Tramp ant caught globetrotting under false name

A century-old mystery surrounding the origin of an invasive ant species was recently solved by an international team of scientists. Since 1893, when it was first discovered as an invasive species in the Canary Islands, entomologists have been debating where this mystery species came from. While some insisted on the Mediterranean, some proposed Arabia and others argued for Africa. The correct answer? Asia.

The authors of the study, published in the open-access journal ZooKeys, solved the taxonomic puzzle by fitting together disparate pieces of evidence. “I was having a terrible time trying to distinguish this one Asian species from the mysterious ant that was coming in on shipments from the Caribbean, Europe and Africa,” says Dr. Eli Sarnat, University of Illinois, about his research at the Smithsonian on tramp ants that were intercepted at US ports.

Tramp ants, many of which are pest species, are spread across the globe by stowing away in the cargo of ships and planes, thus posing rising environmental, food security and public health concerns.

The same day Sarnat was working on the mysterious ant in the Smithsonian, he received an email from Dr. Evan Economo, Okinawa Institute of Science and Technology (OIST). Economo and Dr. Georg Fischer, also affiliated with OIST, had included Madagascar samples of the species in a genetic analysis, and the results unexpectedly placed it within a group of Asian species. The closest genetic match to the enigmatic ant turned out to be the very same Asian species that Sarnat had found in the Smithsonian collection.

The last piece of the riddle was discovered thanks to the painstaking work of Dr. Benoit Guénard. Guénard, a professor at the University of Hong Kong, had spent years mapping the global distributions of every ant species known to science. When he compared the ranges of the mysterious ant with the common Asian species, the two fit together like a jigsaw puzzle.

Evidence gathered from classic taxonomy, modern genetic analysis, and exhaustively researched distribution maps all pointed to the same conclusion.

“What had long been considered two different species — one found across a wide swath of Asia and the other a tramp species spread by humans across Europe, Africa, the Americas and Australia — are actually one single supertramp species,” Economo explained. “It is striking that we had these two continental super-common invaders with almost entirely complementary ranges right under our noses, yet until now no one noticed they were actually the same species,”

 

Original source:

Sarnat EM, Fischer G, Guénard B, Economo EP (2015) Introduced Pheidole of the world: taxonomy, biology and distribution. ZooKeys 543: 1-109.doi: 10.3897/zookeys.543.6050

Additional information:

This work was supported by USDA APHIS Identification Technology Program (13-8130-1439-CA), subsidy funding to OIST, and NSF (DEB-1145989). This work was supported by USDA APHIS Identification Technology Program (13-8130-1439-CA), subsidy funding to OIST, and NSF (DEB-1145989).

Lava attraction: 74 new beetle species found hiding in plain sight on a Hawaiian volcano

Confined to the limits of Haleakala volcano, Maui Island, Hawaii, the beetle fauna there turns out to be not only extremely diverse, but very abundant as well. When Prof. James Liebherr of the Cornell University Insect Collection thoroughly sampled beetle populations on the volcano, he identified 116 species of round-waisted predatory beetles, including 74 new to science. The taxonomic revision, complete with descriptions of the new species, is now published in the open-access journal ZooKeys.

The present discoveries and observations are certainly surprising due to their scale, even though it has been long known that the Hawaiian Islands support disproportionately high levels of biodiversity. For this group of native round-waisted beetles, called Mecyclothorax in the zoological naming system, there are 239 species across the Hawaiian Islands, all of them descended from a single colonizing species.

The 116 species known from Haleakala make that volcano the center of biodiversity for this group within Hawaii. These beetles’ evolution during the 1.2-million-year lifespan of Haleakala volcano means they have speciated faster than most organisms on Earth, including the Hawaiian Drosophila and the cichlid fishes of eastern Africa.

No less striking is the fact that the 74 newly described beetle species previously evaded discovery within the limits of Haleakala’s 1,440 km2 of surface area. Reasons for this include the restricted distributions of many of the beetle species, and the previous lack of comprehensive field sampling. During his research, Prof. Liebherr examined all quarters of the mountain to eventually find many places of 1′ latitude × 1′ longitude where more than 20Mecyclothorax species lived closely together within a limited area of forest.

