An extraordinary cave animal found in Eastern Turkmenistan

A remote cave in Eastern Turkmenistan was found to shelter a marvelous cave-adapted inhabitant that turned out to represent a species and genus new to science. This new troglodyte is the first of its order from Central Asia and the first strictly subterranean terrestrial creature recorded in the country.

Kaptarhana cave is located at the foot of Koytendag Mountain, one of the most distinctive mountain landscapes in Central Asia. A curious amalgam of desert landscapes, often highly dissected by ravines, foothills with ridges, cuestas and fan plains, the mountain is a potential home to key biodiversity gems still awaiting discovery.

Also remarkable for its richness of caves and other limestone formations, Koytendag Mountain has more than 300 caves, sinkholes and potholes, hitherto registered from its territory, including the sixth largest cave system in Asia Gap Goutan/Promezdutachnaya stretched at more than 57 km underground. Also worthy of a mention is the beautiful cave Gulshirin, known for its snow white passages and extraordinary formations.

The caveAnother fine example, cave Kaptarhana, presents a unique habitat for a high number of cave-adapted animals, among which is the new species of a few millimetres long, pale and eyeless insect-like creature, whose relatives in the order Diplura also go by the name of two-pronged bristletails.

The scientists named it Turkmenocampa mirabilis, where the genus name (Turkmenocampa) refers to the creature’s country of origin (Turkmenistan), while the species name (mirabilis) means “unusual, amazing, wonderful, remarkable” in Latin to highlight its unique morphology and position among its relatives.

The new species is described in the open access journal Subterranean Biology by Dr. Alberto Sendra, University of Alcalá, Spain, Prof. Boris Sket, University of Ljubljana, and Prof. Pavel Stoev, National Museum of Natural History, Bulgaria.

In fact, Stoev and Sket were the first speleobiologists to visit and explore Kaptarhana in nearly 43 years. The survey was part of their study into the caves of Koytendag State Nature Reserve, Turkmenistan, conducted in 2015 and endorsed by a Memorandum of Understanding between the State Committee on Environment Protection and Land Resources of Turkmenistan and the Royal Society for the Protection of Birds.

To discover the new species, the scientists spent about 8 hours in the cave looking for specimens and placed pitfall traps with smelly cheese used as a bait. While visual observations had no success due to the cave being very spacious, a number of exemplars of the hitherto undescribed animal fell victims of the traps.

“What we have here is not only a new remarkable organism, but also an amazing and unusual cave critter that has undergone a long evolutionary journey to adapt to the underground environment of Central Asia,” says the lead author Alberto Sendra.

The authors see their latest discovery as a proof of the importance of Kaptarhana as a refuge for a number of endemic invertebrates and an opportunity to draw attention to its protection under the laws of Turkmenistan.

“While many speleobiologists consider the terrestrial cave fauna in Central Asia as poor, it is places such as Kaptarhana that can turn the tables by giving us new insights about the biodiversity richness, evolutionary history, formation and functioning of the underground ecosystems of this part of the world.” comments Stoev.

###

Original source:

Sendra A, Boris Sket B, Stoev P (2017) A striking new genus and species of troglobitic Campodeidae (Diplura) from Central Asia. Subterranean Biology 23: 47-68. https://doi.org/10.3897/subtbiol.23.14631

Threatened Alabama snail renamed after a case of mistaken identity

Contrary to what scientists have known for over 100 years, the Painted Rocksnail turns out to have never existed outside the Coosa River system

Alabama has some of the highest diversity of freshwater snails in the world, but many snails are at high risk of extinction.

An essential part of determining extinction risk is knowing the range of a given species and determining how much its range has contracted owing to anthropogenic impacts, but mistaken identity or misidentification can complicate conservation efforts.

Image1_PaintedRocksnailsThe Painted Rocksnail, a small snail from the Coosa River system, has been mistakenly identified as other species for over 100 years.

In a study published in the open access journal ZooKeys, scientists Dr. Nathan Whelan, U.S. Fish and Wildlife Service, Dr. Paul Johnson and Jeff Garner, Alabama Department of Conservation and Natural Resources, and Dr. Ellen Strong, Smithsonian Institution National Museum of Natural History, tackled the identity of the Painted Rocksnail, a small federally threatened species native to the Mobile River basin in Alabama.

