The first drywood termite known to use snapping stick-like mandibles to defend its colony

Tasked to defend the colony from attackers, the specialised soldier caste in some termite species has evolved various impressive mechanisms, including plug-like heads – meant to block intruding ants trying to invade their lairs, and mouthparts designed to bite and pierce.

Still, there are even more spectacular soldiers, such as a recently discovered drywood termite species, whose unique long and slender, stick-like snapping mandibles produce one of the highest acceleration speeds measured in a living organism. Rather than bite, these peculiar ‘jaws’ deliver powerful strikes at enemies bold enough to stand in the way of the soldier termite and its colony.

The scientists describe the new termite’s specialty in detail:

“Roisinitermes employs a unique strategy of snapping, achieved by long and slender mandibles pressed against each other in a defensive encounter. When this potential energy is released, the left mandible springs over the right and the resultant snap is forced onto the opponent if it is in the path of the strike.”

Discovered in Cameroon, this striking species is the first drywood termite found to rely on snapping mandibles as a defense strategy. Given that until now there had been a single subfamily (Termitinae) known to have developed such, the very existence of the new insect poses a whole new set of questions before scientists. Have snapping mandibles evolved independently in two evolutionary lineages? Or, is it that these groups share a distant kin relationship which has gone unnoticed for that long?

The new drywood termite, which is also assigned to a new genus, is named Roisinitermes ebogoensis, and is described in the open access journal ZooKeys by an international team of researchers, led by Dr Rudolf Scheffrahn of the Institute for Food and Agricultural Sciences at University of Florida, Davie, USA. Although this particular species is not thought to be a pest, some drywood termites cause serious damage to wooden structures around the world.

Both colonies studied by the scientists were found near the Ebogo II village, which also stands behind the name of the species. The first unusual colony to draw the attention of the scientists was collected from a forest on an island in the Nyong River, where it lived in a thin (3 cm) and long (over 3 m) broad-leaf tree branch suspended from a canopy. The second one – in a 15-mm thick dead liana branch hanging from a tree in a nearly pristine rainforest.

The team expects that future research will shed more light on the origins and evolution of the newly discovered termite.

###

Original source:

Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91-105. https://doi.org/10.3897/zookeys.787.28195

Scientific divers from the California Academy of Sciences discover new species of dazzling, neon-colored fish

Post originally published by the California Academy of Sciences

Named for Aphrodite, Greek goddess of love and beauty, a new species of fish enchants Academy scientists

On a recent expedition to the remote Brazilian archipelago of St. Paul’s Rocks, a new species of reef fish—striped a vivid pink and yellow—enchanted its diving discoverers from the California Academy of Sciences.

First spotted at a depth of 400 feet beneath the ocean’s surface, this cryptic fish inhabits rocky crevices of twilight zone reefs and is found nowhere else in the world. Upon discovery, the deep-diving team was so captivated by their finned find that they didn’t notice a massive sixgill shark hovering above them in an exciting moment captured on camera. The new fish description published today in Zookeys.

“This is one of the most beautiful fishes I’ve ever seen,” says Dr. Luiz Rocha, the Academy’s Curator of Fishes and co-leader of the Hope for Reefs initiative. “It was so enchanting it made us ignore everything around it.”

The sixgill shark stretched nearly ten feet long and cruised overhead as Rocha and post-doctoral fellow Dr. Hudson Pinheiro delicately collected the fish for further study back at the Academy. Behind the camera, the team’s diving officer Mauritius Bell enthusiastically announced the behemoth visitor to the duo, but to no avail. Aptly named, Tosanoides aphrodite enchanted its discoverers much like Aphrodite, Greek goddess of love and beauty, enchanted the ancient Greek gods.

“Fishes from the twilight zone tend to be pink or reddish in color,” says Pinheiro. “Red light doesn’t penetrate to these dark depths, rendering the fishes invisible unless illuminated by a light like the one we carry while diving.”

Back at the Academy, laboratory and collections manager Claudia Rocha helped the diving duo describe the new species: Males are outfitted with alternating pink and yellow stripes while females sport a solid, blood-orange color. Using a microscope, the team counted fins and measured spine length; DNA analysis revealed the new species is the first Atlantic-dwelling member of its genus.