Most of these diverse microhabitats were discovered in windward rainforests. Moreover, different forest areas, geographically isolated from each other by volcanic lava flows, steep valleys, or extensive mudflows, supported different sets of species. “Haleakala volcano is a large pie with different sets of beetle species living in the different slices,” comments Prof. Liebherr. “Actually the different pie slices are just like the original Hawaiian land divisions called ahu pua’a, showing that the Hawaiian people had a keen sense for how their island home was organized.”

Additionally, the round-waisted beetle species seem to thrive across a wide range of altitudes, with their populations covering the major part of the mountain’s height. Historical as well as modern records have identified representatives of these insects from 450-metre elevation up to the volcano’s summit at 3000 m. However, given land conversion and the influx of alien invasive plants, habitats below about 1000 m have been seriously disrupted, and these elevations support few native beetles.

Looking to the future, Liebherr points out that “the substantial level of sympatry, associated with occupation of diverse microhabitats by these beetles, provides ample information useful for monitoring biodiversity of the natural areas of Haleakala.”

###

Original source:

Liebherr JK (2015) The Mecyclothorax beetles (Coleoptera, Carabidae, Moriomorphini) of Haleakala-, Maui: Keystone of a hyperdiverse Hawaiian radiation. ZooKeys 544: 1-407. doi: 10.3897/zookeys.544.6074

New snake species with pitch black eyes from the Andes highlights hidden diversity

Extremely rare and hidden in the forests of the Andes, there are still new snake species left to find. This has recently been evidenced by the colubrid serpent, described for the first time in the present article. Moreover, there is the vicious circle enwrapping its relatives: the harder it is to find more specimens, the tougher it is to describe and thus, start to identify them, which does not help in mapping their distribution and habitats. To address this issue, Dr. R. Alexander Pyron, The George Washington University, and his international research team have included a taxonomic review and discussion on the relationships and origin within a non-venomous snake tribe in a paper, published in the open-access journal ZooKeys.

Slender and small, the new species, called Synophis zaheri, measures less than 40 cm in length, or between 351 and 372 mm. Contrasting to its slim body with a distinct neck, separating the head from the body, its eyes are large and bulging, making up for more than a third of its head. Being black in colour, it is hard to tell the pupil and the iris apart. While the upper part of the body is grayish-brown with an iridescent sheen, the abdominal side stands out with its yellowish-white colouration.

Typically for the tribe, where the new species has been placed, it is also characterised with a highly modified spine and an enlarged scale row running over it. This is also where the name of this group of snakes comes from with “Diaphorolepidini” consisting of the Greek words for “differentiated” and “scales”. Not so clear, however, is the name of the genus, which the authors have translated also from Greek as “with snake”, but find themselves unaware of the meaning behind. The species is named after Dr. Hussam El-Dine Zaher, a Brazilian herpetologist whose work has been foundational for South American snakes.

In conclusion, the scientists note that the rarity of the observed snake species, especially the genus, where the new serpent belongs, accounts for the unclear species-boundaries as well as for the myriad of undescribed species. “Dipsadine diversity in the Andes is clearly underestimated, and new species are still being discovered in the 21st century,” they point out.

###

Original source:

Pyron RA, Guayasamin JM, Peñafiel N, Bustamante L, Arteaga A (2015) Systematics of Nothopsini (Serpentes, Dipsadidae), with a new species of Synophis from the Pacific Andean slopes of southwestern Ecuador. ZooKeys 541: 109-147. doi: 10.3897/zookeys.541.6058

Rare Amazonian butterfly named after British national treasure Sir David Attenborough

A beautiful new Black-eyed Satyr species has become the first butterfly named in honour of the popular naturalist and TV presenter Sir David Attenborough. Although not the first animal to be named after the British national treasure, the butterfly is so rare that it is known only from lowland tropical forests of the upper Amazon basin in Venezuela, Colombia, and Brazil. The study, conducted by an international team of researchers, led by Andrew F. E. Neild, Natural History Museum, London, and Shinichi Nakahara, McGuire Center for Lepidoptera and Biodiversity and Entomology & Nematology Department, University of Florida, is published in the open-access journal ZooKeys.

