Dwarfs under dinosaur legs: 99-million-year-old millipede discovered in Burmese amber

A 3D reconstruction of the fossil allowed for the description of an entirely new suborder


The newly described millipede (Burmanopetalum inexpectatum) rendered using 3D X-ray microscopy. Image by Leif Moritz.

Even though we are led to believe that during the Cretaceous the Earth used to be an exclusive home for fearsome giants, including carnivorous velociraptors and arthropods larger than a modern adult human, it turns out that there was still room for harmless minute invertebrates measuring only several millimetres.

Such is the case of a tiny millipede of only 8.2 mm in length, recently found in 99-million-year-old amber in Myanmar. Using the latest research technologies, the scientists concluded that not only were they handling the first fossil millipede of the order (Callipodida) and also the smallest amongst its contemporary relatives, but that its morphology was so unusual that it drastically deviated from its contemporary relatives.

As a result, Prof. Pavel Stoev of the National Museum of Natural History (Bulgaria) together with his colleagues Dr. Thomas Wesener and Leif Moritz of the Zoological Research Museum Alexander Koenig (Germany) had to revise the current millipede classification and introduce a new suborder. To put it in perspective, there have only been a handful of millipede suborders erected in the last 50 years. The findings are published in the open-access journal ZooKeys.

To analyse the species and confirm its novelty, the scientists used 3D X-ray microscopy to ‘slice’ through the Cretaceous specimen and look into tiny details of its anatomy, which would normally not be preserved in fossils. The identification of the millipede also presents the first clue about the age of the order Callipodida, suggesting that this millipede group evolved at least some 100 million years ago. A 3D model of the animal is also available in the research article.

Curiously, the studied arthropod was far from the only one discovered in this particular amber deposit. On the contrary, it was found amongst as many as 529 millipede specimens, yet it was the sole representative of its order. This is why the scientists named it Burmanopetalum inexpectatum, where “inexpectatum” means “unexpected” in Latin, while the generic epithet (Burmanopetalum) refers to the country of discovery (Myanmar, formerly Burma).

Lead author Prof. Pavel Stoev says:

We were so lucky to find this specimen so well preserved in amber! With the next-generation micro-computer tomography (micro-CT) and the associated image rendering and processing software, we are now able to reconstruct the whole animal and observe the tiniest morphological traits which are rarely preserved in fossils. This makes us confident that we have successfully compared its morphology with those of the extant millipedes. It came as a great surprise to us that this animal cannot be placed in the current millipede classification. Even though their general appearance have remained unchanged in the last 100 million years, as our planet underwent dramatic changes several times in this period, some morphological traits in Callipodida lineage have evolved significantly.


The newly described millipede seen in amber. Image by Leif Moritz.

Co-author Dr. Thomas Wesener adds:

“We are grateful to Patrick Müller, who let us study his private collection of animals found in Burmese amber and dated from the Age of Dinosaurs. His is the largest European and the third largest in the world collection of the kind. We had the opportunity to examine over 400 amber stones that contain millipedes. Many of them are now deposited at the Museum Koenig in Bonn, so that scientists from all over the world can study them. Additionally, in our paper, we provide a high-resolution computer-tomography images of the newly described millipede. They are made public through MorphBank, which means anyone can now freely access and re-use our data without even leaving the desk.”

Leading expert in the study of fossil arthropods Dr. Greg Edgecombe (Natural History Museum, London) comments:

“The entire Mesozoic Era – a span of 185 million years – has until now only been sampled for a dozen species of millipedes, but new findings from Burmese amber are rapidly changing the picture. In the past few years, nearly all of the 16 living orders of millipedes have been identified in this 99-million-year-old amber. The beautiful anatomical data presented by Stoev et al. show that Callipodida now join the club.”

###

Original source:

Stoev P, Moritz L, Wesener T (2019) Dwarfs under dinosaur legs: a new millipede of the order Callipodida (Diplopoda) from Cretaceous amber of Burma. ZooKeys 841: 79-96. https://doi.org/10.3897/zookeys.841.34991

New perennial brome-grass from the Iberian Peninsula named after Picos de Europa National Park

Picos de Europa National Park has given its name to a new species of perennial bromegrass, discovered in Spain. Bromus picoeuropeanus belongs to a rather underrepresented on the Iberian Peninsula perennial group within the grass genus Bromus, with the new species being just the fourth of all recognised wild species living in the Iberian territory.

Having worked on the systematics of Bromus for a long time, scientists Dr Carmen Acedo and Dr Félix Llamas, members of the Taxonomy and Biodiversity Conservation research group TaCobi of the Spanish University of León, were surprised to collect what seemed a so-far-unrecognised species of the rare for Iberia perennial group. The unlikely discovery of the new species was described and published in the open access journal PhytoKeys, while its type specimen is preserved on Herbarium LEB.


