The first national symposium on DNA barcoding took place on 5 December 2025 at the Headquarters of the Bulgarian Academy of Sciences, where it was attended by renowned Bulgarian scientists in the field, in addition to early-career researchers and PhD students representing different institutions.
The event saw a day-long series of lectures and a poster session, during which the participants had the opportunity to get acquainted with the work of their colleagues in various fields of biology.
Amongst the topics were the development of the Bulgarian molecular laboratory in Antarctica; the study of the invertebrate fauna currently underrepresented in DNA reference libraries; the return of the beaver to Bulgaria; and research on phytopathogenic fungi on agricultural crops.
During the coffee breaks sponsored by the National Museum of Natural History, the delegates had the chance to network and exchange experience between institutions and fields of expertise.
Teodor Georgiev, CTO at Pensoft held a presentation about the 2.0 version of the ARPHA Writing Tool. In its greatly improved version, it will feature many new, refined and elaborated workflows that help and simplify data publishing, discoverability, reusability and overall FAIRness.
The event was opened and closed by Prof. Dr. Lyubomir Penev, who was elected as the Chair of the Governing Board at the Bulgarian Barcode of Life last year. He is also the founder and CEO of Pensoft.
In his closing speech, Penev expressed his hopes for the development of BgBOL and confirmed the plans of the consortium to turn the symposium into an annual tradition. Congratulations were extended to BgBOL’s newest member: the Institute of Oceanology “Fridtjof Nansen” at BAS.
He also announced the launch of a new special collection in the Biodiversity Data Journal, which will welcome scientific papers related to the Bulgarian and Balkan biota and using DNA barcoding methods. The authors of the first five papers to be submitted and accepted at the collection will take advantage of free publication.
Finally, he thanked the hosts of the Bulgarian Academy of Sciences Headquarters: Stefania Kamenova and Assoc. Prof. Dr. Georgi Bonchev, who are also Vice-Chair and Chair of the Executive Board at BgBOL, respectively. A special thanks went also to Prof. Pavel Stoev, Director of the National Museum of Natural History.
Today, Pensoft celebrates one of its most distinguished editors and the world’s leading authority on thrips: Dr. Laurence Mound on the occasion of his 90th birthday.
Born in Willesden, London, on 22 April 1934, Dr. Mound is considered a world authority in the field. Having received his PhD from the University of London, he has been studying the biology and systematics of the order Thysanoptera for more than six decades. His academic recognitions include honorary membership at both the Royal and the Australian Entomological societies.
To date, Dr. Laurence Mound is the most prolific thrips researcher in history and has made monumental contributions to the field as the author of 500 publications, including landmark papers that have since shaped our understanding of the taxonomy and evolution of thrips. He has also published a number of books on thrip identification and control.
Having worked with admirable devotion and persistence to advance the knowledge of thrips on a global scale, Dr. Mound has described over 700 species and 100 genera. His studies have helped with species identifications in important pest groups, which in turn has had a pivotal role in the management of pests and the prevention of the establishment of new pest species.
One of the first-ever entomologists to join the ZooKeys editorial team, Mound has been the journal’s go-to editor for the order Thysanoptera for more than a decade. He oversaw the publication of 18 research papers at ZooKeys. He has also authored 11 articles in the journal, including especially valuable identification keys of different taxa from across the globe. He has also been one of the journal’s active reviewers.
“As Editor-in-Chief of ZooKeys, I wish you a ‘Happy 90th birthday!’ and thank you for your dedication and support of the journal since its very early days,”
“We are truly honoured to have been working with Laurence all these years! His passion and dedication have left a permanent mark on the field of entomology. We toast to the future success and happiness of a dear friend, editor, and author. May his work continue to inspire many more generations of entomologists and conservationists,”
Biologists at Eawag have identified ten species of whitefish in the lakes of the Reuss river system. Of these, seven have been described as distinct species for the first time – although in two cases this required inspection of specimens from historical collections, since eutrophication of lakes in the 20th century also led to the extinction of fish species in Central Switzerland.