Male specimen of the new species (Tosanoides aphrodite). Photo by LA Rocha.

The new denizen of the deep is a remarkable testament to the vast ocean habitats that still remain unexplored. Rocha and Pinheiro are part of a deep-diving research team that ventures to twilight zone reefs—mysterious coral habitats stretching across a narrow band of ocean 200 – 500 feet beneath the surface. In these deep reefs, animals live in partial darkness—beyond recreational diving limits, yet above the deep trenches patrolled by submarines and ROVs. As part of its Hope for Reefs initiative, the Academy team and their collaborators are exploring this unknown frontier with the help of high-tech equipment like closed-circuit rebreathers that allow scientists to extend their research time underwater.

Nearly 600 miles offshore the coast of Brazil, St. Paul’s Rocks is so remote that it required the team to utilize the research vessel M/V Alucia as their homebase to explore the archipelago. The rocky outcroppings are extensions of the Mid-Atlantic Ridge—an active, tectonic plate boundary—puncturing the ocean’s surface. Given the region’s unique geology and isolated location, many of the species that live there are found nowhere else on Earth. Through their research, the Hope for Reefs team is finding that twilight zone habitats also host many location-specific species.

In a recent landmark paper, the team found that twilight zone reefs are unique ecosystems bursting with life and are just as vulnerable to climate change threats as their shallow counterparts. Their findings upended the long-standing assumption that species might migrate between habitats to avoid human-related stressors. As documented in the footage from this new fish’s discovery, a piece of fishing line can be seen streaming behind the sixgill shark—evidence that human impacts extend to depth too.

“In a time of global crisis for coral reefs, learning more about unexplored reef habitats and their colorful residents is critical to our understanding of how to protect them,” says Rocha. “We aim to highlight the ocean’s vast and unexplored wonders and inspire a new generation of sustainability champions.”

 

Research article:

Pinheiro HT, Rocha C, Rocha LA (2018) Tosanoides aphrodite, a new species from mesophotic coral ecosystems of St. Paul’s Rocks, Mid Atlantic Ridge (Perciformes, Serranidae, Anthiadinae). ZooKeys 786: 105-115. https://doi.org/10.3897/zookeys.786.27382

Two fish a day keep the mantid coming back to prey: The 1st fishing praying mantis

Commonly known to predate on insects, praying mantises have occasionally been observed to feed on vertebrates, including small birds, lizards, frogs, newts, mice, snakes and turtles. Mostly, such records have either not been scientifically validated or have occurred under induced and human-manipulated circumstances.

Nevertheless, no scientific data of mantises preying on fish existed until the recent study of Roberto Battiston, Musei del Canal di Brenta, Rajesh Puttaswamaiah, Bat Conservation India Trust, and Nayak Manjunath, published in the open access Journal of Orthoptera Research.

Last year, the team observed an adult male hunting and devouring guppies in a pond located in a private roof garden in Karnataka, India. Curiously enough, the predator came back five days in a row and caught a total of nine fish (a minimum of two a day). To reach its prey, the insect would walk on the leaves of water lilies and water cabbage growing on the surface of the pond.

The artificial pond with the praying mantis sitting on a leaf visible to the right.

Apart from being a curious first-of-its-kind, the observation raises three new discussion points worthy of further study, point out the researchers.

Firstly, the fact that praying mantises hunt on vertebrates outside cages in labs confirms that a single invertebrate species is indeed capable of having an impact on a whole ecosystem. In this case, a mantis preys on guppies which, in their turn, feed on aquatic insects.

The mantis eating a guppy starting from the tail, while the fish is still alive and breathing in the water.

Secondly, the discovery questions previous knowledge about the visual abilities of mantises. While the structure of their eyes clearly indicates that they have evolved to prey in daylight, the studied male specimen proved to be an excellent hunter in the dark. The insect managed to catch all nine fish either at sunset or late at night.

Besides visual, mantises might have evolved impressive learning abilities too. The researchers speculate that the observed repetitive behaviour might have been the result of personal experience, utilised to navigate the specimen. Sophisticated cognitive skills, on the other hand, might have allowed the mantis to develop its hunting strategies.