This is the preferred habitat of Bromus picoeuropeanus in stony and unstable soils, c. 1900 m elevation.

Failing to understand how it was possible that the new species has never been found in the over-studied territory of Picos de Europa National Park, the two researchers traveled back to the classic locality to confirm its presence and study the habitat. Interestingly, while the new species is located in a typical for the National Park habitat, only a single perennial Bromus species was previously known from the area.

Eventually, having spent more time studying and collecting samples of different taxa in the Park, the authors discovered several more individuals of the new species dwelling in stony areas at an altitude of 1600 – 2200m. While herbarium collections from the National Park revealed that samples were also collected some years ago by another botanist, the scarcity of populations of the new species is still striking given the abundance of other brome-grass species.

Unlike its sister species, the Picoeuropean brome-grass is a small rhizomatous herb up to 70 cm high. Another easy-to-recognize difference is its well-developed subterraneous vegetative organ, forming a long rootstalk called rhizome, which is an easy distinctive trait.

“Given the inaccessibility of the areas, the mountainous topography and the few grass-species-loving botanists, this species was ignored until now. Probably the genus Bromus has undergone some local speciation on this isolated place, but exactly how this occurred requires further investigation,” explain the authors noting the isolation of the new species from its relatives in the area.

###

Original Source:

Acedo C, Llamas F (2019) A new species of perennial Bromus (Bromeae, Poaceae) from the Iberian Peninsula. PhytoKeys 121: 1-12. https://doi.org/10.3897/phytokeys.121.32588

Living room conservation: Gaming & virtual reality for insect and ecosystem conservation

Gaming and virtual reality could bridge the gap between urban societies and nature, thereby paving the way to insect conservation by the means of education and participation. This is what an interdisciplinary team at Florida International University strive to achieve by developing a virtual reality game (desktop version also available) dedicated to insect and plant species. Focused on imperiled butterflies, their innovative idea: Butterfly World 1.0, is described in the open-access journal Rethinking Ecology.

Participant playing the virtual reality version of Butterfly World 1.0.
Photo by Jaeson Clayborn.

Players explore and search for butterflies using knowledge gained through gameplay

Gaming and virtual reality (VR) could bridge the gap between urban societies and nature, thereby paving the way to insect conservation by the means of education, curiosity and life-like participation.

This is what Florida International University‘s team of computer scientist Alban Delamarre and biologist Dr Jaeson Clayborn strive to achieve by developing a VR game (desktop version also available) dedicated to insect and plant species. Focused on imperiled butterflies, their innovative idea: Butterfly World 1.0, is described in the open-access journal Rethinking Ecology.


When playing, information about each butterfly species is accessed on the player’s game tablet. Image by
Alban Delamarre and Dr Jaeson Clayborn.

Butterfly World 1.0 is an adventure game designed to engage its users in simulated exploration and education. Set in the subtropical dry forest of the Florida Keys (an archipelago situated off the southern coast of Florida, USA), Butterfly World draws the players into an immersive virtual environment where they learn about relationships between butterflies, plants, and invasive species. While exploring the set, they interact with and learn about the federally endangered Schaus’ swallowtail butterfly, the invasive graceful twig ant, native and exotic plants, and several other butterflies inhabiting the dry forest ecosystem. Other nature-related VR experiences, including conservation awareness and educational programs, rely on passive observations with minimal direct interactions between participants and the virtual environment.

According to the authors, virtual reality and serious gaming are “the new frontiers in environmental education” and “present a unique opportunity to interact with and learn about different species and ecosystems”.


In the real world, Spanish needles (Bidens alba) is considered a weed in South Florida. However, it is an excellent nectar source for butterflies.
Photo by Alban Delamarre.

The major advantage is that this type of interactive, computer-generated experience allows for people to observe phenomena otherwise impossible or difficult to witness, such as forest succession over long periods of time, rare butterflies in tropical dry forests, or the effects of invasive species against native wildlife.

“Imagine if, instead of opening a textbook, students could open their eyes to a virtual world. We live in a time where experiential learning and stories about different species matter, because how we feel about and connect with these species will determine their continued existence in the present and future. While technology cannot replace actual exposure to the environment, it can provide similar, near-realistic experiences when appropriately implemented,” say the scientists.

In conclusion, Delamarre and Clayborn note that the purpose of Butterfly World is to build knowledge, reawaken latent curiosity, and cultivate empathy for insect and ecosystem conservation.

###

The game is accessible online at: http://ocelot.aul.fiu.edu/~adela177/ButterflyWorld/.

