The Oriental eye fly that transmits conjunctivitis newly recorded in China

The conjunctivitis-transmitting Oriental eye fly (Siphunculina funicola) has been recorded for the first time in China. In the same paper, published in the open access journal ZooKeys, a team of three scientists further describe three species of the same genus, which are new to science.

The studied flies in the genus Siphunculina present a number of curious insects, including the grass flies and the Oriental eye fly – a species that transmits conjunctivitis and other eye diseases to both humans and domestic animals. As the larvae feed on faeces or thrive in decaying flesh, they can usually be found in bird nests, excrement or carcasses.

The scientists Dr. Xiaoyan Liu, Huazhong Agricultural University, China, Dr. Ding Yang, China Agricultural University and Dr. Emilia P. Nartshuk, Russian Academy of Sciences, collected the Oriental eye fly in Hainan, the southernmost province of China.

Previously, the species had been known to inhabit other countries in eastern and southern Asia, where the flies amass around people and cattle, causing considerable annoyance and spreading eye diseases.

###

Original source:

Liu X-Y, Nartshuk EP, Yang D (2017) Three new species and one new record of the genus Siphunculina from China (Diptera, Chloropidae). ZooKeys 687: 73-88. https://doi.org/10.3897/zookeys.687.13156

Effects of soil and drainage on the savanna vegetation in the northern Brazilian Amazonia

It is a well-known fact that environmental factors such as soil texture and drainage determine to a very large degree the vegetation appearance, richness and composition at any site. However, there has been little research on how these variables influence the flora in the marvellous savannas – large open areas characterised by a complex and unique network of natural resources and life forms.

Consequently, a Brazilian research team, led by Dr. Maria Aparecida de Moura Araújo, Universidade Federal de Roraima, investigated the hydro-edaphic conditions in the savanna areas in the northern Brazilian Amazonia. Their study, complete with an openly available and ready for re-use dataset, is published in the open access Biodiversity Data Journal.  

Image 1_Annonaceae_Xylopia aromatica_treeIn the course of the Program for Biodiversity Research, managed by the Brazilian government, the scientists sampled 20 permanent plots in two savanna areas in the state of Roraima, located in the northern of the Brazilian Amazon. As a result, the team reports a total of 128 plant species classified into 34 families from three savanna habitats with different levels of hydro-edaphic restrictions.

Amongst the various factors playing a role in the soil characteristics of the area, are the tectonic events and past climatic fluctuations which have occurred in the most recent period of the Cenozoic era. Paleo, as well as modern fires are likely to be other culprits for the specific conditions.

In conclusion, the authors suggest that the most restrictive savanna habitats – the wet grasslands, represent the home to less structurally complex plants, compared to the well-drained shrubby localities.

“The present study highlights the environmental heterogeneity and the biological importance of Roraima’s savanna regarding the conservation of natural resources from the Amazon,” say the scientists.

Image 2_Convolvulaceae_Merremia aturensis_herb“In addition, it points out the need for greater investment in floristic inventories associated with greater diversification of sites, since this entire ecosystem has been rapidly modified by agribusiness.”

Licensed under a Creative Commons License (CC-BY 4.0) and available in a Darwin Core Archive DwC-A format; the complete dataset is openly available via the Global Biodiversity Information Facility (GBIF).

 

Original source:
Araújo M, Rocha A, Miranda I, Barbosa R (2017) Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia. Biodiversity Data Journal 5: e13829. https://doi.org/10.3897/BDJ.5.e13829

Behind Green Eyes: New species of deep-water hermit crab finds itself unusual shelters

‘Green-eyed hermit crab’ is the common name for a new species recently discovered off the West Coast of South Africa. Apart from its magnetic stare, however, there is a number of characteristic morphological traits and an unusual home preference that all make the crustacean unique.

Lara Atkinson_SAEON_offshore benthic ecologistFormally named after the University of Cape Town (UCT) alumnus Dr Lara Atkinson, the new hermit crab Paragiopagurus atkinsonaeis described by PhD candidate Jannes Landschoff, UCT, and Dr Rafael Lemaitre, Smithsonian Institution, USA, in the open access journal ZooKeys.