“Remembering the prey’s abundance in a particular site, in relation to their ease of capture and their nutritional content, could be one important factor of this choice and indirectly influence the individual predator’s fitness,” comment the scientists. “This should be investigated in further studies.”

Ready to hunt.

Original source:

Battiston R, Puttaswamaiah R, Manjunath N (2018) The fishing mantid: predation on fish as a new adaptive strategy for praying mantids (Insecta: Mantodea). Journal of Orthoptera Research27(2): 155-158. https://doi.org/10.3897/jor.27.28067

New light on the controversial question of species abundance and population density

Inspired by the negative results in the recently published largest-scale analysis of the relation between population density and positions in geographic ranges and environmental niches, Drs Jorge Soberon and Andrew Townsend Peterson of the University of Kansas, USA, teamed up with Luis Osorio-Olvera, National University of Mexico (UNAM), and identified several issues in the methodology used, able to turn the tables in the ongoing debate. Their findings are published in the innovative open access journal Rethinking Ecology.

Both empirical work and theoretical arguments published and cited over the last several years suggest that if someone was to take the distributional range of a species – be it animal or plant – and draw lines starting at the edges of the space inwards, they would find the species’ populations densest at the intersection of those lines. However, when the team of Tad Dallas, University of Helsinki, Finland, analysed a large dataset of 118,000 populations, equating to over 1,400 species of birds, mammals, and trees, they found no such relationship.

Having analysed the analysis, the American-Mexican team concluded that despite being based on an unprecedented volume of data, the earlier study was missing out some important points.

Firstly, the largest dataset used by Tad and his team comprises observational data which had not required a certain sampling protocol or a plan. Without any standard in use, it is easy to imagine that the observations would be predominantly coming from people around and near cities, hence strongly biased.

Additionally, the scientists note that the analysis largely disregards parts of species’ geographic distributions for which there were no abundant data. As a result, the range of a species could be narrowed down significantly and its centroid – misplaced. Meanwhile, the population would appear denser on what appears to be the periphery of the area.

Similar issue is identified in the localisation of populations in the environmental space, where once again their range turned out to have been represented as significantly smaller, when compared to data available from the International Union for Conservation of Nature (IUCN) and the Global Biodiversity Information Facility (GBIF).

Further, a closer look into the supplementary materials provided revealed that the precision of the population-density data was not scalable with the climate data. As a result, it is likely that multiple abundance data falls within a single climate pixel.

In conclusion, the authors note that in order to comprehensively study the abundance of a species’ populations, one needs to take into consideration a number of factors lying beyond the scope of either of the papers, including human impact.

“We suggest that this important question remains far from settled,” they say.

###

Original source:

Soberón J, Peterson TA, Osorio-Olvera L (2018) A comment on “Species are not most abundant in the centre of their geographic range or climatic niche”. Rethinking Ecology 3: 13-18. https://doi.org/10.3897/rethinkingecology.3.24827

Tiny moth from Asia spreading fast on Siberian elms in eastern North America

In 2010, moth collector James Vargo began finding numerous specimens of a hitherto unknown pygmy moth in his light traps on his property in Indiana, USA. When handed to Erik van Nieukerken, researcher at Naturalis Biodiversity Center (Leiden, the Netherlands) and specialist in pygmy moths (family Nepticulidae), the scientist failed to identify it as a previously known species.

These are male specimens of the studied leaf mining moth Stigmella multispicata collected from Iowa, USA.

Then, Erik found a striking similarity of the DNA barcodes with those of a larva he had recently collected on Siberian elm in Beijing’s botanical garden. At the time, the Chinese specimen could not be identified either.

In October 2015, Daniel Owen Gilrein, entomologist at Cornell Cooperative Extension of Suffolk County (New York, USA), received samples of green caterpillars seen to descend en masse from Siberian elm trees in Sagaponack, New York. He also received leafmines from the same trees.

Once they joined forces, the researchers did not take long to find out that the specimens from James Vargo and the caterpillars from New York belonged to one and the same species. The only thing left was its name.

Following further investigation, the scientists identified the moth as Stigmella multispicata – a pygmy moth described in 2014 from Primorye, Russia, by the Lithuanian specialists Agne Rociene and Jonas Stonis.