The presently described Attenborough’s Black-eyed Satyr, scientifically called Euptychia attenboroughi, has such a restricted distribution that all of its known sites lie within 500 kilometres from each other in the north-west of the upper Amazon basin.

Best known for scripting and presenting the BBC Natural History’s ‘Life’ series, Sir David Attenborough is also a multiple winner of the BAFTA award and a president of Butterfly Conservation.

“Other animals and plants have previously been dedicated to Sir David, but it makes us happy and proud to be the first to dedicate a butterfly species in his name,” says Andrew Neild. “Although we are a large team from several countries from across four continents and speaking different languages, we have all been deeply influenced and inspired by Sir David’s fascinating and informative documentaries.”

The butterfly’s atypical wings in comparison to its relatives, have been the reason the scientists took to plenty of diagnostic characters to define its taxonomic placement. The peculiar patterns and morphology initially led the researchers to think the species could be even a new genus.

“It was a surprise for us that DNA data supported inclusion of this new species in the existing genus Euptychia, since this species lacked a distinctive structural character which was considered to be shared by all members of the genus” explains Shinichi Nakahara.

###

Original Source:

Neild AFE, Nakahara S, Zacca T, Fratello S, Lamas G, Le Crom J-F, Dolibaina DR, Dias FMS, Casagrande MM, Mielke OHH, Espeland M (2015) Two new species of Euptychia Hübner, 1818 from the upper Amazon basin (Lepidoptera, Nymphalidae, Satyrinae). ZooKeys 541: 87-108. doi: 10.3897/zookeys.541.6297

Get to know them faster: Alternative time-efficient way to describe new moth species

Having collected thousands of moth and butterfly species from across Costa Rica, famous ecologist Daniel Janzen, University of Pennsylvania, and his team were yet to find out many of their names. When they sought help from Dr. Gunnar Brehm, the taxonomist realised he needed too much time to describe species in the framework of an extensive revision of the genus, especially as there are still only a few biologists skilled to do this.

In the end, he found a way to revise the Neotropical looper moth genus Hagnagorafast and efficiently through avoiding wordy descriptions, but focusing on diagnostic characters, illustrated external characters, genitalia structures and DNA barcoding instead. His study is available in the open-access journal ZooKeys.

Having been put together back in the 19th century, most of the species within the Neotropical moth genus Hagnagora had been described by 1913. In modern days, it seemed necessary for the taxon to be revised. As a result, Dr. Gunnar Brehm herein publishes a “concise revision” comprising twenty species. It includes two species that have been revived from synonymy, two subspecies reinstated to a species level, four species excluded from the genus and the description of three new to science. In honour of the people who had funded the research, the new species have been named after them.

Following the revision, the research concludes not only the DNA molecules divergence between the separate species, but some subtle differences such as size, form of the wing blotches or the shape of the male genitalia.

Curious characteristic behaviour traits have also been noted within the genus. The representatives of the discussed genus fold their wings vertically while resting just like most butterflies and unlike the majority of related geometrid moths. Similarly, three of the revised species were noticed to be active during the day when they would often perch on moist substances like rotting plants, mud or dung, from whose fluids they would find vital nutrients.

The author stresses on the fact that taxonomists can hardly keep up with the pace inventories are being compiled, nor with the accelerating destruction of tropical rainforests. “Taxonomists therefore need to accelerate their workflows and try to make their papers useful not only to other taxonomists but for ecologists who need their support”, Dr. Gunnar Brehm says.

“What used to be one species ten years ago, known as Hagnagora anicata, is now regarded as a complex of six species, and more might be discovered in South American rain forests”, Brehm says. “Integrating information of molecules and morphology, as concisely as possible, appears to be one promising way to cope with the problem of slow taxonomy”, he explains in conclusion.