The Green-eyed hermit crab measures merely 70 mm in length and sports a coloration of mottled orange nuanced with cream to white. Among its distinct traits is the significant sexual dimorphism, where the males grow much larger right chelipeds in comparison to females.

Much like other hermit crabs in its family (Parapaguridae), the little crustacean does not use the shells of other molluscs to shelter its vulnerable body, but rather finds a home in the soft, polypy masses built from sand and material created by sea anemones which go on to live on the backs of these crabs in an amazing symbiosis.

“So, when you hold it [the hermit crab], it’s just organic material glued together with some sand,” explains Jannes in the UCT’s announcement about their discovery.

“Even more curiously, parapagurids start off in the usual way, occupying a tiny gastropod shell. But these eventually become deposited within this non-calcified ‘amalgam’ created by the anemones. As the hermit crab grows, its live ‘shell’, or carcinoecia, grows with it.”

2017-07-11-Sympagurus_dimorphus

The new species was discovered during a three-week survey back in 2013, conducted by the Department of Forestry and Fisheries and the South African Environmental Observation Network in the shallower deep waters (199 m to 277 m) off the West Coast of South Africa. Lara was on board one of the vessels when an unusual green-eyed crab turned up among the numerous specimens collected in one of the trawls. It was at that moment that she noticed that there was something peculiar about it and sent it for identification.

Restricted to a surprisingly small area for no obvious reason, the new species might be just bringing up some very important conservation messages.

“The area isn’t noticeably biologically or oceanographically distinct, but more detailed sampling from the area will tell us more about the habitat conditions. Future studies need to take this into account and give the area more research attention. If there’s something unusual about the site, you’d want to be careful, especially with mining operations along the West Coast,” says Jannes.

“Incidents like these are flags for future protection. The bottom line is we know so little about these offshore habitats from an ecological point of view. And if you’re planning for a marine protected area, you have to know what it is you’re protecting in that area.”

###

Original source:

Landschoff J, Lemaitre R (2017) Differentiation of three common deep-water hermit crabs (Crustacea, Decapoda, Anomura, Parapaguridae) from the South African demersal abundance surveys, including the description of a new species of Paragiopagurus Lemaitre, 1996. ZooKeys676: 21-45. https://doi.org/10.3897/zookeys.676.12987

The ‘Star dust’ wasp is a new extinct species named after David Bowie’s alter ego

During her study on fossil insects of the order Hymenoptera at China’s Capitol Normal University, student Longfeng Li visited the Smithsonian National Museum of Natural History, Washington, carrying two unidentified wasp specimens that were exceptionally well-preserved in Burmese amber. This type of fossilized tree resin is known for the quality of the fossil specimens which can be preserved inside it. Being 100 million years old, they provide an incredible view into the past.

The subsequent analysis of the specimens revealed that both represent species new to science. Furthermore, one of the wasps showed such amazing similarities to a modern group of wasps that it was placed in a currently existing genus, Archaeoteleiawhich has long been considered as an ancient lineage. The species are described in a study published in the open access Journal of Hymenoptera Research.

However, Archaeoteleia has changed since the times when the ancient wasp got stuck on fresh tree resin. The authors note that “a novice might not recognize the characters that unite the fossil with extant species”. For instance, the modern wasp species of the genus show visibly longer antennal segments and a different number of teeth on the mandible when compared to the fossil. In turn, the description of the new extinct species enhances the knowledge about living species by highlighting anatomical structures shared by all species within the genus.

This fossil wasp with living relatives received quite a curious name, Archaeoteleia astropulvis. The species name, astropulvis, translates from Latin to ‘star dust’. The discoverers chose the name to refer to both “the ancient source of the atoms that form our planet and its inhabitants”, as well as to commemorate the late David Bowie’s alter ego – Ziggy Stardust.

Unlike the Star dust wasp, the second new species belongs to a genus (Proteroscelio) known exclusively from Cretaceous fossils. Likewise, it is a tiny insect, measuring less than 2mm in length. It also plays an important role in taxonomy by expanding the anatomical diversity known from this extinct genus.

10388_Proteroscelio nexus

The authors conclude that their discovery, especially the Star dust wasp and its placement in an extant genus, where it is the only fossil species, “exemplifies the importance of understanding the extant fauna of a taxon to interpret fossils”.