Original source:

Clayborn J, Delamarre A (2019) Living room conservation: a virtual way to engage participants in insect conservation. Rethinking Ecology 4: 31-43. https://doi.org/10.3897/rethinkingecology.4.32763

New commentary on the famous ‘Warning to Humanity’ paper brings up global inequalities

Dubbed as ‘the most talked about paper’, the cautionary publication is suggested to have omitted a non-western view on inequality that impedes global sustainability

By pointing out the western lifestyle is not “the norm and end goal of societal evolution”, the research team of Dr Mohsen Kayal (University of Perpignan, France) contributes to the debate on the urgency of achieving sustainability, as ignited by the largely publicised article “World Scientists’ Warning to Humanity: A Second Notice” published in BioScience in 2017. Their Response paper in the open-access journal Rethinking Ecology emphasizes that societies in developing countries are often more dependent on natural resources, while least responsible for the ecological crisis.

While expressing explicit support and endorsement for the call made in the original paper, the team argue that several of its recommendations “address symptoms rather than root causes”, while steering away from historical patterns and underlying drivers of the global socio-economic system, namely those relating to wealth inequality, human demography, and food production.

According to the researchers, the desired universal sustainability cannot be achieved in a situation of inequitable wealth distribution. They highlight the link between the consumerism and neocolonialism in the western society and the environmental declines. Meanwhile, communities in the developing world are much more vulnerable to ecological disasters and their homelands are being overexploited and compromised for the production of a major part of the commodities sold around the world.

Inequitable distribution is also evident in the ecological footprint of the western world as opposed to poorer regions. The team of Dr Mohsen Kayal question the appeal made in the Warning to Humanity paper that restricting birth rates is of primary concern when it comes to mitigating the anthropogenic effect on the planet. Rather, they argue that it is the excessive resource consumption and ecosystem-destructive practices observed in the western lifestyle that need to be prioritized.

Citing the 2017 data from the Food and Agriculture Organization of the United Nations, the authors note that there is indeed enough food being produced to meet the needs of even more people on Earth than there currently are. However, it is again the unequal distribution of resources that results in both hunger and obesity. In the meantime, the replacement of the current industrial model of agriculture with a suite of environmentally friendly practices (e.g. cover crops, diverse crop rotations), the adoption of ecologically-based farming and well-managed grazing could preserve soils and their properties, while also increasing yields, resilience to climate change and socio-economic development.

“Sustainability can only be achieved through prioritizing global ethics, including universal equality and respect for all forms of life,” conclude the authors of the Response paper. “Sustainable solutions to Earth’s socio-ecological crisis already exist, however humanity still needs to realize that pursuing the same practices that created these problems is not going to solve them.”

Global Resource Trade

###

Original source:

Kayal M, Lewis H, Ballard J, Kayal E (2019) Humanity and the 21st century’s resource gauntlet: a commentary on Ripple et al.’s article “World scientists’ warning to humanity: a second notice”. Rethinking Ecology 4: 21-30. https://doi.org/10.3897/rethinkingecology.4.32116

Tiger geckos in Vietnam could be the next species sold into extinction, shows a new survey

The endemic reptiles are already proposed to be listed by the Convention on International Trade in Endangered Species of Wild Fauna and Flora

While proper information about the conservation status of tiger gecko species is largely missing, these Asian lizards are already particularly vulnerable to extinction, as most of them have extremely restricted distribution. Furthermore, they have been facing severe declines over the last two decades, mostly due to overcollection for the international exotic pet market. Such is the case of the Cat Ba Tiger Gecko, whose tiny populations can only be found on Cat Ba Island and a few islands in the Ha Long Bay (Vietnam).

In their study, a Vietnamese-German research team, led by PhD candidate Hai Ngoc Ngo of the Vietnam National Museum of Nature in Hanoi, provide an overview of the evidence for domestic and international trade in tiger gecko species and update the information about the abundance and threats impacting the subpopulations of the Vietnamese Cat Ba Tiger Gecko in Ha Long Bay.

By presenting both direct and online observations, interviews and existing knowledge, the scientists point out that strict conservation measures and regulations are urgently needed for the protection and monitoring of all tiger geckos. The research article is published in the open-access journal Nature Conservation.

Cat Ba tiger gecko (Goniurosaurus catbaensis) in its natural habitat. Photo by Hai Ngoc Ngo.

Tiger geckos are a genus (Goniurosaurus) of 19 species native to Vietnam, China and Japan. Many of them can only be found within a single locality, mountain range or archipelago. They live in small, disjunct populations, where the population from Ha Long Bay is estimated at about 120 individuals. Due to demands in the international pet trade in the last two decades, as well as habitat destruction, some species are already considered extinct at the localities where they had originally been discovered.