The “Edelfisch” (Coregonus nobilis) was, after the smaller “Albeli”, the second most commonly caught species of whitefish in Lake Lucerne until, in the second half of the 20th century, phosphate from domestic wastewater and nutrient-rich run-off from farmland led to a massive increase in algal blooms. Compared to the lakes of the Central Plateau, nutrient levels in Lake Lucerne were moderate, and eutrophication was short-lived; even so, due to algal decomposition, oxygen was depleted in the deeper layers of the lake. The “Edelfisch”, which reproduces in the late summer at a spawning depth of 80 metres or more, suffered as a result. Shortly before nutrient inputs decreased following the ban on phosphates in detergents and the expansion of wastewater treatment plants, stocks of this species collapsed and it was considered to be extinct in 1980. Only from the late 1990s were individual specimens caught once again, unequivocally identified as C. nobilis in 2000 by the whitefish specialist and Eawag researcher Rudolf Müller.
Five whitefish species in Lake Lucerne
As the “Edelfisch” is now a protected species, Lake Lucerne has not lost any of its historically recorded whitefish species. Indeed, in addition to the familiar “Edelfisch”, “Albeli” and “Bodenbalchen”, Eawag scientists have identified two new species – two large whitefish, differing from the previously known species in their habits, morphological characteristics and genetic composition. The pelagic “Schwebbalchen” (Coregonus suspensus) probably lives permanently in the open water, not only for foraging but also for reproduction – a spawning behaviour only previously observed in the “Blaufelchen” (C. wartmanni) of Lake Constance. Occupying a position intermediate to the pelagic “Schwebbalchen” (C. suspensus) and the “Bodenbalchen” (C. litoralis) is the littoral “Schwebbalchen” (C. intermundia).
Lake Zug survivor
Particularly affected by eutrophication in the mid-20th century were whitefish in Lake Zug, which – like other Central Plateau lakes – was exposed to higher nutrient levels, for a longer period, than waterbodies further upstream. As only the uppermost water layers of this 200-metre-deep lake maintained oxygen levels sufficient to support fish, two whitefish species spawning in the depths of the lake died out – the (Lake Zug) “Albeli” (C. zugensis) and “Albock” (C. obliterus). Indeed, the Lake Zug “Albock” would have been completely forgotten if specimens had not been found by Eawag scientists Oliver Selz and Ole Seehausen in the historical Steinmann-Eawag Collection. Its morphology and historical accounts indicate that the Lake Zug “Albock” was a deep‑water specialist – a specialisation only otherwise observed to the same degree in the (likewise extinct) Lake Constance Kilch (C. gutturosus) and the (still extant) Lake Thun Kropfer (C. profundus).
The only whitefish species still found in Lake Zug today, spawning near the shore, is the “Balchen”. Testifying to its survival is its new scientific name – Coregonus supersum (“I have survived”).
Species endemic to each lake
Also new are the scientific names of the Lake Lucerne “Bodenbalchen” (C. litoralis) and “Albeli” (C. muelleri). For the morphological and genetic studies carried out by Oliver Selz and Ole Seehausen in order to revise the taxonomy of whitefish showed that almost every lake in Central Switzerland has its own species of “Albeli” and “Bodenbalchen”.
Previously, the “Albeli” of Lakes Zug and Lucerne had been classified as members of the same species (C. zugensis), while the “Balchen” spawning near the shore of the various Central Swiss lakes were known as C. suidteri. These collective species names have now been inherited by the extinct Lake Zug “Albeli” (C. zugensis) and the Lake Sempach “Balchen” (C. suidteri).
The Lake Lucerne “Albeli” received the new name C. muelleri in honour of the fisheries biologist and whitefish specialist Dr Rudolf Müller (1944–2023).