Freshwater snails are notoriously difficult to identify, as the shells of many species can look very similar. Keeping this in mind, the researchers began to notice that many shells identified as the Painted Rocksnail in museums around the world were misidentified specimens of the Spotted Rocksnail, another snail species found in Alabama.

After examining shells at the Academy of Natural Sciences of PhiladelphiaMuseum of Comparative Zoology at Harvard, National Museum of Natural History, North Carolina Museum of Natural SciencesFlorida Museum of Natural History, and Natural History Museum in London, in addition to hundreds of hours of their own sampling throughout the Mobile River basin, the authors determined that all previous reports of the Painted Rocksnail from outside the Coosa River system were mistakes.

Despite the Painted Rocksnail dwelling in well-studied rivers near large population centers, mistaken identity of the species has persisted almost since the species was described back in 1861 by Isaac Lea.

Only after careful examination of shells collected in the last 150 years and analyses of live animals were the researchers able to confidently determine that the Painted Rocksnail never occurred outside the Coosa River system.

The study has implications for the conservation of the Painted Rocksnail, as the species was historically more restricted than previously thought. Recent surveys by the authors only found the species in small stretches of the Coosa River, Choccolocco Creek, Buxahatchee Creek, and Ohatchee Creek.

In conclusion, the authors note the importance of natural history museums and the importance of studying snails in the southeastern United States.

“Without the shells stored in natural history museums we would have never been able to determine that the supposed historical range of the Painted Rocksnail was incorrect, which could have resulted in less effective conservation efforts for an animal that is very important to the health of rivers in Alabama,” they say.

###

Original Source:

Whelan NV, Johnson PD, Garner JT, Strong EE (2017) On the identity of Leptoxis taeniata – a misapplied name for the threatened Painted Rocksnail (Cerithioidea, Pleuroceridae). ZooKeys697: 21-36. https://doi.org/10.3897/zookeys.697.14060

Effects of soil and drainage on the savanna vegetation in the northern Brazilian Amazonia

It is a well-known fact that environmental factors such as soil texture and drainage determine to a very large degree the vegetation appearance, richness and composition at any site. However, there has been little research on how these variables influence the flora in the marvellous savannas – large open areas characterised by a complex and unique network of natural resources and life forms.

Consequently, a Brazilian research team, led by Dr. Maria Aparecida de Moura Araújo, Universidade Federal de Roraima, investigated the hydro-edaphic conditions in the savanna areas in the northern Brazilian Amazonia. Their study, complete with an openly available and ready for re-use dataset, is published in the open access Biodiversity Data Journal.  

Image 1_Annonaceae_Xylopia aromatica_treeIn the course of the Program for Biodiversity Research, managed by the Brazilian government, the scientists sampled 20 permanent plots in two savanna areas in the state of Roraima, located in the northern of the Brazilian Amazon. As a result, the team reports a total of 128 plant species classified into 34 families from three savanna habitats with different levels of hydro-edaphic restrictions.

Amongst the various factors playing a role in the soil characteristics of the area, are the tectonic events and past climatic fluctuations which have occurred in the most recent period of the Cenozoic era. Paleo, as well as modern fires are likely to be other culprits for the specific conditions.

In conclusion, the authors suggest that the most restrictive savanna habitats – the wet grasslands, represent the home to less structurally complex plants, compared to the well-drained shrubby localities.

“The present study highlights the environmental heterogeneity and the biological importance of Roraima’s savanna regarding the conservation of natural resources from the Amazon,” say the scientists.

Image 2_Convolvulaceae_Merremia aturensis_herb“In addition, it points out the need for greater investment in floristic inventories associated with greater diversification of sites, since this entire ecosystem has been rapidly modified by agribusiness.”

Licensed under a Creative Commons License (CC-BY 4.0) and available in a Darwin Core Archive DwC-A format; the complete dataset is openly available via the Global Biodiversity Information Facility (GBIF).

 

Original source:
Araújo M, Rocha A, Miranda I, Barbosa R (2017) Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia. Biodiversity Data Journal 5: e13829. https://doi.org/10.3897/BDJ.5.e13829

New butterfly species discovered in Israel for the first time in 109 years

Vladimir Lukhtanov, entomologist and evolutionary biologist at the Zoological Institute in St. Petersburg, Russia, made a startling discovery: what people had thought was a population of a common species, turned out to be a whole new organism and, moreover – one with an interesting evolutionary history. This new species is named Acentria’s fritillary (Melitaea acentria) and was found flying right over the slopes of the popular Mount Hermon ski resort in northern Israel. It is described in the open access journal Comparative Cytogenetics.