###

 

Original source:

Brehm G (2015) Three new species of Hagnagora Druce, 1885 (Lepidoptera, Geometridae, Larentiinae) from Ecuador and Costa Rica and a concise revision of the genus. ZooKeys 537: 131-156. doi: 10.3897/zookeys.537.6090

The owls beyond the Andes: Divergence between distant populations suggests new species

They might be looking quite identical, while perched above humanised farmlands and grasslands across several continents, but each of the populations of two owl species, living in the opposite hemispheres, might actually turn out to be yet another kind. This suggestion has been made by Dr. Nelson Colihueque and his team from Universidad de Los Lagos, Chile, based on new genetic divergence analyses of the Common Barn and the Short-eared Owl populations from southern Chile and comparing them with those from other geographic areas. The study is published in the open-access journal ZooKeys.

Although much has been known about the two widespread owl species, the knowledge about them has so far been restricted mainly to aspects such as their diet, conservation status and habitats. On the other hand, their genetic divergence in comparison with populations in distant areas has received little attention. Moreover, their taxonomical status is still based on traditional identification rather than modern methods such as the herein utilised mitochondrial COI sequencing.

Thus, the Chilean research team concluded a significant genetic divergence among the populations of both species from a few distinctive groups. In the case of the Common Barn Owl they compared the new analysis of its South American representatives with already available such data about populations from North America, Northern Europe and Australasia. For the Short-eared Owl, they compared Chilean and Argentinean birds with North American and North Asian.

One of the reasons behind such an evolutionary divergence might be the geographic isolation, experienced by the peripheral South American populations of both owl species. It is a consequence of the Andean Mountains acting as a natural barrier.

“In the case of the Common Barn Owl, the existence of geographic barriers to gene flow among populations on different continents is to be expected, and this in combination with its non-migratory or short-distance migratory behaviour, should contribute to promote the genetic divergence,” further explain the authors.

In conclusion, the researchers call for additional studies to clarify the taxonomic identification of these owl populations.

###

Original source:

Colihueque N, Gantz A, Rau JR, Parraguez M (2015) Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence. ZooKeys 534: 135-146. doi: 10.3897/zookeys.534.5953

Immaculate white: New moth species preferring dry habitats is a rare case for Florida

Spreading its wings over the sandhills and scrub of peninsular Florida, a moth species with immaculately white wings has remained unnoticed by science until Mr. Terhune Dickel brought it to the attention of Dr. James Hayden of the Florida Department of Agriculture and Consumer Services. As a result of their research, published in the open-access journal ZooKeys, the authors have also included a key to facilitate the recognition of different pale-winged moths and their close relatives.

With its taste for much drier habitats such as the sandhills of peninsular Florida, the new species, called Antaeotricha floridella, is a noteworthy case among the moths and butterflies. This kind of endemism is, however, quite common among other groups of insects and spineless animals.

Initially confused with another very similar and widely distributed species, called Antaeotricha albulella, the herein described moth was found to be actually quite different when dissected by co-author Terhune Dickel.

After Mr. Dickel showed specimens to Dr. Hayden, they noticed that its forewings are immaculately white, unlike those of its close relatives within the pale-coloured endemics for the New World. Their wings tend to differ in colouration on a species level and are often spotted, however minute these contrasting patterns might be. While the new species has its forewings always in snow-white on the upper side and its hindwings – in pale gray, its kin, A. albulella, has either one or two black spots of black on its own forewings and white or pale-gray hindwings.

Currently, not much is known about the new moth species’ feeding habits. The evergreen sand live oak is the only plant that it has so far been confirmed to feed on. However, the researchers do not exclude the possibility that the new species could use a wider variety of oaks as hosts.

The occurrence of the moth exclusively in the dry areas of peninsular Florida fits an ecological pattern, and it is likely that more species, currently assigned under incorrect names, will be found in the state’s sandhills and scrub.

###

Original source:

Hayden JE, Dickel TS (2015) A new Antaeotricha species from Florida sandhills and scrub (Lepidoptera, Depressariidae, Stenomatinae). ZooKeys 533: 133-150. doi: 10.3897/zookeys.533.6004

The first long-haired ones: New wasp group proposed for 5 new species from India

Long accustomed to parasitising spider eggs, a large worldwide genus of wasps has as few as 24 known representatives in India. However, Dr. Veenakumari, ICAR-National Bureau of Agricultural Insect Resources, and her team have recently discovered five new species of these interesting wasps from different parts of the country. Because of their uniqueness and their strong resemblance to each other, as well to aid taxonomic studies they have been considered as constituting a group of their own. The discoveries and the suggestion of ‘the first long-haired ones’ species group are available in the open-access journal Deutsche Entomologische Zeitschrift.

