lack of moisture, vegetation and low temperatures.

10535_image-2Following their study, the authors conclude that the beetle must have inhabited the sparsely-vegetated sand and gravel banks of a meltwater-fed stream that was once part of an outwash plain at the head of a fjord in the Transantarctic Mountains. Plants associated with the extinct beetle include southern beech, buttercup, moss mats, and cushion plants, all typical for a tundra ecosystem. The species may or may not have been able to fly.

The closest modern relatives to the extinct species live in South America, the Falkland Islands, South Georgia, Tasmania and Australia. Tracking the ancient lineage of this group of beetles, known as the carabid beetle tribe Trechini, confirms that they were once widely distributed in Gondwana, the supercontinent that used to unite what today we recognise as Antarctica, South America, Africa, Madagascar, Australia, the Arabian Peninsula and the Indian Subcontinent. Ball’s Antarctic Tundra Beetle is also an evidence that even after Gondwana broke apart, the tundra ecosystem persevered in Antarctica for millions of years.

“The conflicting signals both in anatomical attributes and biogeography, and in ecological setting as well, leave open the question of relationships, thus giving us no alternative but to flag the species represented by fossil evidence through erection of new genus status, hence drawing attention to it and the need for further paleontological studies in Antarctica,” speak of their discovery the authors.

The new Ball’s Antarctic Tundra Beetle is scientifically identified as Antarctotrechus balli, where the genus name (Antarctotrechus) refers to its being related to the tribe Trechini, and the species name (balli) honours distinct expert of ground beetles Dr. George E. Ball, who celebrated his 90th birthday on 26th September, 2016.

###

Original source:

Ashworth AC, Erwin TL (2016) Antarctotrechus balli sp. n. (Carabidae, Trechini): the first ground beetle from Antarctica. ZooKeys 635: 109-122. https://doi.org/10.3897/zookeys.635.10535

Foreign beetle species recorded for the first time in Canada thanks to citizen science

With social networks abound, it is no wonder that there is an online space where almost anyone can upload a photo and report a sighting of an insect. Identified or not, such public records can turn out to be especially useful — as in the case of an Old World beetle species — which appears to have recently entered Canada, and was recently discovered with the help of the BugGuide online portal and its large citizen scientist community.

Having identified the non-native rove beetle species Ocypus nitens in Ontario, Canada, based on a single specimen, author Dr Adam Brunke, affiliated with the Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, sought additional data to confirm his discovery.

Eventually, he found them in the citizen-generated North American digital insect collection BugGuide, created and curated by an online community of naturalists, insect enthusiasts and entomologists. After he verified as many as 26 digital photographs to be records of the same species, he concluded that the rove beetle has expanded its distribution to two new locations — Ontario, its first in Canada, and the state of Vermont, USA. His study is published in the open access Biodiversity Data Journal.

The species O. nitens is a fairly large rove beetle measuring between 12 and 20 mm in length and visibly distinguished by the characteristic form of the head and relatively short forewings. Furthermore, the insect is quite easy to spot because it prefers living around humans, often being spotted in woodlots and backyards.

As a result of the hundreds of years of Transatlantic trade, many species have been transported accidentally among various produce to subsequently adapt and establish on the other side of the ocean. While the rove beetle species O. nitens was first reported from the Americas in 1944, it was not until the turn of the new millennium that it escaped the small area in New England, USA, which had so far been its only habitat on the continent. Then, its distributional range began to rapidly expand. It is unlikely that the presence of this rove beetle, especially in Ontario, has long remained undetected, because of thorough and multiple sampling initiatives undertaken by professionals and students in the past.

The effect of the newly recorded species on the native rove beetles is still unknown. On the other hand, there are observations that several related beetles have experienced a drop in their populations in comparison to the records from the beginning of the century.

“Citizen-generated distributional data continues to be a valuable ally in the detection of adventive insects and the study of their distributional dynamics,” concludes the author.