“Apparently, this meant that we were dealing with a recent invasion from East Asia into North America,” explains Erik.

Once the researchers had figured out how to identify the leafminer, they were quick to spot its existence in plenty of collections and occurrence reports from websites, such as BugGuide and iNaturalist.

With the help of Charley Eiseman, a naturalist from Massachusetts specializing in North American leafminers, the authors managed to conclude the moth’s existence in ten US states and two Canadian provinces. In most cases, the species was found on or near Siberian elm – another species transferred from Asia to North America.

Their study is published in the open access journal ZooKeys.

Despite the oldest records dating from 2010, it turned out that the species had already been well established at the time. The authors suspect that the spread has been assisted by transport of plants across nurseries.

“Even though Stigmella multispicata does not seem to be a real problem, it would be a good idea to follow its invasion over North America, and to monitor whether the species may also attack native elm species,” the researchers point out.

Distribution in North America.

Interestingly, in addition to the newly identified moth, the Siberian elms in North America have been struggling with another, even more common, invasive leafminer from Asia: the weevil species Orchestes steppensis. The beetle had been previously misnamed as the European elm flea weevil.

###

Original source:

van Nieukerken EJ, Gilrein DO, Eiseman CS (2018) Stigmella multispicata Rociene & Stonis, an Asian leafminer on Siberian elm, now widespread in eastern North America (Lepidoptera, Nepticulidae). ZooKeys 784: 95-125. https://doi.org/10.3897/zookeys.784.27296

Total of 21 new parasitoid wasps following the first ever revision of their genus

As many as twenty-one species of parasitoid wasps are described as new to science, following the first ever revision of their genus since its establishment back in 1893.

The study simultaneously updates the count of species within the genus (Chromoteleia) to 27 in total, produces a systematic revision of the world’s representatives of this group of wasps, expands their biogeographic knowledge, and clarifies their generic concept.

The monograph is published in the open access journal ZooKeys by a team of US and Canadian scientists, led by Hua-yan Chen, graduate student at the Ohio State University.

The wasps in the genus Chromoteleia are easily distinguished thanks to their large size in combination with their vivid colouration. Compared to other species in the family of platygastrid wasps, which normally measure merely 1 – 2 mm in length, the species in the studied genus range between 3 and 9 mm. Their uncommonly large, robust and elongated bodies is why the scientists assume that these wasps likely parasitise the eggs of orthopterans, such as grasshoppers, crickets and katydids.

A focal point in the study is the intriguing distribution of the wasps. While the genus is widespread throughout continental Mesoamerica, Central America and South America, and its distribution ranges from the Mexican state of Jalisco in the north all the way to Itapúa Department in Paraguay and Paraná in southern Brazil, the species C. congoana is a lone representative of the genus in Africa.

The ‘lone’ African representative of the genus, Chromoteleia congoana.

While dispersal from South America to Africa has been observed in the past in another genus of parasitoid wasps (Kapala), the scientists are not willing to reject the possibility of Chromoteleia wasps having been widely distributed across the Old World during a previous geological epoch. Such phenomenon, also known as a relict population, would not mean that the wasp group has subsequently ‘conquered’ the Neotropics and current species inhabiting the New World are rather remainders of once widespread insects.

To conclude their findings, the scientists examined specimens hosted in collections at twenty natural history institutions from around the globe, including the American Entomological InstituteAmerican Museum of Natural HistoryBernice P. Bishop MuseumCalifornia Academy of SciencesCanadian National Collection of InsectsCalifornia State Collection of ArthropodsFlorida State Collection of ArthropodsInstituto Alexander von HumboldtIllinois Natural History SurveyKansas University’s Natural History MuseumMuseo del Instituto de Museo del Instituto de Zoologia AgricolaMuseum National d’Histoire NaturelleMuseu Paraense Emílio GoeldiLund Museum of Zoology at Lund UniversityTriplehorn Insect Collection at the Ohio State UniversitySouth African MuseumTexas A&M University’s Insect CollectionBohart Museum of EntomologyUniversity of Colorado; and Smithsonian National Museum of Natural History.