“To me, it was a surprise that no one had already discovered it,” says Vladimir Lukhtanov.

“Thousands of people had observed and many had even photographed this beautifully coloured butterfly, yet no one recognised it as a separate species. The lepidopterists (experts in butterflies and moths) had been sure that the Hermon samples belonged to the common species called Persian fritillary (Melitaea persea), because of their similar appearance, but nobody made the effort to study their internal anatomy and DNA”.

In 2012, Vladimir Lukhtanov, together with his students, initiated an exhaustive study of Israeli butterflies using an array of modern and traditional research techniques. In 2013, Asya Novikova (until 2012, a master’s student at St. Petersburg University and, from 2013, a PhD student at the Hebrew University, Jerusalem) sampled a few fritillaries from Mt. Hermon.

It was at that time when the researchers noticed that the specimens “didn’t look right” – their genitalia appeared different from those of the typical Persian fritillary. Over the next few years, Lukhtanov and his students studied this population in-depth. They carried out sequencing DNA from the specimens and found that they had a unique molecular signature – very different from the DNA of any other fritillary.

The Acentria’s fritillary seems to be endemic in northern Israel and the neighbouring territories of Syria and Lebanon. Its evolutionary history is likely to prove interesting.

“The species is probably one of a handful of butterflies known to have arisen through hybridisation between two other species in the past,” says Lukhtanov. “This process is known to be common in plants, but scientists have only recently realised it might also be present in butterflies.”

This is the first new butterfly species discovered and described from the territory of Israel in 109 years.

###

Original source:

Lukhtanov VA (2017) A new species of Melitaea from Israel, with notes on taxonomy, cytogenetics, phylogeography and interspecific hybridization in the Melitaea persea complex (Lepidoptera, Nymphalidae). Comparative Cytogenetics 11(2): 325-357. https://doi.org/10.3897/CompCytogen.v11i2.12370

New species of Brazilian copepod suggests ancient species diversification and distribution

A new species of groundwater copepod has been discovered in the rocky savannas of Brazil – an ecosystem suffering from heavy anthropogenic impact. Upon description, the tiny crustacean turned out to also represent a previously unknown genus. It is described by Dr. Paulo H. C. Corgosinho, Montes Claros State University, Brazil, and his team in the open access journal Zoosystematics and Evolution.

Prior to the discovery of the new species, named Eirinicaris antonioi, only one genus of its subfamily (Parastenocaridinae) had been recorded in the Neotropical region, which comes to show that related species had already spread across a huge range when the ancient supercontinent Gondwana split apart.

The new copepod measures about 0,300 mm and can be told apart by its morphological characteristics, including unusual sensorial structures at the rear part of the body, as well as unique sexual dimorphism.

The copepods of the family Parastenocarididae are adapted to life in groundwater, where they thrive between sand grains. These tiny creatures measure less than 1 mm, ranging between 0,200 and 0,400 mm in length. They can be found in various microbiotopes along rivers, lakes and human-made structures, such as dug or artesian wells. Alternatively, these copepods might be associated with mosses and other semi-terrestrial environments.

“This is the first species described from Goiás state, Central Brazil,” explain the authors. “With the discovery of this new species our knowledge about the geographical distribution of the copepod family Parastenocarididae is increased. Our project highlights the vast amounts of undiscovered biodiversity of the Brazilian rocky savannas, which are under high anthropogenic threat.”

###

Original source:

Corgosinho PHC, Schizas NV, Previattelli D, Falavigna da Rocha CE, Santos-Silva EN (2017) A new genus of Parastenocarididae (Copepoda, Harpacticoida) from the Tocantins River basin (Goiás, Brazil), and a phylogenetic analysis of the Parastenocaridinae. Zoosystematics and Evolution 93(1): 167-187. https://doi.org/10.3897/zse.93.11602

New species of parasitic wasp discovered in the eggs of leaf-rolling weevils in Africa

A new species of parasitic wasp has been obtained from the eggs of weevils, associated with bushwillows, collected and identified by Dr. Silvano Biondi. Given the tiny insect from northeastern Gabon is the first record of its genus for West-Central Africa, the researchers Dr. Stefania Laudonia and Dr. Gennaro Viggiani, both affiliated with Italy’s University of Naples Federico II, decided to celebrate it by assigning the species a name that refers to the continent. Their team has published the findings in the open access journal ZooKeys.