However, it was not until very recently that some species of these geckos received attention from the regulatory institutions in their home countries, leading to the prohibition of their collection without a permit. Only eight tiger geckos have so far had their species conservation status assessed for the IUCN Red List. Not surprisingly, all of them were classified as either Vulnerable, Endangered or Critically Endangered. Nevertheless, none is currently listed by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), which could be the only efficient and reliable method to monitor, regulate and police the trade of the species on a global scale.

“Tiger geckos are neither sufficiently protected by law nor part of conservation programmes, due to the lack of substantial knowledge on the species conservation status and probably due to the general lack of public as well as political interest in biodiversity conservation,” they explain. “To date, exact impacts of trade on the species cannot be identified, as data of legal trade are only recorded for species listed in the CITES Appendices”.

During their survey, the researchers tracked local traders in possession of wild-caught tiger geckos representing all five Vietnamese species en route to foreign exotic pet markets, mainly in the United States, the European Union and Japan. The species were also frequently found to be sold in local pet shops in Vietnam, as well as being offered via various online platforms and social media networks like Facebook.

Having spoken to local dealers in Vietnam, the team found the animals were traded via long and complex chains, beginning from local villagers living within the species’ distribution range, who catch the geckos and sell them to dealers for as little as US$4 – 5 per individual. Then, a lizard either ends up at a local shop with a US$7 – 25 price tag or is either transported by boat or by train to Thailand or Indonesia, from where it is flown to the major overseas markets and sold for anywhere between US$100 and 2,000, depending on its rarity. However, many of these delicate wild animals do not arrive alive at their final destination, as their travels include lengthy trips in overfilled boxes under poor conditions with no food and water.

Indeed, although the researchers reported a large quantity of tiger geckos labelled as captive-bred in Europe, it turns out that their availability is far from enough to meet the current demands.

In conclusion, the team provides a list of several recommendations intended to improve the conservation of the Asian geckos: (1) inclusion of all tiger geckos in the Appendices of CITES; (2) assessment of each species for the IUCN Red List; (3) concealment of any currently unknown localities; and (4) improvement/establishment of coordinated ex-situ breeding programmes for all species.

Signboard handed over to the Ha Long Bay Management Department to point to the threats and conservation need of the Cat Ba tiger gecko in English and Vietnamese languages.

The inclusion of all tiger gecko species from China and Vietnam in CITES Appendix II was recently proposed jointly by the European Union, China and Vietnam and is to be decided upon at the Conference of the parties (CoP18) in May-June 2019, held in Sri Lanka.

###

Original source:

Ngo HN, Nguyen TQ, Phan TQ, van Schingen M, Ziegler T (2019) A case study on trade in threatened Tiger Geckos (Goniurosaurus) in Vietnam including updated information on the abundance of the Endangered G. catbaensisNature Conservation 33: 1-19. https://doi.org/10.3897/natureconservation.32.33590

WoRMS’ Top 10 Marine Species (2018): ZooKeys journal scores 5/10 in the prestigious yearly list

The World Register of Marine Species (WoRMS) announced the

Top 10 Marine Species of 2018 just in time for

Taxonomist Appreciation Day

What could be better timing to take a look back on the most spectacular animals described as new to science throughout 2018 than 19th March, Taxonomist Appreciation Day?

For the sixth time around, biologists from across the world are all hyped-up about this special date when we celebrate the experts who put things in order by giving names, identities and belonging to what the world has thought non-existent only a moment ago. After all, no sooner is a species formally acknowledged than it can be studied, understood and protected.

Having said that, at Pensoft and ZooKeys we’re immensely proud of becoming a prime publication choice for marine taxonomists from around the globe. Amongst them are the authors of not one or two, but FIVE exceptional animal curiosities, now recognised by a selected committee and the World Register of Marine Species (WoRMS), and featured in the TOP 10 Marine Species of 2018.

 

The “Japan Pig” which is also a… seahorse (Hippocampus japapigu)

Photo by Richard Smith.

We fail to find the obvious reason why locals diving in the waters of Hachijo-jima Island (Japan) had already likened this dazzling seahorse to a “tiny baby pig”, when a research team collected specimens and identified them as a species new to science. Naturally, the scientists assigned it with the name japapigu, which translates to “Japan Pig” in Japanese.

One thing is for sure, though, the stunning seahorse wouldn’t demand a degree in Zoology to attract anyone’s attention, had it not been for its expertise in camouflaging itself against the colourful algae-covered rocks.

News story by Douglas Main via National Geographic.

###

Check out the study by Graham Short, California Academy of Sciences (USA), Dr Richard Smith, Pipefish Stickleback Specialist Group (UK), Dr Hiroyuki Motomura and Healy Hamilton, both of the Kagoshima University Museum (Japan), and David Harasti, Port Stephens Fisheries Institute, published in the open-access journal ZooKeys at: https://doi.org/10.3897/zookeys.779.24799.