A reflection of Switzerland
The lakes of the Reuss river system are a reflection of Switzerland as a whole. Since the last ice age, at least 35 whitefish species evolved in the pre-alpine lakes, usually two or more in each lake. Switzerland lost a third of these species during the period of lake eutrophication around the middle of the 20th century. Many of the lost species are known to researchers only thanks to historical collections, such as that created before the eutrophication period by the naturalist Paul Steinmann and currently curated by the Natural History Museum of Bern.
Original source:
Selz OM, Seehausen O (2023) A taxonomic revision of ten whitefish species from the lakes Lucerne, Sarnen, Sempach and Zug, Switzerland, with descriptions of seven new species (Teleostei, Coregonidae). ZooKeys 1144: 95-169. https://doi.org/10.3897/zookeys.1144.67747
Five new drop-dead-gorgeous tree-dwelling snake species were discovered in the jungles of Ecuador, Colombia, and Panama. Conservationists Leonardo DiCaprio, Brian Sheth, Re:wild, and Nature and Culture International chose the names for three of them in honor of loved ones while raising awareness about the issue of rainforest destruction at the hands of open-pit mining operations. The research was conducted by Ecuadorian biologist Alejandro Arteaga, an Explorers Club Discovery Expedition Grantee, and Panamanian biologist Abel Batista.
The mountainous areas of the upper-Amazon rainforest and the Chocó-Darién jungles are world-renowned for the wealth of new species continually discovered in this region. However, it is becoming increasingly clear that they also house some of the largest gold and copper deposits in the world. During the COVID-19 pandemic, the proliferation of illegal open-pit gold and copper mining operations in the jungles of Ecuador, Colombia, and Panama reached a critical level and is decimating tree-dwelling snake populations.
Neotropical snail-eating snakes (genera Sibon and Dipsas) have a unique lifestyle that makes them particularly prone to the effects of gold and copper mining. First, they are arboreal, so they cannot survive in areas devoid of vegetation, such as in open-pit mines. Second, they feed exclusively on slugs and snails, a soft-bodied type of prey that occurs mostly along streams and rivers and is presumably declining because of the pollution of water bodies.
“When I first explored the rainforests of Nangaritza River in 2014, I remember thinking the place was an undiscovered and unspoiled paradise,” says Alejandro Arteaga, author of the research study on these snakes, which was published in the journal ZooKeys. “In fact, the place is called Nuevo Paraíso in Spanish, but it is a paradise no more. Hundreds of illegal gold miners using backhoe loaders have now taken possession of the river margins, which are now destroyed and turned into rubble.”
The presence of a conservation area may not be enough to keep the snail-eating snakes safe. In southeastern Ecuador, illegal miners are closing in on Maycu Reserve, ignoring landowner rights and even making violent threats to anyone opposed to the extraction of gold. Even rangers and their families are tempted to quit their jobs to work in illegal mining, as it is much more lucrative. A local park ranger reports that by extracting gold from the Nangaritza River, local people can earn what would otherwise be a year’s salary in just a few weeks. “Sure, it is illegal and out of control, but the authorities are too afraid to intervene,” says the park ranger. “Miners are just too violent and unpredictable.”
In Panama, large-scale copper mining is affecting the habitat of two of the new species: Sibon irmelindicaprioae and S. canopy. Unlike the illegal gold miners in Ecuador and Colombia, the extraction in this case is legal and at the hands of a single corporation: Minera Panamá S.A., a subsidiary of the Canadian-based mining and metals company First Quantum Minerals Ltd. Although the forest destruction at the Panamanian mines is larger in extent and can easily be seen from space, its borders are clearly defined and the company is under the purview of local environmental authorities.
“Both legal and illegal open-pit mines are uninhabitable for the snail-eating snakes,” says Arteaga, “but the legal mines may be the lesser of two evils. At the very least they respect the limit of nearby protected areas, answer to a higher authority, and are presumably unlikely to enact violence on park rangers, researchers, and conservationists.”