“Such union of fossil and extant morphologies is especially illuminating and requires examination of both kinds of specimens,” they add.

###

Original source:

Talamas EJ, Johnson NF, Buffington ML, Dong R (2016) Archaeoteleia Masner in the Cretaceous and a new species of Proteroscelio Brues (Hymenoptera, Platygastroidea). In: Talamas EJ, Buffington ML (Eds) Advances in the Systematics of Platygastroidea. Journal of Hymenoptera Research 56: 241-261. https://doi.org/10.3897/jhr.56.10388

New species of frog from the Neotropics carries its heart on its skin

In the Neotropics, there is a whole group of so-called glassfrogs that amaze with their transparent skin covering their bellies and showing their organs underneath. A recently discovered new species from Amazonian Ecuador, however, goes a step further to fully expose its heart thanks to the transparent skin stretching all over its chest as well as tummy.

The new amphibian is described by a team of scientists led by Dr. Juan M. Guayasamin, Universidad San Francisco de Quito, Ecuador, in the open access journal ZooKeys.

It can also be distinguished by the relatively large dark green spots at the back of its head and the foremost part of the body. Additionally, the species has a characteristic long call.

The new frog is named Hyalinobatrachium yaku, where the species name (yaku) translates to ‘water’ in the local language Kichwa. Water and, more specifically, slow-flowing streams are crucial for the reproduction of all known glassfrogs.

The reproductive behaviour is also quite unusual in this species. Males are often reported to call from the underside of leaves and look after the egg clutches.

Having identified individuals of the new species at three localities, the researchers note some behavioural differences between the populations. Two of them, spotted in the riverine vegetation of an intact forest in Kallana, have been calling from the underside of leaves a few metres above slow-flowing, relatively narrow and shallow streams. Another frog of the species has been observed in an area covered by secondary forests in the Ecuadorian village of Ahuano. Similarly, the amphibian was found on the underside of a leaf one metre above a slow-flowing, narrow and shallow stream.

oo_135330However, at the third locality – a disturbed secondary forest in San José de Payamino – the studied frogs have been perching on leaves of small shrubs, ferns, and grasses some 30 to 150 cm above the ground. Surprisingly, each of them has been at a distance greater than 30 metres from the nearest stream.

The researchers note that, given the geographic distance of approximately 110 km between the localities where the new species has been found, it is likely that the new species has a broader distribution, including areas in neighbouring Peru.

The uncertainty about its distributional range comes from a number of reasons. Firstly, the species’ tiny size of about 2 cm makes it tough to spot from underneath the leaves. Then, even if specimens of the species have been previously collected, they would be almost impossible to identify from museum collection, as many of the characteristic traits, such as the dark green marks, are getting lost after preservation. This is why the conservation status of the species has been listed as Data Deficient, according to the IUCN Red List criteria.

Nevertheless, the scientists identify the major threats to the species, including oil extraction in the region and the related water pollution, road development, habitat degradation and isolation.

“Glassfrogs presumably require continuous tracts of forest to interact with nearby populations, and roads potentially act as barriers to dispersal for transient individuals,” explain the authors.

###

Original source:

Guayasamin JM, Cisneros-Heredia DF, Maynard RJ, Lynch RL, Culebras J, Hamilton PS (2017) A marvelous new glassfrog (Centrolenidae, Hyalinobatrachium) from Amazonian Ecuador. ZooKeys 673: 1-20. https://doi.org/10.3897/zookeys.673.12108

Three new mini thorn snails described from Georgia (USA), Belize and Panama

Although computer tomography (CT) is widely used in medicine, its application in micro snail identification is still at the pioneering stage.

However, Dr Adrienne Jochum from the Naturhistorisches Museum der Burgergemeinde Bern (NMBE), Switzerland and her interdisciplinary team of German and Swiss scientists (Dr. Alexander M. Weigand, University of Duisburg-Essen, Estee Bochud and Thomas Inäbnit, NMBE and the University of Bern, Dorian D. Dörge, Goethe University, Frankfurt, Dr. Bernhard Ruthensteiner, Zoologische Staatssammlung Muenchen, Dr. Adrien Favre, Leipzig University, Gunhild Martels and Dr. Marian Kampschulte, Justus-Liebig University Giessen) have recently applied it in their research, now published in the journal ZooKeys.