 

The crab that chooses an animal ‘blanket’ over a shell (Paguropsis confusa)

Photo by DST/NRF ACEP – Spatial Solutions project team.

Sure, who would go for a rigid shell left behind by a random gastropod – just like “ordinary” hermit crabs do – when they could reach for a light, soft and elastic “blanket” instead?

That’s exactly what the blanket-hermit crab Paguropsis confusa and its sibling species have been doing as they evolved to live in a cosy symbiosis with sea anemones. While the translucent anemone peacefully “shares” the crab’s meals and grows its zoophytes around the soft-bodied crustacean, the latter is free to easily draw them up and down – as if they were a real silky duvet – and even completely cover its head whenever it feels threatened.

The crab species name is con­fuso in reference to its morphological resemblance to the closely related species Paguropsis typica. In fact, had it not been for the similarity, what we now call Paguropsis confuso would’ve most likely been described well over a century ago.

###

Find more in the research article by Dr Rafael Lemaitre (Smithsonian’s National Museum of Natural History, USA), Dr Dwi Rahayu (Indonesian Institute of Sciences) and Dr Tomoyuki Komai (Natural History Museum and Institute, Japan) published in ZooKeys at: https://doi.org/10.3897/zookeys.752.23712

 

The ‘flower’ of Okinawa (Hana hanagasa)

Photo by Yee Wah Lau

Amidst ongoing talks and grim forecasts of declining coral reefs spelling demise for the world as we know it, the discovery of this endemic to Okinawa Island (Japan) flower-like octocoral comes as a stunning reminder of Nature’s supremacy.

Described as a new genus, as well as a species new to science, the octocoral was aptly named Hana hanagasa, where “Hana translates to “flower” in Japanese, while “hanagasa” is a traditional Okinawan headpiece, crafted in the form of hibiscus and worn by female dancers at ceremonies.

###

Find the study by the team of Yee Wah Lau and Dr James Reimer of the University of the University of the Ryukyus (Japan) and their colleagues Frank Robert Stokvis and Dr Leen van Ofwegen at Naturalis Biodiversity Center (the Netherlands) in ZooKeys at: https://doi.org/10.3897/zookeys.790.28875.

 

The distinctly hairy-foot shrimp (Odontonia bagginsi)

Illustration by Franz Anthony.

Upon writing up the description of this species of Indonesian shrimp, Leiden University’s then BSc student Werner de Gier is unlikely to have thought twice before coming up with the name bagginsi, as in Frodo and Bilbo Baggins – the most famous hobbits from J. R. R.Tolkien’s The Lord of the Rings and The Hobbit.                             

News story by Mike Wehner via New York Post.

After all, what the researcher was looking at was a creature tiny enough to call another marine invertebrate – a tunicate – its snug home. Also, it had extremely hairy feet, a feature that would require for the identification key for all members of the species group to be updated.

###

Find the study by Werner de Gier and Dr Charles Fransen of the Naturalis Biodiversity Center published in ZooKeys at: https://doi.org/10.3897/zookeys.765.25277.

 

The ‘secretive’ dogfish shark from Hawai’i (Squalus hawaiiensis)

 

Photo by Dr Toby S. Daly-Engel.

 

One might think that an animal as large as a shark – especially if it’s the only shark species found in the waters of the Hawaiian Archipelago – would’ve “told” all its “secrets” by now, but that wasn’t the case with what we now refer to as the Hawaiian Spurdog.

Long mistaken for a stray population of a dogfish shark species originally from Japan, it wasn’t before US scientists deployed a range of elaborate tools used in species identification that it became apparent there was a previously unknown to science, short-ranged endemic shark trying to find shelter in Hawai’i.

Sadly, while the species is being depleted as bycatch, it has also demonstrated the lowest rate of genetic diversity known in a shark population to date.

###

Find the study by Dr Toby Daly-Engel, Florida Institute of Technology, Amber Koch, University of West Florida, Dr James Anderson, University of Hawaii at Mānoa, and Charles Cotton and Dean Grubbs, both affiliated with the Florida State University Coastal and Marine Laboratory published in ZooKeys at: https://doi.org/10.3897/zookeys.798.28375.

 

Happy Taxonomist Appreciation Day from Pensoft!

Let us conclude with the words of ecologists and entomologist Dr Terry McGlynn, who started the Taxonomist Appreciation Day tradition in 2013:

“Even if you’re working on a single-species system, or are a theoretician, the discoveries and methods of systematists are the basis of your work,” he once told the Consortium of European Taxonomic Facilities (CETAF). “We need active work on taxonomy and systematics if our work is going to progress, and if we are to apply our findings. Without taxonomists, entire fields wouldn’t exist. We’d be working in darkness”.