###

Original source:

Brunke A (2016) First detection of the adventive large rove beetle Ocypus nitens (Schrank) in Canada and an update of its Nearctic distribution using data generated by the public. Biodiversity Data Journal 4: e11012. https://doi.org/10.3897/BDJ.4.e11012

New Chinese leaf-roller weevil does not know how to roll leaves

A long-term project on insect-seed interactions, currently being carried out by researchers of the Institute of Zoology (Chinese Academy of Sciences) in a subtropical forest near Dujiangyan City, Sichuan, China, revealed the presence of larvae of an unknown weevil species eating the seeds in the pods of a shrubby legume.

Scientists from the Institute of Zoology, China, Xiangyang Lv, Zhishu Xiao, Zhiliang Wang, Runzhi Zhang, and Miguel A. Alonso-Zarazaga, also affiliated with the Museo Nacional de Ciencias Naturales (CSIC), Spain, published the description of the new genus and species, named Evemphyron sinense, and added data on its biology in the open access journal ZooKeys.

Because of its peculiar features, it was difficult to locate the closest relatives of this new species. However, a few characteristic traits of the body and genitalia, strongly pointed to its placement within the tribe Deporaini.

The closest, although seemingly rather far-related to the new species, beetles are considered to be a genus with scattered distribution, stretching from the Russian Far East to the Indian Himalaya.

However, they are smaller weevils whose females cut shoots to lay their eggs. On the other hand, the males in both genera share a peculiar patch of hairs, probably related to pheromone dispersal. Likewise, each species is associated with legumes.

The curious feature of this weevil group (Deporaini) is that the vast majority of its species are leaf-rollers. The females cut a hardwood leaf in a peculiar and mathematical way and roll it, laying one egg inside each one. This behaviour, which is known in other far-related weevils of the same family, seems to have appeared independently in different evolutionary branches. In the case of Deporaini, this behavioural trait evolved after the new genus became a distinct one.Figure 5 large

As a result, the new genus is considered to be one of the two most primitive within the tribe. In fact, it might be the most primitive one, taking into account a number of morphological traits as well.

It could be that the new beetle never knew how to roll a leaf to make nests and shelter its offspring.

###

Original source:

Lv X, Alonso-Zarazaga MA, Xiao Z, Wang Z, Zhang R (2016) Evemphyron sinense, a new genus and species infesting legume seedpods in China (Coleoptera, Attelabidae, Rhynchitinae).ZooKeys 600: 89-101. doi: 10.3897/zookeys.600.6709

End of an era: New sixth volume Research on Chrysomelidae the last with its original editors

The new and sixth volume of Research on Chrysomelidae consists of five research articles devoted to the latest findings about the amazing family of over 37,000 leaf beetle species from more than 2,500 genera. Among the studies, conducted by authors from all around the world, there is a new species of potentially dangerous legume-feeding pest, as well as new information regarding the life cycle,ecological interactions, species richness factors and taxonomy of some leaf beetles.

The latest volume devoted to one of the most intriguing beetle families also marks a turning point for the entomologists sharing special fondness for the leaf beetles. While the “spiritus rector” of the Chrysomelidae research community, Prof Pierre Jolivet resigned from his position last year, now Dr Jorge Santiago-Blay is also stepping down from the editorial board.

The third of the original trio, Prof Michael Schmitt, Ernst-Moritz-Arndt-Universität, takes the opportunity to look back to the beginning of the community and pay tribute to his long-year colleagues in his Editorial. He also confirms that the series, by now traditionally published in the open access journal ZooKeys, is far from over.

“I thank Jorge Santiago-Blay from the bottom of my heart for his tireless engagement in fostering leaf beetle research and his friendship, and wish him All the Best for whatever he may entertain in the future,” read his words.

In his short publication accompanying the five-piece issue, Prof Michael Schmitt recalls the very beginning of his team’s existence, started in 2001. He does not omit to note the numerous obstacles surrounding the first issues. At a point, having completed the enormous book “The green book – New Developments in the Biology of the Chrysomelidae”, comprising 62 chapters by 111 authors, as well as the first two volumes of Research on Chrysomelidae, they were made to drop the series due to unsatisfying selling numbers.