Sibon canopy, one of the newly described species, appears to have fairly stable populations inside protected areas of Panama, although elsewhere nearly 40% of its habitat has been destroyed. At Parque Nacional Omar Torrijos, where it is found, there has been a reduction in the number of park rangers (already very few for such a large protected area). This makes it easier for loggers and poachers to reach previously unspoiled habitats that are essential for the survival of the snakes.
Lack of employment and the high price of gold aggravate the situation. No legal activity can compete against the “gold bonanza.” More and more often, farmers, park rangers, and indigenous people are turning to illegal activities to provide for their families, particularly during crisis situations like the COVID-19 pandemic, when NGO funding was at its lowest.
“These new species of snake are just the tip of the iceberg in terms of new species discoveries in this region, but if illegal mining continues at this rate, there may not be an opportunity to make any future discoveries,” concludes Alejandro Arteaga.
Fortunately, three NGOs in Ecuador and Panama (Khamai, Nature and Culture International, and Adopta Bosque) have already made it their mission to save the snake’s habitat from the emerging gold mining frenzy. Supporting these organizations is vital, because their quest for immediate land protection is the only way to save the snakes from extinction.
Research article:
Arteaga A, Batista A (2023) A consolidated phylogeny of snail-eating snakes (Serpentes, Dipsadini), with the description of five new species from Colombia, Ecuador, and Panama. ZooKeys 1143: 1-49. https://doi.org/10.3897/zookeys.1143.93601
The scientific name and English-language common name acknowledge the importance of maintaining equitable and safe access to outdoor spaces for all people.
A new species of Australian bush tomato described from the Garrarnawun Lookout in Judbarra National Park provides a compelling example of the need to provide equal and safe access to natural places. Bucknell University postdoctoral fellow Tanisha Williams and biology professor Chris Martine led the study following a chance encounter with an unusual population of plants during a 2019 research expedition to the Northern Territory.
Martine, who has studied northern Australia’s bush tomatoes for more than 20 years, immediately sensed that the plants were representative of a not-yet-described species, so he, Angela McDonnell (St. Cloud State University), Jason Cantley (San Francisco State University), and Peter Jobson (Northern Territory Herbarium in Alice Springs) combed the local area for plants to closely study and make research collections from. The task was made easier by the fact that the Garrarnawun Lookout is accessible by a set of dozens of human-made stone steps running directly from the unpaved parking area to the peak of the sandstone outcrop – without which the new species might have otherwise gone unnoticed.
The botanists were able to collect numerous new specimens and have now published the new species description in the open-access journal PhytoKeys, choosing the name Solanum scalarium as a nod to the steps leading to the plant and the unusual ladder-like prickles that adorn the flowering stems. The Latin “scalarium” translates to “ladder”, “staircase” or “stairs.”
“This Latin name does relate to the appearance of this species, how it looks,” says first-author Williams. “But it is also a way for us to acknowledge how important it is to create ways for people to interact with nature; not just scientists like us, but everyone.”
According to the authors, a recent study done by the Department of Local Government, Sport and Cultural Industries in Western Australia found that 8 in 10 people felt it is important to have access to natural spaces, both locally and outside of their current jurisdictions. However, one in three persons felt dissatisfied with the current outdoor spaces available to them and many identified barriers to access and participation in outdoor activities that include urbanization – which is especially credited for the growing number of Australians that lack outdoor experiences.
Importantly, the awareness of who has access and feels safe to participate in outdoor activities is being recognized throughout Australia and the lack of diversity in participation from culturally diverse and marginalized populations has been identified as an issue. Key indices such as ethnic background, socio-economic status, physical abilities and gender, are indicators of low outdoor recreation participation.
“These disparities of who are and are not participating and who feels safe and welcomed are artifacts of historic and current environmental and social injustices,” notes Williams. “To overcome these injustices and increase access and participation from diverse groups, intentional and targeted efforts are needed to provide a range of outdoor experiences that attract people from all of the 270 plus ancestries with which Australians identify with and special attention should be placed on groups historically excluded from outdoor spaces.”