As uniform as cloned soldiers, new spiders were named after the Stormtroopers in Star Wars

One of the newly described bald-legged spider species Stormtropis muisca. It is also the highest altitudinal record for the family. Image by Carlos Perafan.

The new species are amongst the very first bald-legged spiders recorded in Colombia

Despite being widely distributed across north and central South America, bald-legged spiders had never been confirmed in Colombia until the recent study by the team of Drs Carlos Perafan and Fernando Perez-Miles (Universidad de la Republica, Uruguay) and William Galvis (Universidad Nacional de Colombia). Published in the open-access journal ZooKeys, their research paper describes a total of six previously unknown species inhabiting the country.

Four of the novel spiders were unable to fit into any already existing genus, so the scientists had to create a brand new one for them, which they called Stormtropis in reference to the Star Wars‘ clone trooper army known as Stormtroopers.

Considered to be amongst the most enigmatic in the group of mygalomorphs, the bald-legged spiders are a family of only 11 very similarly looking, small- to medium-sized species, whose placement in the Tree of Life has long been a matter of debate. In fact, it is due to their almost identical appearance and ability for camouflage that became the reason for the new bald-legged spider genus to be compared to the fictional clone troopers.

One of the most striking qualities of the bald-legged spiders (family Paratropididae) is their ability to adhere soil particles to their cuticle, which allows them to be camouflaged by the environment.

A bald-legged spider of the genus Paratropis in its natural habitat. Image by Carlos Perafan.

“The stormtroopers are the soldiers of the main ground force of the Galactic Empire. These soldiers are very similar to each other, with some capacity for camouflage, but with unskillful movements, like this new group of spiders,” explain the researchers.

“We wanted to make a play on words with the name of the known genus, Paratropis, and of course, we also wanted to pay tribute to one of the greatest sagas of all time”, they add.

One of the new ‘stormtrooper’ species (Stormtropis muisca) is also the highest altitudinal record for the family. It was recorded from an elevation of at least 3,400 m in the central Andes. However, the authors note that they have evidence of species living above 4,000 m. These results are to be published in future papers.

In the course of their fieldwork, the researchers also confirmed previous assumptions that the bald-legged spiders are well adapted to running across the ground’s surface. The spiders were seen to stick soil particles to their scaly backs as a means of camouflage against predators. More interestingly, however, the team records several cases of various bald-legged species burrowing into ravine walls or soil – a type of behaviour that had not been reported until then. Their suggestion is that it might be a secondary adaptation, so that the spiders could exploit additional habitats.

In conclusion, not only did the bald-legged spiders turn out to be present in Colombia, but they also seem to be pretty abundant there. Following the present study, three genera are currently known from the country (AnisaspisParatropis and Stormtropis).

A bald-legged spider (Paratropis elicioi) in its natural habitat. Image by Carlos Perafan.

###

Original source:

Perafan C, Galvis W, Perez-Miles F (2019) The first Paratropididae (Araneae, Mygalomorphae) from Colombia: new genus, species and records. ZooKeys 830: 1-32. https://doi.org/10.3897/zookeys.830.31433

FAIR biodiversity data in Pensoft journals thanks to a routine data auditing workflow

Data audit workflow provided for data papers submitted to Pensoft journals.

To avoid publication of openly accessible, yet unusable datasets, fated to result in irreproducible and inoperable biological diversity research at some point down the road, Pensoft takes care for auditing data described in data paper manuscripts upon their submission to applicable journals in the publisher’s portfolio, including Biodiversity Data JournalZooKeysPhytoKeysMycoKeys and many others.

Once the dataset is clean and the paper is published, biodiversity data, such as taxa, occurrence records, observations, specimens and related information, become FAIR (findable, accessible, interoperable and reusable), so that they can be merged, reformatted and incorporated into novel and visionary projects, regardless of whether they are accessed by a human researcher or a data-mining computation.

As part of the pre-review technical evaluation of a data paper submitted to a Pensoft journal, the associated datasets are subjected to data audit meant to identify any issues that could make the data inoperable. This check is conducted regardless of whether the dataset are provided as supplementary material within the data paper manuscript or linked from the Global Biodiversity Information Facility (GBIF) or another external repository. The features that undergo the audit can be found in a data quality checklist made available from the website of each journal alongside key recommendations for submitting authors.

Once the check is complete, the submitting author receives an audit report providing improvement recommendations, similarly to the commentaries he/she would receive following the peer review stage of the data paper. In case there are major issues with the dataset, the data paper can be rejected prior to assignment to a subject editor, but resubmitted after the necessary corrections are applied. At this step, authors who have already published their data via an external repository are also reminded to correct those accordingly.