###

Original source:

Chen H-y, Talamas EJ, Valerio AA, Masner L, Johnson NF (2018) Revision of the World species of the genus Chromoteleia Ashmead (Hymenoptera, Platygastridae, Scelioninae). ZooKeys 778: 1-95. https://doi.org/10.3897/zookeys.778.25775

Towards untangling the ‘antennal grabbing’ phenomenon in mating cuckoo bees

Scientists report this behavior for the first time in the genus Nomada, following both lab and field observations in Germany

One can seldom spot a cuckoo bee, whose peculiar kleptoparasitic behaviour includes laying eggs in the nests of a certain host bee species, let alone a couple mating.

Nevertheless, German scientists – Dr. Matthias Schindler, University of Bonn, Michaela Hofmann and Dr. Susanne S. Renner of the University of Munich, and Dr. Dieter Wittmann, recently managed to record copulation in three different cuckoo bee species in the genus Nomada.

Intriguingly, in field and lab settings alike, the observed couples demonstrated the phenomenon the researchers called “antennal grabbing” where the male cuckoo bee winds his antennae around

Insertion phase of copulation in a couple of the species Nomada flavoguttata. Note the male’s antennae spirally entangling the female’s.

the female’s during copulation, thus transferring pheromones. Even though such behaviour is relatively common in Hymenoptera, this is the first known record for the genus Nomada.

While the particular biological reason for the “antennal grabbing” in different species remains unsettled, the scientists discuss the phenomenon in view of both previous hypotheses and their own observations in a new paper published in the open access Journal of Hymenoptera Research.

The courtship in Nomada cuckoo bee starts with the ‘swarming’ of males at willow shrubs and gooseberry or their patrolling in groups with males of the Andrena or Melitta species that will “foster” their offspring.

Two males of the species Nomada flavoguttata patrolling at a blossom of a common dandelion.

There is no aggression among the males. They were observed to rub their bellies and heads against the grass, in order to leave sexual pheromones, thus marking the “dating spot” for potential mates.

Earlier chemical studies of Nomada bees noted that the mandibular glands of males produce chemical compounds identical with those of their Andrena or Melitta hosts, leading to the suggestion that the males transfer pheromones that help the females mimic the odor of the host bee, and later enter its nest unnoticed to lay its eggs. An alternative explanation for the “antennal grabbing” is that males are spraying a substance onto the females to make them unattractive to other potential mates.

###

Original source:

Schindler M, Hofmann MM, Wittmann D, Renner SS (2018) Courtship behaviour in the genus Nomada – antennal grabbing and possible transfer of male secretions. Journal of Hymenoptera Research 65: 47-59. https://doi.org/10.3897/jhr.65.24947

Right under our noses: A novel lichen-patterned spider found on oaks in central Spain

It happened again, a previously unknown spider species, whose home is a strongly humanised European country, appears to have been quietly and patiently waiting to get noticed until very recently.

Living on the trunks of oaks in Spain, the new species would have probably been spotted decades ago, had it not been for its sophisticated camouflage, which allows the small arachnid to perfectly blend with the lichens naturally growing on the tree.

Going by the name Araneus bonali, the new species was discovered on isolated trees at the borders of cereal fields by the scientists Eduardo Morano, University of Castilla-La Mancha, and Dr Raul Bonal, University of Extremadura. Their study is published in the open access journal ZooKeys.

Curiously enough, this is the same habitat, where the team found another new spider in 2016.

“How many new species remain unknown in these isolated oaks that once formed vast forests now becomes one even more intriguing question,” say the researchers.

“Anyone going for a walk around any village or park in central Spain would have been close to the new species. However, noticing it requires not only curiosity, but also a good sight, as its lichen-like colours make up an excellent mimicry.”

Lichens growing on an oak trunk at the study site in central Spain.

The similarity between the adults and the lichens that cover the oak trunks they inhabit is remarkable. Meanwhile, the greenish juveniles live amongst the green new shoots in the oak canopy until they reach maturity.

Whether the spider uses its mimicry to avoid predators or rather surprise its prey remains open for further investigation.

The description of this new species that belongs to the popular group of orb-weavers once again stresses the need of working harder on completing the list of spiders living in the Old World, such as the countries in the Mediterranean basin – a region that certainly keeps more taxonomic surprises up his sleeve.