CT SCAN C. hardieiAs a result of their revolutionary approach, the scientists report three new thorn snail species – tiny, colourless and highly fragile creatures that measure less than 2 mm and belong to the genus Carychium.

Much like X-rays showing the degree of damage in broken bones, CT scans provide access to snail shells. Differences, such as the degree of sinuosity of the potato chip-like wedge (lamella), elegantly gliding along the spindle-like columella, become visible. These structures provide stability and surface area to exert muscular traction while manoeuvring the unwieldy shell into tight cavities. The alignment and degree of undulation of the lamella on the columella is also used by malacologists (mollusc specialists) to identify different thorn snail species.

Conventionally, examination of this signatory character requires cutting a hole in the shell with a fine needle under the microscope. This tedious method requires a much patience and dexterity and, all too often, the shell cracks open or disintegrates into dust under pressure. By exposing the delicate lamella to non-manipulative CT scans, Dr. Jochum and her team have found the best method to differentiate not only thorn snails but also many other micro creatures.

Together with G. Martels and Dr. M. Kampschulte, Dr. Jochum described new micro snails for the first time using CT in East Asian hypselostomatid snails in 2014. The first subterranean Asian relative of the thorn snails (Koreozospeum nodongense), was also described by Dr. Jochum thanks to CT scans in 2015.

The scientists studied and compared thorn snails collected from Mexico, Florida (USA) and Costa Rica.

Curiously, the new species Carychium hardiei was discovered by accident by Dr. Jochum en route to the Atlanta Airport during a rest stop in Georgia (USA). The snail is named after the American naturalist and field biologist Frank Hardie. Another species, Carychium belizeense, was found in the Bladen Nature Reserve in Belize and is named after its country of origin. The third, Carychium zarzaae from Panama, is named after Eugenia Zarza, collector of material for this study, including this species.

In total, there are fourteen species of thorn snails known in North and Central America. Their distribution ranges from as far north as northern Ontario, Canada through North America (including Bermuda and Jamaica) and south through Central America to Costa Rica. Thorn snails also live as far north as northern Sweden and as far south as sub-equatorial Java. Worldwide, this genus spans the Nearctic, Palearctic and Indomalayan biogeographic realms.

Thorn snails live in tropical and temperate forests, meadows and riparian zones, where they comprise the decomposer community in leaf litter of ecologically stable environments.

###

Original Source:

Jochum A, Weigand AM, Bochud E, Inäbnit T, Dörge DD, Ruthensteiner B, Favre A, Martels G, Kampschulte M (2017) Three new species of Carychium O.F. Müller, 1773 from the Southeastern USA, Belize and Panama are described using computer tomography (CT) (Eupulmonata, Ellobioidea, Carychiidae). ZooKeys 675: 97-127. https://doi.org/10.3897/zookeys.675.12453

Conservation and nameless earthworms: Assessors in the dark?

Species that live exclusively in a single region are at a particular risk of extinction. However, for them to be protected, thorough assessments of the environmental impacts need to be performed.

There are more than 100 earthworm species living in the soil and dead wood of KwaZulu-Natal Province, South Africa. Most of them live exclusively in small regions in the province, which makes them extremely vulnerable.

To scientists Dr Adrian J. Armstrong, Ezemvelo KZN Wildlife, and Ms Thembeka Nxele, KwaZulu-Natal Museum, the problem is twofold. Firstly, they note that the expression “out of sight, out of mind” is very suitable for the case of the endemic earthworms in South Africa. Secondly, they point out that the lack of common names for these species is a stumbling block that hinders their inclusion in conservation assessments.

As a result, the researchers try to rectify this situation by assigning standardised English names to the endemic earthworms in KwaZulu-Natal. Their article is published in the open access journal African Invertebrates.

Scientific names are often intractable to non-specialists, and the lack of common names leaves environmental assessors in the dark when they need to figure out which earthworms may occur at a development site. In the meantime, it has been found that about 50% of the native vegetation in KwaZulu-Natal has already been removed as a result of infrastructure construction and the figure is rising.