“It all started back in 2010, when we joined forces with GBIF on a quite advanced idea in the domain of biodiversity: a data paper workflow as a means to recognise both the scientific value of rich metadata and the efforts of the the data collectors and curators. Together we figured that those data could be published most efficiently as citable academic papers,” says Pensoft’s founder and Managing director Prof. Lyubomir Penev.
“From there, with the kind help and support of Dr Robert Mesibov, the concept evolved into a data audit workflow, meant to ‘proofread’ the data in those data papers the way a copy editor would go through the text,” he adds.
“The data auditing we do is not a check on whether a scientific name is properly spelled, or a bibliographic reference is correct, or a locality has the correct latitude and longitude”, explains Dr Mesibov. “Instead, we aim to ensure that there are no broken or duplicated records, disagreements between fields, misuses of the Darwin Core recommendations, or any of the many technical issues, such as character encoding errors, that can be an obstacle to data processing.”

At Pensoft, the publication of openly accessible, easy to access, find, re-use and archive data is seen as a crucial responsibility of researchers aiming to deliver high-quality and viable scientific output intended to stand the test of time and serve the public good.

CASE STUDY: Data audit for the “Vascular plants dataset of the COFC herbarium (University of Cordoba, Spain)”, a data paper in PhytoKeys

To explain how and why biodiversity data should be published in full compliance with the best (open) science practices, the team behind Pensoft and long-year collaborators published a guidelines paper, titled “Strategies and guidelines for scholarly publishing of biodiversity data” in the open science journal Research Ideas and Outcomes (RIO Journal).

New species of stiletto snake capable of sideways strikes discovered in West Africa

The first discovered specimen of the newly described species (Atractaspis branchi or Branch’s Stiletto Snake) in its natural habitat. Photo by Mark-Oliver Roedel.

Following a series of recent surveys in north-western Liberia and south-eastern Guinea, an international team of researchers found three stiletto snakes which were later identified as a species previously unknown to science.

The discovery, published in the open-access journal Zoosystematics and Evolution by the team of Dr Mark-Oliver Roedel from the Natural History Museum, Berlin, provides further evidence for the status of the western part of the Upper Guinea forest zone as a center of rich and endemic biodiversity.

Curiously, stiletto snakes have unusual skulls and venom delivery system, allowing them to attack and stab sideways with a fang sticking out of the corner of their mouths. While most of these burrowing snakes are not venomous enough to kill a human – even though some are able to inflict serious tissue necrosis – this behaviour makes them impossible to handle using the standard approach of holding them with fingers behind the head. In fact, they can even stab with their mouths closed.

The new species, called Atractaspis branchi or Branch’s Stiletto Snake, was named to honor to the recently deceased South African herpetologist Prof. William Roy (Bill) Branch, a world leading expert on African reptiles.

The first specimen was found at night, moving along the steep slope on the left bank of the small creek (Liberia). Photo by Mark-Oliver Roedel.

The new species lives in primary rainforest and rainforest edges in the western part of the Upper Guinea forests. Branch’s Stiletto Snake is most likely endemic to this area, a threatened biogeographic region already known for its unique and diverse fauna.

The first specimen of the new species was collected at night from a steep bank of a small rocky creek in a lowland evergreen rainforest in Liberia. Upon picking it up, the snake tried to hide its head under body loops, bending it at an almost right angle, so that its fangs were partly visible on the sides. Then, it repeatedly stroke. It is also reported to have jumped distances almost as long as its entire body. The other two specimens used for the description of the species were collected from banana, manioc and coffee plantations in south-eastern Guinea, about 27 km apart.

“The discovery of a new and presumably endemic species of fossorial snake from the western Upper Guinea forests thus is not very surprising,” conclude the researchers. “However, further surveys are needed to resolve the range of the new snake species, and to gather more information about its ecological needs and biological properties.”

Close up of the Branch’s Stiletto Snake in its natural habitat. Photo by Mark-Oliver Roedel.

###

Original source:

Rödel M, Kucharzewski C, Mahlow K, Chirio L, Pauwels OSG, Carlino P, Sambolah G, Glos J (2019) A new stiletto snake (Lamprophiidae, Atractaspidinae, Atractaspis) from Liberia and Guinea, West Africa. Zoosystematics and Evolution 95(1): 107-123. https://doi.org/10.3897/zse.95.31488

Star Wars and Asterix characters amongst 103 beetles new to science from Sulawesi, Indonesia

From left to right: Trigonopterus asterix, T. obelix and T. idefix, three newly described species from Sulawesi (Indonesia). Image by Alexander Riedel.