However, everything changed after the conversation Prof Pierre Jolivet and Prof Lyubomir Penev, Pensoft Publishers, had at the 9th European Congress of Entomology, held in Hungary in 2010. There they agreed to publish the next Research on Chrysomelidae volume as a special issue in ZooKeys, one of Pensoft’s journals.

Shortly after, the collaboration turned out so successful that it is now resulting in a fourth consecutive special issue. In the meantime, last December, the 30th anniversary of Symposia on Chysomelidae was celebrated in another leaf beetle-themed ZooKeys issue. Moreover, the next issue is already planned. It will cover the proceedings of the 9th International Symposium on Chrysomelidae and will be edited by Prof Michael Schmitt and Dr Caroline Chaboo, University of Nebraska State Museum, USA.

“The present volume is the fourth, but certainly not the last, published by Pensoft. Although the pullout of Pierre Jolivet and Jorge Santiago-Blay marks a crucial cut in the history of Research on Chrysomelidae, I understand the reasons of their decision to step down,” concludes Prof Michael Schmitt. “I hope and wish that the series will prosper and remain accepted as a forum of leaf beetle research by the community of Chrysomelidae enthusiasts all over the world.”

###

Research on Chrysomelidae 6 Special Issue is available to read and order from here.

Original source:

Schmitt M (2016) Editorial. In: Jolivet P, Santiago-Blay J, Schmitt M (Eds) Research on Chrysomelidae 6. ZooKeys 597: 1-2. doi: 10.3897/zookeys.597.8618

More than just hippos and crocs: The hidden biodiversity of the iSimangaliso Wetland Park

iSimangaliso Wetland Park, a UNESCO World Heritage Site in the sub-tropical north-eastern corner of South Africa has become famous for its birdlife, crocodiles and hippopotamuses that frolic in the warm estuarine waters of Lake St Lucia. However, there’s more to the park than the “big and hairy”, according to aquatic ecologist Prof Renzo Perissinotto at Nelson Mandela Metropolitan University (NMMU) in Port Elizabeth, whose research is published in the open access journal ZooKeys.

“Although we have spent several decades focusing on life in the estuary, we only recently came to realise that much of the wealth of biodiversity in the park exists in the small freshwater ponds that are adjacent to, but disconnected from, the main lake,” he says.Image 1

The St Lucia lake itself is generally brackish and is located on a large sandy expanse known as the Maputaland coastal plain. Dotted across the landscape of this coastal foreland are numerous temporary freshwater ponds, seeps and small streams that are disconnected from the brackish lake body.

A team of self-proclaimed “beetle nerds”, led by Prof Perissinotto, got together from NMMU and Plymouth University (UK) and uncovered more species of water beetles in these tiny water bodies than is known for any other similar-sized region in southern Africa.

The beetle collection trips were done over a 16-month period and revealed 68 species of predaceous water beetles alone, termed more formally as the “Hydradephaga”. The iSimangaliso Wetland Park houses approximately 20% of the total number of known species for this beetle group in the whole of southern Africa. Of the species collected during their expeditions, five have never been recorded in South Africa before, highlighting our poor understanding of aquatic insect distributions in this part of the world.

Most of the species collected (almost 80%) belonged to the family Dytiscidae, more commonly known as “diving beetles” due to their lifestyle that involves coming up for air and immediately diving back down to the depths to carry on hunting unsuspecting prey, which can be as large as small fish and amphibians.Image 2

Prof Perissinotto and his NMMU colleague Dr Matthew Bird, together with water beetle specialist Prof David Bilton (Plymouth University), collected specimens ranging from 1 mm to almost 5 cm in length (the tadpole eaters). According to Prof Bilton, “Irrespective of size, these water beetles are a crucial component of the iSimangaliso ecosystem in that they are the primary predators in these temporary wetlands, which generally lack fish. Their abundance and diversity can be used to gauge the overall health of wetland ecosystems as they are sensitive to pollution, for instance”.