***

Original source:

Morano E, Bonal R (2018) Araneus bonali sp. n., a novel lichen-patterned species found on oak trunks (Araneae, Araneidae). ZooKeys 779: 119-145. https://doi.org/10.3897/zookeys.779.26944

Mosquito populations give a new insight into the role of Caucasus in evolution

We know that the Caucasus is a relatively large mountainous region, situated between Black and the Caspian seas. In its turn, it is divided into three subregions: Ciscaucasia, Greater Caucasus and Transcaucasia, also known as South Caucasus.

A closer look into the chromosome structure of mosquito larvae of a curious group of species (Chironomus “annularius” sensu Strenzke (1959)), collected from the three localities, has allowed Dr Mukhamed Karmokov of the Tembotov Institute of Ecology of Mountain territories at the Russian Academy of Science to figure out how the specificity of the Caucasian region has simultaneously unified its fauna geographically, yet has divided it evolutionarily. His paper is published in the open access journal Comparative Cytogenetics.

Having collected a sufficient amount of mosquito larvae, the researcher managed to study the chromosome structure, rearrangements and possible peculiarities of the separate Caucasian populations, in order to compare them.

Additionally, he analysed their relations to earlier known populations from Europe, Siberia, Kazakhstan and North America.

Amongst the curious peculiarities Karmokov identified in the chromosome structure of the studied larvae were some rearrangements which appear unique to Caucasus. Furthermore, he found that despite the close geographic proximity, the genetic distance between the Caucasian populations is quite significant, even While not enough to determine them as separate species, it could prove them as separate subspecies.

In conclusion, the scientist notes that the obtained data confirm that the Caucasian populations of the studied species have complex genetic structure and provide evidence for microevolution processes in the region.

###

Original source:

Karmokov MKh (2018) Karyotype characteristics and chromosomal polymorphism of Chironomus “annularius” sensu Strenzke (1959) (Diptera, Chironomidae) from the Caucasus region. Comparative Cytogenetics 12(3): 267-284. https://doi.org/10.3897/CompCytogen.v12i3.25832

Beetle named after actress & biologist Isabella Rossellini for her series about animals

A new species of beetle with remarkably long genitalia that hint at a curious evolutionary “sexual arms race” has been described from Malaysian Borneo.

The new insect was named after actress and biologist Isabella Rossellini in honour of her stage shows and Webby Award-winning series of films about animal reproduction, featured on SundanceTV.

The species is described by scientists Menno Schilthuizen and Iva Njunjic of Naturalis Biodiversity Center and Universiti Malaysia Sabah, and Michel Perreau, Sorbonne Université, Paris. Their paper is published in the open access journal ZooKeys.

The new species, Ptomaphaginus isabellarossellini, finds a place among the 30 known species of round fungus beetles (subfamily Cholevinae) recorded by the authors from the island of Borneo. Of these, there are a total of 14 which had remained unknown to science until now.

The reason why the scientists named this particular species after the famous actress is its genitalia. The beetle’s penis carries a long, whip-like thread, called flagellum, whereas the female has a similarly long tube leading up to a sperm storage organ.

Lead author Menno Schilthuizen, who himself has previously released a simultaneously educative and entertaining book about the evolution of genitals, says that such exaggerated male and female genitalia often betray an “evolutionary sexual arms race”.

On the male side, natural selection favours longer genitalia because of the ability to directly reach the female’s sperm storage organ. However, female beetles would rather retain their right to favour the DNA of a certain mate over the rest. The upshot is that, over long periods of evolution, penises get longer and vaginas get deeper. Similar evolutionary genital exaggeration is also known in rove beetles and ducks.

“This is better than winning the Oscar,” says honoured Isabella Rossellini.

The Italian-born actress, filmmaker, author, philanthropist, and model has even featured the new beetle in her new Link Link Circus stage shows. Dealing with animal behaviour, the series will be touring theaters in Europe this fall.

###

Original source:

Schilthuizen M, Perreau M, Njunjic I (2018) A review of the Cholevinae from the island of Borneo (Coleoptera, Leiodidae). ZooKeys 777: 57-108. https://doi.org/10.3897/zookeys.777.23212