The Indonesian island of Sulawesi has been long known for its enigmatic fauna, including the deer-pig (babirusa) and the midget buffalo. However, small insects inhabiting the tropical forests have remained largely unexplored.

Such is the case for the tiny weevils of the genus Trigonopterus of which only a single species had been known from the island since 1885. Nevertheless, a recent study conducted by a team of German and Indonesian scientists resulted in the discovery of a total of 103 new to science species, all identified as Trigonopterus. The beetles are described in the open-access journal ZooKeys.

“We had found hundreds of species on the neighboring islands of New Guinea, Borneo and Java – why should Sulawesi with its lush habitats remain an empty space?” asked entomologist and lead author of the study Dr Alexander Riedel, Natural History Museum Karlsruhe (Germany).

In fact, Riedel knew better. Back in 1990, during a survey of the fauna living on rainforest foliage in Central Sulawesi, he encountered the first specimens that would become the subject of the present study. Over the next years, a series of additional fieldwork, carried out in collaboration with the Indonesian Institute of Sciences (LIPI), managed to successfully complete the picture.

“Our survey is not yet complete and possibly we have just scratched the surface. Sulawesi is geologically complex and many areas have never been searched for these small beetles,” said Raden Pramesa Narakusumo, curator of beetles at the Museum Zoologicum Bogoriense (MZB), Indonesian Research Center for Biology.

Dense mountain forest of Central Sulawesi, where some of the new species have been found. Image by Alexander Riedel.

 

Why have all these beetles remained overlooked for so long?

Unlike the all-time favourite stag beetles or jewel beetles, tiny beetles that measure no more than 2-3 millimeters seem to have been attracting little interest from entomologists. Their superficial resemblance does not help identification either.

In fact, the modern taxonomic approach of DNA sequencing seems to be the only efficient method to diagnose these beetles. However, the capacity for this kind of work in Indonesia is very limited. While substantial evidence points to thousands of undescribed species roaming the forests in the region, there is only one full-time position for a beetle researcher at the only Indonesian Zoological Museum near Jakarta. Therefore, international collaboration is crucial.

103 newly discovered species of the genus Trigonopterus from Sulawesi. Image by Alexander Riedel.

103 beetle names

Coming up with as many as 103 novel names for the newly described species was not a particularly easy task for the researchers either. While some of the weevils were best associated with their localities or characteristic morphology, others received quite curious names.

A small greenish and forest-dwelling species was aptly named after the Star Wars character Yoda, while a group of three species were named after Asterix, Obelix and Idefix – the main characters in the French comics series The Adventures of Asterix. Naturally, Trigonopterus obelix is larger and more roundish than his two ‘friends’.

Other curious names include T. artemis and T. satyrus, named after two Greek mythological characters: Artemis, the goddess of hunting and nature and Satyr, a male nature spirit inhabiting remote localities.

Additionally, the names of four of the newly described beetles pay tribute to renowned biologists, including Charles Darwin (father of the Theory of Evolution), Paul D. N. Hebert (implementer of DNA barcoding as a tool in species identification) and Francis H. C. Crick and James D. Watson (discoverers of the structure of DNA).

 

Six-legged déjà vu

Back in 2016, in another weevil discovery, Dr Alexander Riedel and colleagues described four new species from New Britain (Papua New Guinea), which were also placed in the genus Trigonopterus. Similarly, no weevils of the group had been known from the island prior to that study. Interestingly, one of the novel species was given the name of Star Wars’ Chewbacca in reference to the insect’s characteristically dense scales reminiscent of Chewie’s hairiness. Again, T. chewbacca and its three relatives were described in ZooKeys.

The flightless beetle species Trigonopterus chewbacca, described as new to science in 2016. Image by Alexander Riedel.

 

On the origin of Trigonopterus weevils

Sulawesi is at the heart of Wallacea, a biogeographic transition zone between the Australian and Asian regions. The researchers assume that Trigonopterus weevils originated in Australia and New Guinea and later reached Sulawesi. In fact, it was found that only a few populations would one day diversify into more than a hundred species. A more detailed study on the rapid evolution of Sulawesi Trigonopterus is currently in preparation.

 

Future research

To help future taxonomists in their work, in addition to their monograph paper in ZooKeys, the authors have uploaded high-resolution photographs of each species along with a short scientific description to the website Species ID.

“This provides a face to the species name, and this is an important prerequisite for future studies on their evolution,” explained the researchers.

“Studies investigating such evolutionary processes depend on names and clear diagnoses of the species. These are now available, at least for the fauna of Sulawesi.”

###

Original Source:

Riedel A, Narakusumo RP (2019) One hundred and three new species of Trigonopterus weevils from Sulawesi. ZooKeys 828: 1-153. https://doi.org/10.3897/zookeys.828.32200