###

Original source:

Perissinotto R, Bird MS, Bilton DT (2016) Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications. ZooKeys 595: 85-135. doi: 10.3897/zookeys.595.8614

The first long-horned beetle giving birth to live young discovered in Borneo

A remarkably high diversity of the wingless long-horned beetles in the mountains of northern Borneo is reported by three Czech researchers from the Palacký University, Olomouc, Czech Republic. Apart from the genera and species new to science, the entomologists report the first case of reproduction by live birth in this rarely collected group of beetles. The study was published in the open access journal ZooKeys.

Generally, insects are oviparous, which means that their females lay eggs and the embryonic development occurs outside the female’s body. On the other hand, ovoviviparous species retain their eggs in their genital tracts until the larvae are ready to hatch. Such mode of reproduction is a relatively rare phenomenon in insects and even rarer within beetles, where it has been reported for a few unrelated families only.

The long-horned beetles are a family, called Cerambycidae, comprising about 35,000 known species and forming one of the largest beetle groups.

“We studied the diversity of the rarely collected wingless long-horned beetles from Borneo, which is one of the major biodiversity hotspots in the world,” says main author and PhD student Radim Gabriš. “The mountains of northern Borneo, in particular, host a large number of endemic organisms.”

The scientists focused on the group which nobody had studied in detail for more than 60 years. They found surprisingly high morphological diversity in this lineage, which resulted in the descriptions of three genera and four species new to science.

“During a dissection of female genitalia in specimens belonging to the one of the newly described genera, named Borneostyrax, we found out that two females contained large larvae inside their bodies,” recalls Radim Gabriš. “This phenomenon have been known in a few lineages of the related leaf beetles, but this is the first case for the long-horned beetles.”

However, according to the authors, the modes of reproduction remain unknown for many beetle lineages besides Cerambycidae, so the ovoviviparity might be, in fact, much more common. Further detailed studies are needed for better understanding of the reproductive strategy in this group.

###

Original source:

Gabriš R, Kundrata R, Trnka F (2016) Review of Dolichostyrax Aurivillius (Cerambycidae,Lamiinae) in Borneo, with descriptions of three new genera and the first case of (ovo)viviparity in the long-horned beetles. ZooKeys 587: 49-75. doi: 10.3897/zookeys.587.7961

Flightless survivors: Incredible invertebrate diversity in Los Angeles metropolitan area

Urban wildlife is surprisingly understudied. We tend to know more about animals in exotic places than about those that live in our cities.

This is why researchers Emile Fiesler, president of Bioveyda Biological Inventories, Surveys, and Biodiversity Assessments, USA, and Tracy Drake, manager of the Madrona Marsh Preserve, looked into the fauna of the Madrona Marsh Preserve, California, a small nature preserve in one of the world’s largest metropolitan areas.

Consequently, they published the astonishing number of 689 species of invertebrates, which have managed to survive decades of farming and oil exploration, followed by development pressures, in the open access Biodiversity Data Journal. The study was minimally invasive as the live animals have been recorded with macro-photography.

Even though it is the insects that first developed the ability to fly, long before the dinosaurs became birds, the latter have always received the most of our attention. This major evolutionary breakthrough, which has occurred more than once in the past, is also a reason why insects are currently the most diverse animals on earth in terms of number of species.

“Insects and other invertebrates have filled all ecological niches and all corners of our planet,” explain the authors. “No surprise that these small creatures conquered our cities and invaded our homes as well.”

Most of the urban dwellers, however, have been introduced – accidentally or deliberately – by humans.

“The remainder – native ‘wild’ species – are able to survive in the city mainly due to their adaptivity,” they point out. “It is therefore surprising to find a number of flightless species in a small area surrounded by urbanization.”

The Madrona Marsh Preserve is located in Torrance, which is part of the Los Angeles metropolitan area. The greater Los Angeles Metropolitan area is one of the world’s largest, with a human population of more than 17 million.