Named Poropoea africana, the new species belongs to a large worldwide group of wasps well-known as egg parasitoids of leaf-rolling weevils. Using characteristically long ovipositors, they lay their own eggs in the eggs of the hosts, found in cigar-like rolls.

The new wasp measures less than 2 mm. It can be distinguished from related species by a number of characters, including the structure of the antennae, and the front and hind legs, which are more robust than the middle ones. The latter, which is a unique trait for the genus, seems to be an adaptation to host parasitisation, where the modified legs likely support the body and improve the propulsive efficiency of the ovipositor.

###

Original source:

Laudonia S, Viggiani G, Biondi S (2017) A new species of Poropoea Foerster from Africa (Hymenoptera, Chalcidoidea, Trichogrammatidae). ZooKeys 658: 81-87. https://doi.org/10.3897/zookeys.658.11501

Champions of biodiversity: A weevil genus beats records of explosive evolutive radiation

With as many as 120 recently discovered weevils placed in the genus Laparocerus, it now hosts a total of 237 known species and subspecies. They are all flightless beetles and most of them endemic (living exclusively in one geographic location) to a single island of the archipelagos of Madeira, Selvagens and the Canary Islands (17 islands in total). Only two species inhabit Morocco, the nearest continental land.

Independent Canarian entomologist Dr. Antonio Machado, who has been collecting and studying this genus of weevils for the last sixteen years and researched 46,500 specimens so far, was helped by geneticist Dr. Mariano Hernández, from the University of La Laguna, Tenerife, Canary Islands, Spain, to undertake a phylogenetic study using three mitochondrial genes and one nuclear gene. The resulting phylogenetic tree also allowed for estimating the whole evolutionary process along a timeframe of about 11.2 million years. Their study is published in the open access journal ZooKeys.

The molecular analysis confirms that all Laparocerus weevils have a common evolutionary ancestor (monophyly), but could not clarify whether that ancient founding species arrived from southern Europe or northwestern Africa. The two extant Moroccan species were found to be the result of a back-colonisation from the Canary Islands to Africa, and not the ancestral source lineage, which unfortunately is still unknown.

weevils PR 2Colonisation of Macaronesia started in Porto Santo, Madeiran archipelago, which is the oldest island, and from there it ‘jumped’ to Madeira and the Desertas. The colonisation of the Canary Islands started shortly after, and it basically moved stepwise from the east to the west in line with the decreasing age of the volcanic islands. Yet, there have been several back-colonisations, as well (see map). Large islands, such as Tenerife (2034 km2), ended up with 65 species and subspecies. Globally, there is an outstanding ratio of one endemic Laparocerus for each 35.7 km2; a record not beaten by any other genus of plant or animal in Macaronesia.

The evolutionary process responsible for such richness comprises sequential radiation events in these archipelagoes, each generating several monophyletic groups. These groups, 20 in total, have been recognised as subgenera of Laparocerus, and five of them — Aridotrox, Belicarius, Bencomius, Canariotrox, and Purpuranius — are described as new to science in this study. Colonisation routes, habitat shifts, disruption of populations by volcanism, dispersal by massive landslides, and other relevant aspects for adaptive and non-adaptive radiation, are largely discussed and confronted with previously published data referring to other groups of beetles or to other biological organisms (spiders, bush crickets, plants, etc.).

“If oceanic islands have been traditionally considered as laboratories of evolution and species-producing machines, Laparocerus will become the ideal guinea-pig for broadening studies in dispersal and speciation processes of all kinds,” say the authors. “Working with such a group is like getting a picture of Nature with more pixels. Several intriguing cases highlighted in this contribution may turn into the inspiration for further phylogeographic research.”

The scientists hope that, in near future Laparocerus will merit sharing the podium with Darwin´s finches or Drosophila in the studies of island evolution”.