“The indigenous earthworms generally don’t survive in developed areas,” say the authors.

For instance, the informal use of an English name (green giant wrinkled earthworm) for the species Microchaetus papillatus, has facilitated the inclusion of this species in environmental impact assessments in KwaZulu-Natal.

While the green giant wrinkled earthworm does occur in a relatively large and rapidly developing area in KwaZulu-Natal, other species live in smaller areas that have been urbanised even more.

The extinction of these earthworms is not only undesirable from the point of view of biodiversity advocates – the role of this group of soil organisms is impossible to replace fully with non-native earthworms. For example, some of the large indigenous earthworms (more than 1 m in length) burrow much deeper than the non-native species, thereby enriching and aerating the soil at greater depth.

The authors are hopeful that by giving the indigenous earthworms in KwaZulu-Natal common names, the threatened and endemic species will be conserved through inclusion in environmental impact assessments. Furthermore, they believe that earthworms could draw attention to the areas where they occur whenever a choice for new protected areas is to be made.

###

Original source:

Armstrong AJ, Nxele TC (2017) English names of the megadrile earthworms (Oligochaeta) of KwaZulu-Natal. African Invertebrates 58(2): 11-20. https://doi.org/10.3897/AfrInvertebr.58.13226

Dig it! Two new shrimp species found in burrows at the bottom of the Gulf of California

Although the Santa María-La Reforma lagoon complex in the Gulf of California is one of the most important areas for shrimp fishery, little is known about the crustacean species that live in the burrows dug in the bottom.

In addition to presenting two species new to science, researchers Drs. José Salgado-Barragán, Universidad Nacional Autónoma de México, Manuel Ayón-Parente and Pilar Zamora-Tavares, both affiliated with Universidad de Guadalajara, México collaborated to build on the knowledge of small shrimp species living there. The study is published in the open access journal ZooKeys.

Over the span of about two years – between 2013 and 2015, the scientists conducted series of surveys of the bottom-dwelling crustaceans in Bahía Santa María-La Reforma lagoon, located in the southwest Gulf of California. Following a thorough examination of the collected specimens, they recorded five shrimp species of three genera, inhabiting burrows dug into either mud, sand, or sandy-mud. Two of these species turned out to be previously unknown.

One of the new species is named Alpheus margaritae after Dr. Margarita Hermoso-Salazar, a caridean shrimp expert who helped the authors with the identification of the species. This new crustacean lives in the intertidal zone, where it hides in soft mud and gravel of shells and rocks. So far, it is known exclusively from the coastal lagoon Bahía Santa María-La Reforma, Sinaloa, Mexico. Among its characteristic traits are creamy-white colouration splashed with sparse olive green to light brown patches.

The second new species, Leptalpheus melendezensis, is reported to live in the fine sand of the beach. It is named after the Melendez island – the only locality the species has been identified from. Unlike the rest seven members of its genus (Leptalpheus), its major cheliped lacks adhesive disks.

###

Original source:

Salgado-Barragán J, Ayón-Parente M, Zamora-Tavares P (2017) New records and description of two new species of carideans shrimps from Bahía Santa María-La Reforma lagoon, Gulf of California, Mexico (Crustacea, Caridea, Alpheidae and Processidae). ZooKeys 671: 131-153. https://doi.org/10.3897/zookeys.671.9081

New butterfly species discovered in Israel for the first time in 109 years

Vladimir Lukhtanov, entomologist and evolutionary biologist at the Zoological Institute in St. Petersburg, Russia, made a startling discovery: what people had thought was a population of a common species, turned out to be a whole new organism and, moreover – one with an interesting evolutionary history. This new species is named Acentria’s fritillary (Melitaea acentria) and was found flying right over the slopes of the popular Mount Hermon ski resort in northern Israel. It is described in the open access journal Comparative Cytogenetics.

“To me, it was a surprise that no one had already discovered it,” says Vladimir Lukhtanov.