Figure 2 = Bradynobaenid Wasp Fiesler-2016The Madrona Marsh Preserve, boasting seasonal wetlands, is well known as a birdwatchers’ paradise. Besides birds, its other vertebrates (mammals, reptiles, amphibians, and fishes), as well as its flowering plants, are relatively well known. The invertebrate fauna of the Preserve, on the other hand, aside from butterflies and dragonflies, was virtually unknown.

Interestingly, night surveys revealed the presence of a ‘second shift’ diversity, or creatures seemingly complementary to those active during the day.

Among the long-time survivors are wingless camel crickets as well as velvet ants, which are wasps whose flightless females look like furry ants. Another curiosity that intrigued the researchers is an obscure flightless female bradynobaenid wasp.

The researchers were especially surprised by their encounter with a large Solifugid [image 3] – also known as Camel Spider or Wind Scorpion. Solifugids are little-known arachnids that are neither spiders, nor scorpions, and can grow up to 15 cm (6 in). Their order’s name Solifugae translates from Latin as “those that flee from the sun”.Figure 3 = Solifugid Fiesler-2016

All in all, the biodiversity study resulted in 689 species without a backbone, belonging to 13 classes, 39 orders, and 222 families, found on this island surrounded by urbanization.

“Not unlike the moas and dodos, these ‘island’ inhabitants stayed grounded through the ages,” acknowledge the researchers.

###

Original source:

Fiesler E, Drake T (2016) Macro-invertebrate Biodiversity of a Coastal Prairie with Vernal Pool Habitat. Biodiversity Data Journal 4: e6732. doi: 10.3897/BDJ.4.e6732

 

About the authors:

Emile Fiesler is president of Bioveyda Biodiversity Inventories, Surveys, and Studies, and Tracy Drake is manager of the Madrona Marsh Preserve.

New curiously scaled beetle species from New Britain named after ‘Star Wars’ Chewbacca

Chewbacca, the fictional ‘Star Wars’ character, has given his name to a new species of flightless beetle, discovered in New Britain, Papua New Guinea. Although Trigonopterus chewbacca was only one of the four black new weevil beetles found during the expedition, it stood out with its curious scales, which made the authors think of Han Solo’s loyal companion.

Scientists Dr Matthew H. Van Dam, SNSB-Zoological State Collection, Germany, Raymond Laufa, The University of Papua New Guinea and Dr Alexander Riedel, Natural History Museum Karlsruhe have their paper, where they describe the new species, published in the open access journal ZooKeys.

Failing to understand how was it possible that the hyperdiverse beetle genus Trigonopterus has never been spotted in New Britain, two of the researchers travelled to the island to double-check the foliage and leaf litter. Interestingly, the genus thrives best in Melanesia, the Oceania subregion, where Papua New Guinea is located, yet there had been only a single Trigonopterus species known from Bismarck Archipelago prior to the present study.

Eventually, having spent ten days sifting leaf litter and beating foliage, the authors discovered eighteen individuals in primary forests growing on limestone karst, and later assigned them to four separate species. However, these few findings are still striking, given the abundance of the beetles in similar localities in the New-Guinean mainland.

Unlike its sci-fi namesake, the Chewbacca beetle cannot rely on its measurements to scare other possibly malevolent species off. It only measures between 2.78 and 3.13 mm. Dissimilar again, is its body, which is black and rhomboid-shaped, while its legs and antenna appear rusty. What likens the beetle to “Chewie”, however, is its distinctively dense scales, covering its head and legs.

In conclusion, the authors note that the beetle genus must have colonised New Britain at least four times in the past. “Given the size, mountainous topography and tropical vegetation of New Britain, it is likely that Trigonopterus has undergone some local speciation on the island, but this possibility requires further investigation,” they say.

 

Original source:

 

Van Dam MH, Laufa R, Riedel A (2016) Four new species of Trigonopterus Fauvel from the island of New Britain (Coleoptera, Curculionidae). ZooKeys 582: 129-141. doi: 10.3897/zookeys.582.7709