###

Original source:

Machado A, Rodríguez-Expósito E, López M, Hernández M (2017) Phylogenetic analysis of the genus Laparocerus, with comments on colonisation and diversification in Macaronesia (Coleoptera, Curculionidae, Entiminae). Zookeys 651: 1-77 (02 Feb 2017) https://doi.org/10.3897/zookeys.651.10097

New moth in Europe: A southern hemisphere species now resident in Portugal

As travelling in the 21st century is easier than ever, so is for species to make their way to new areas, sometimes increasing their distributional range, or even establishing whole new habitats. On the other hand, when they leave their natural predators and competitors behind, and find abundance of suitable resources somewhere else, they are running the risk of becoming invasive.

Nevertheless, such is not the case of a small, darkish brown moth from the southern hemisphere that is now resident in central Portugal. There, the species do not exhibit invasive behaviour, and so far has been only observed in very low numbers. The discovery is published in the open access journal Nota Lepidopterologica by an international research team, led by Martin Corley, CIBIO-InBIO, Portugal.

In 2012, Jorge Rosete, one of the co-authors of the study, spotted a female specimen that he could not identify near his house. When Martin took a look at it, he placed it in the concealer moth family (Oecophoridae), but was unable to recognise neither its species, nor its genus. It did not took long before a few more specimens were found, including males.

Initially, Martin thought the moth might originate from Australia, given the abundance of eucalyptus plantations in the area where it was found, and the fact that there are more concealer moth species in Australia than on any other continent. However, despite their efforts and contacts with other researchers, they failed to find an Australian species to match the Portuguese specimens. As a result, the mystery remained for the next four years, until a molecular study into moth DNA pulled the curtains.

A fragment of DNA, also called DNA barcode, matched three other genetically identical unnamed specimens, originally collected from South Africa, in the DNA database BOLD. Further collaboration with Alexander Lvovsky, Russian Academy of Sciences, allowed the assignation of the specimens to a species name: Borkhausenia intumescens, known from South Africa. However, it did not end there. Further research into museum collections showed that in fact this species had been previously described from Argentina as Borkhausenia crimnodes, and therefore should be named as such.

The origin of the Portuguese specimens remain a mystery, but it is evident that the species is now established in central Portugal. The larvae of other species in the same genus feed on decomposed plants, so this is likely the case with the moth species as well. It might be that it has entered the country through Figueira da Foz port along with imported timber from South America intended for the paper industry.

It is not known if this is a South African species that had first been transported to South America, and then – to Portugal, or if it is originally South American. It is also possible that it is not native in neither of these areas, and instead originates from another country, where it has not even been discovered yet. The moth favours warm temperate zones and potentially might appear anywhere in the world with suitable climate.

###

Original source:

Corley MFV, Ferreira S, Lvovsky AL, Rosete J (2017) Borkhausenia crimnodes Meyrick, 1912 (Lepidoptera, Oecophoridae), a southern hemisphere species resident in Portugal. Nota Lepidopterologica 40(1): 15-24. https://doi.org/10.3897/nl.40.10938.

Biodiversity project in Azores delivers detailed abundance data for 286 arthropod species

In 1999, a long-term biodiversity project started at the Azores Islands (Portugal, Atlantic Ocean), the Biodiversity of Arthropods from the Laurisilva of the Azores (BALA) project (1999-2004). Its aim was to obtain detailed distributional and abundance data for a large fraction of arthropod fauna, living in all remaining native forests at seven of the Azores Islands.

After the first successful sampling of 100 sites at 18 native forest fragments over those five years, a second survey was accomplished in 2010-2011, where two sites per fragment were re-sampled. Now, Dr Paulo A.V. Borges and colleagues publish the complete list of the 286 species identified, including many species described as new to science in the open access journal Biodiversity Data Journal. They have also added detailed information on their distribution and abundance.

The resulting database has inspired the publication of many studies in the last ten years, including macroecological studies evaluating the abundance, spatial variance and occupancy of arthropods, the effects of disturbance and biotic integrity of the native forests on arthropod assemblages and the performance of species richness estimators.

image-2Moreover, these data allowed the ranking of conservation priorities for the fauna of the Azores, and allowed the estimation of extinction debt (the species likely to be wiped out because of past events) in the Azores. The present study has also inspired the development of the Azorean Biodiversity Portal and the Azores Island Lab.