“Thousands of people had observed and many had even photographed this beautifully coloured butterfly, yet no one recognised it as a separate species. The lepidopterists (experts in butterflies and moths) had been sure that the Hermon samples belonged to the common species called Persian fritillary (Melitaea persea), because of their similar appearance, but nobody made the effort to study their internal anatomy and DNA”.

In 2012, Vladimir Lukhtanov, together with his students, initiated an exhaustive study of Israeli butterflies using an array of modern and traditional research techniques. In 2013, Asya Novikova (until 2012, a master’s student at St. Petersburg University and, from 2013, a PhD student at the Hebrew University, Jerusalem) sampled a few fritillaries from Mt. Hermon.

It was at that time when the researchers noticed that the specimens “didn’t look right” – their genitalia appeared different from those of the typical Persian fritillary. Over the next few years, Lukhtanov and his students studied this population in-depth. They carried out sequencing DNA from the specimens and found that they had a unique molecular signature – very different from the DNA of any other fritillary.

The Acentria’s fritillary seems to be endemic in northern Israel and the neighbouring territories of Syria and Lebanon. Its evolutionary history is likely to prove interesting.

“The species is probably one of a handful of butterflies known to have arisen through hybridisation between two other species in the past,” says Lukhtanov. “This process is known to be common in plants, but scientists have only recently realised it might also be present in butterflies.”

This is the first new butterfly species discovered and described from the territory of Israel in 109 years.

###

Original source:

Lukhtanov VA (2017) A new species of Melitaea from Israel, with notes on taxonomy, cytogenetics, phylogeography and interspecific hybridization in the Melitaea persea complex (Lepidoptera, Nymphalidae). Comparative Cytogenetics 11(2): 325-357. https://doi.org/10.3897/CompCytogen.v11i2.12370

The Radiohead ant: A new species of ‘silky’ ant grows fungus gardens for food

The ants of the genus Sericomyrmex – literally translated as ‘silky ants’ – belong to the fungus-farming ants, a group of ants that have figured out how to farm their own food. The silky ants are the less well-known relatives of the famous leaf-cutter ants – well-studied, photogenic model organisms that you simply cannot avoid if you take a trip to the Neotropics.

For their study, now published in ZooKeys, Ana Ješovnik and Ted R. Schultz from the Smithsonian Institution‘s Ant Lab in Washington, D.C., collected silky ants from across their entire range in Central and South America, and revised the genus based on DNA sequence data and morphology. In the end, they turned out to have discovered three new species.

One of those species, Sericomyrmex radioheadi, collected in the Venezuelan Amazon, was named after the famous British music band Radiohead.

Image3“We wanted to honor their music” one of the authors, Ana Ješovnik, says. “But more importantly, we wanted to acknowledge the conservation efforts of the band members, especially in raising climate-change awareness. ”

Using a scanning electron microscope, the authors found that the bodies of the ants are covered with a white, crystal-like layer. Curiously, this previously unknown layer is present in female ants (both workers and queens), but is entirely absent in males. Both the chemical composition and the function of this layer are unclear.

One possibility is that the layer is microbial in origin and that it has a role in protecting the ants and their gardens from parasites. This is interesting, because most of the fungus-farming ants cultivate antibiotic-producing bacteria on their bodies to protect their gardens from microbial weeds. In the meantime, in Sericomyrmex these bacteria are absent, yet their gardens are also parasite-free. Figuring out if this crystal-like layer has a role in protecting these ants’ fungus gardens might provide clues for managing diseases in human agriculture and medicine.

At only four million years, Sericomyrmex is an evolutionary youngster, the most recently evolved genus of fungus-farming ants, and an example of rapid radiation – comparable to other fast-evolving groups, such as the freshwater fishes in Africa, or the Hawaiian fruit flies.

Rapid radiation is a process in which organisms diversify quickly into a multitude of forms, making these ants good candidates for studies into speciation and evolution. In the present article, the authors acknowledge that some of the species they describe might, in fact, be multiple species that look alike, but because the ants are in the early stages of speciation, this is hard to detect.

###

Original source:

Ješovnik A, Schultz TR (2017) Revision of the fungus-farming ant genus Sericomyrmex Mayr(Hymenoptera, Formicidae, Myrmicinae). ZooKeys 670: 1-109. https://doi.org/10.3897/zookeys.670.11839