Also now known as the Garrarnawun Bush Tomato, Solanum scalarium is a distant cousin of the cultivated eggplant and a close relative to a number of other Australian species recently discovered by Martine and colleagues that were also published in PhytoKeys including Solanum plastisexum, named to reflect the diversity of sex forms across Earth’s organisms; and Solanum watneyi, named for the space botanist of the book/film The Martian.
The scientists hope that the naming of this latest new species highlights the importance of building community around natural spaces.
“We suggest the use of Garrarnawun Bush Tomato for the English-language common name of the species,” the authors write, “In recognition of the Garrarnawun Lookout near where the type collection was made, a traditional meeting place of the Wardaman and Nungali-Ngaliwurru peoples whose lands overlap in this area.”
Access to nature is not just a concern in Australia.
“In the United States, where most of the authors of this paper are located, “access” is one thing but safety and equitability are another,” says Martine, “The U.S. National Parks Service reports that around 95% of those who visit federal parks are white. Meanwhile, African Americans, Latinos, women, and members of the LGBTQIA+ communities often report feeling unwelcome or unsafe in outdoor spaces.”
“If African Americans, for example, are already apprehensive in a country where they make up 13% of the population, it should be understandable that they are hesitant to be part of a community where they represent as little as 1% of participants.”
Dr. Tanisha Williams, Bucknell’s Richard E. and Yvonne Smith Post-doctoral Fellow, and Dr. Chris Martine, Bucknell’s David Burpee Professor, in Western Australia in June 2022. Photo by Claire Marino
Williams suggests that James Edward Mills, author of The Adventure Gap (2014) put it best:
“It’s not enough to say that the outdoors is free and open for everyone to enjoy. Of course it is! But after four centuries of racial oppression and discrimination that systematically made Black Americans fear for their physical safety, we must also make sure that we create a natural environment where people of color can not only feel welcome but encouraged to become active participants as outdoor enthusiasts and stewards dedicated to the protection of the land.”
Recent Bucknell graduate Jonathan Hayes, who measured and analyzed the physical characters of the new species using plants grown from seed in a campus greenhouse, joins Williams, McDonnell, Cantley, Jobson, and Martine as a co-author on the publication.
Research Article:
Williams TM, Hayes J, McDonnell AJ, Cantley JT, Jobson P, Martine CT (2022) Solanum scalarium (Solanaceae), a newly-described dioecious bush tomato from Judbarra/Gregory National Park, Northern Territory, Australia. PhytoKeys 216: 103-116. https://doi.org/10.3897/phytokeys.216.85972
All processes fit into a broad S-shaped envelope extending from the briefest to the most enduring biological events. For the first time, we have the first simple model that depicts the scope and scale of biology.
Arctic tern by Mark Stock, Schleswig-Holstein Wadden Sea National Park. License: CC BY-SA.
As biology is progressing into a digital age, it is creating new opportunities for discovery.
Increasingly, information from investigations into aspects of biology from ecology to molecular biology is available in a digital form. Older ‘legacy’ information is being digitized. Together, the digital information is accumulated in databases from which it can be harvested and examined with an increasing array of algorithmic and visualization tools.
From this trend has emerged a vision that, one day, we should be able to analyze any and all aspects of biology in this digital world.
However, before this can happen, there will need to be an infrastructure that gathers information from ALL sources, reshapes it as standardized data using universal metadata and ontologies, and made freely available for analysis.
That information also must make its way to trustworthy repositories to guarantee the permanent access to the data in a polished and fully suited for re-use state.
The first layer in the infrastructure is the one that gathers all old and new information, whether it be about the migrations of ocean mammals, the sequence of bases in ribosomal RNA, or the known locations of particular species of ciliated protozoa.
How many of these subdomains will be there?
To answer this, we need to have a sense of the scope and scale of biology.
With the Nature’s Envelope we have, for the first time, a simple model that depicts the scope and scale of biology. Presented as a rhetorical device by its author Dr David J. Patterson (University of Sydney, Australia), the Nature’s Envelope is described in a Forum Paper, published in the open-science journal Research Ideas and Outcomes(RIO).