Among the unique features that bring together the new five species, discovered by Drs. Veenakumari Kamalanathan, Prashanth Mohanraj and F. R. Khan, are the long hair-like structures along the margins of both of their wings. This is also the reason behind the authors’ choice of naming the proposed group adikeshavus, meaning ‘first one to have long hairs’ in Sanskrit.

Within this parasitic superfamily of wasps each group has been long accustomed to a specific host. The tribe to which the new five wasp species belong, for instance, is characterised by its exclusive preference for spider eggs. Parallel evolution accounts for the tiny wings of these wasps which allows them to slip through the silk strands of the egg sacs which are deposited in leaf litter by the spiders. Furthermore, all these species have a uniform length of 1 to 2 mm as a result of their getting used to parasitising relatively medium-sized spider eggs.

With over a thousand species supposed to exist in this genus the scientists suggest that their clustering into groups is a necessity to facilitate future studies.

The authors conclude that it is highly likely that this group of wasps will yield a much larger number of species of parasitoids attacking spider eggs in India.

###

Original source:

Kamalanathan V, Mohanraj P, Khan FR (2015) ‘The adikeshavus-group’: A new species group of Idris Förster (Hymenoptera, Platygastridae) from India, with descriptions of five new species. Deutsche Entomologische Zeitschrift 62(2): 247-260. doi: 10.3897/dez.62.6219

Novel cybercatalog of flower-loving flies suggests the digital future of taxonomy

Charting Earth’s biodiversity is the goal of taxonomy and to do so the scientists need to create an extensive citation network based on several hundred million pages of scientific literature. By providing a novel taxonomic ‘cybercatalog’ of southern African flower-loving (apiocerid) flies, Drs. Torsten Dikow and Donat Agosti demonstrate how the network of taxonomic knowledge can be made available through links provided to online data providers. Their work is available in the open-access Biodiversity Data Journal.

The present research showcases that the information cannot only be made available to the reader who follows the links, but also to machines that use the growing number of digital, online resources that are linked through persistent identifiers.

Primary data providers for taxonomic information such as species names (ZooBank), specimen images (Morphbank), species descriptions (Plazi), and digitized literature (BHL, Biodiversity Heritage Library; BioStor; and BLR, Biodiversity Literature Repository) play an important role in making data on species available in electronic form. Aggregators such as the Global Biodiversity Information Facility (GBIF) and the Encyclopedia of Life (EoL) gather this information automatically to distribute it even further to audiences beyond the reach of the life sciences.

In contrast to previous species catalogs, in cybercatalogs access to information is provided through links to open-access, online data repositories such as the ones listed above. Taxonomists and other users can now access this literature, species descriptions, and specimen records immediately without a search in a natural history library or collection. The cybercatalog takes advantage of a new publishing platform within the Biodiversity Data Journal that makes it easy to upload species information and links to data about these species through a CheckList template. Furthermore, the Biodiversity Data Journal now allows future updates and re-publications of the cybercatalog with the new unique persistent identifier (DOI, Digital Object Identifier) whenever a new species is described or other taxonomic changes take place.

The authors argue that cybercatalogs are indeed the future of taxonomic catalogs since the online data in them are easily accessible to anyone.

“It is a taxonomist’s dream to have online access to all previously published information on a species and through this step the discipline of taxonomy can (re-)position itself as a central resource within the life sciences and beyond to the public and society at large,” add the authors. “Online access will also help to narrow the gap between the South and the North as a fantastic example of unhindered access to our knowledge of the global biological diversity, which is increasingly under pressure from human populations.”

###

For the realization of this project Plazi and Pensoft were partially supported by the EC-FP7 EU BON project (ENV 30845) (Building the European Biodiversity Observation Network).

###

Original source:

Dikow T, Agosti D (2015) Utilizing online resources for taxonomy: a cybercatalog of Afrotropical apiocerid flies (Insecta: Diptera: Apioceridae). Biodiversity Data Journal 3: e5707. doi: 10.3897/BDJ.3.e5707