The study stresses the need to expand the approaches applied in these projects to other habitats in the Azores, and, more importantly, to other less thoroughly surveyed taxonomic groups (e.g. Diptera and Hymenoptera).

“These steps are fundamental for getting a more accurate assessment of the biodiversity in the Azores archipelago, and we hope that can inspire similar biodiversity surveys at other islands,” say the authors.

###

Original source:

Borges P, Gaspar C, Crespo L, Rigal F, Cardoso P, Pereira F, Rego C, Amorim I, Melo C, Aguiar C, André G, Mendonça E, Ribeiro S, Hortal J, Santos A, Barcelos L, Enghoff H, Mahnert V, Pita M, Ribes J, Baz A, Sousa A, Vieira V, Wunderlich J, Parmakelis A, Whittaker R, Quartau J, Serrano A, Triantis K (2016) New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests. Biodiversity Data Journal 4: e10948. https://doi.org/10.3897/BDJ.4.e10948

Golden jackals might be settling in the Czech Republic, hint multiple observations

The first living golden jackal in the Czech Republic was reported by researchers from Charles University, Prague. The scientists captured the canid on camera multiple times over the span of a year and a half some 40 km away from the capital. Once considered native to northern Africa and southern Eurasia, the species seems to be quite rapidly extending its range towards the north of Europe. The study is published in the open access journal ZooKeys.

In June 2015, while doing a research project for her Master’s degree in Central Bohemia, Czech Republic, Klára Pyšková, a student at the Department of Ecology, Faculty of Science of Charles University in Prague, produced the first photograph of a living golden jackal individual captured by a camera trap in the country.

The aim of her study was broader, addressing common carnivore species composition in different habitats typical for central European landscape, about 40 km away from Prague. While the golden jackal capture was not completely unexpected, since several individuals of this species had previously been reported from the country, it was still a surprising discovery – all previously observed animals were either shot or victims of roadkill, and considered rather incidental records.

“The habitat, where the golden jackal decided to settle, resembles the landscapes which these animals prefer in their natural distribution area, the Balkans – an open grass-shrubland surrounded by a forest. It is one of the warmest areas in the country, with mild winters. The observed animal was mostly active at dusk and dawn, with majority of the sightings occurring in the morning hours,” explains Klára Pyšková. In a paper, she co-authored with a group of researchers from Charles University and Institute of Botany of the Czech Academy of Sciences, among them her supervisors Ivan Horáček and David Storch, they report on a long-term monitoring of the animal in an area of approximately 90 km².

The golden jackal first reached the Czech republic in the late 1990s, probably coming from Austria. The first, albeit unconfirmed report of its presence is from May of 1998, of two individuals reportedly sighted in central Bohemia. Almost a decade later, in 2006, a carcass of an adult golden jackal was found by the side of the road in Moravia, the eastern part of the country. Since then, several verified and non-verified records have been made. The photographs captured by Klára Pyšková were the first evidence of a living individual that seems to have settled permanently in the country. The researchers have not observed any cubs or a mate, and although they cannot completely dismiss the occurrence of another individual, they consider it very unlikely. The sex of the animal could not be determined.

“While the golden jackal is a species that has historically never lived in the area, where the study was conducted, and, therefore, might not be appropriate to call it native, it cannot be considered invasive. Invasive species are those that have been intentionally or unintentionally brought to a new area by humans – this is not the case of the golden jackal here,” says Klára Pyšková.

“This being said, there are several factors that have likely facilitated the spread, including indirect human influence,” adds the researcher. “Ongoing global change is bringing about shifts in species distributions that include both the spread of populations of invasive species and range expansions or contractions of native biota. In Europe, this is typically reflected in species moving from the south-eastern part of the continent to the north-west, most often in response to increasing temperatures that allow organisms to colonize areas that were previously unsuitable. Other suggested factors are human-caused changes in the overall character of landscapes, the lack of natural predators, particularly wolves, and high adaptability of the species.”

###

Original source:

Pyšková K., Storch D., Horáček I., Kauzál O. & Pyšek P. (2016) Golden jackal (Canis aureus) in the Czech Republic: the first record of a live animal and its long-term persistence in the colonized habitat. ZooKeys 641: 151-163 doi: 10.3897/zookeys.641.10946