This is achieved by compiling information about the processes conducted by all living organisms. The processes occur at all levels of organization, from sub-molecular transactions, such as those that underpin nervous impulses, to those within and among plants, animals, fungi, protists and prokaryotes. Further, they are also the actions and reactions of individuals and communities; but also the sum of the interactions that make up an ecosystem; and finally, the consequences of the biosphere as a whole system.
Nature’s Envelope, in green, includes all processes carried out by, involving, or the result of the activities of any and all organisms. The axes depict the duration of events and the sizes of participants using a log10 scale. Image by David J. Patterson. License: CC BY.
In the Nature’s Envelope, information on sizes of participants and durations of processes from all levels of organization are plotted on a grid. The grid uses a logarithmic (base 10) scale, which has about 21 orders of magnitude of size and 35 orders of magnitude of time. Information on processes ranging from the subatomic, through molecular, cellular, tissue, organismic, species, communities to ecosystems is assigned to the appropriate decadal blocks.
Examples include movements from the stepping motion of molecules like kinesin that move forward 8 nanometres in about 10 milliseconds; or the migrations of Arctic terns which follow routes of 30,000 km or more from Europe to Antarctica over 3 to 4 months.
The extremes of life processes are determined by the smallest and largest entities to participate, and the briefest and most enduring processes.
The briefest event to be included is the transfer of energy from a photon to a photosynthetic pigment as the photon passes through a chlorophyll molecule several nanometres in width at a speed of 300,000 km per second. That transaction is conducted in about 10-17 seconds. As it involves the smallest subatomic particles, it defines the lower left corner of the grid.
The most enduring is the process of evolution that has been progressing for almost 4 billion years. The influence of the latter has created the biosphere (the largest living object) and affects the gas content of the atmosphere. This process established the upper right extreme of the grid.
All biological processes fit into a broad S-shaped envelope that includes about half of the decadal blocks in the grid. The envelope drawn round the initial examples is Nature’s Envelope.
“Nature’s envelope will be a useful addition to many discussions, whether they deal with the infrastructure that will manage the digital age of biology, or provide the context for education on the diversity and range of processes that living systems engage in.
The version of Nature’s Envelopepublished in the RIO journal is seen as a first version, to be refined and enhanced through community participation,”
comments Patterson.
***
Original source:
Patterson DJ (2022) The scope and scale of the life sciences (‘Nature’s envelope’). Research Ideas and Outcomes 8: e96132. https://doi.org/10.3897/rio.8.e96132
California now has two new scorpions on its list of species, thanks to the efforts of two keen-eyed high school students from the Bay Area and the California Academy of Sciences. Harper Forbes and Prakrit Jain, avid users on the community science platform iNaturalist, discovered the new-to-science scorpions while trawling the thousands of observations uploaded by other users in the state.
New species Paruroctonus soda and Paruroctonus conclusus are playa scorpions, meaning they can only be found around dry lake beds, or playas, from the deserts of Central and Southern California. For scientists, conservation managers, and the growing communities of wildlife observers on platforms like iNaturalist, these newly described species provide a better understanding of California’s biodiversity and the places most in need of protection—a cornerstone of the Academy’s Thriving California initiative.
In 2019, Forbes and Jain came across an unknown scorpion species on iNaturalist observed near Koehn Lake—an ephemeral lake in the Mojave Desert—that had remained unidentified since it was uploaded six years earlier.
“We weren’t entirely sure what we were looking at,” Jain says. “Over the next couple years, we studied scorpions in the genus Paruroctonus and learned they frequently evolve to live in alkali playas like Koehn Lake. When we returned to that initial observation, we realized we were looking at an undescribed Paruroctonus species.”
Serendipitously, another unknown scorpion observed in San Luis Obispo County was uploaded to iNaturalist shortly after their discovery in May of 2021. With a few years of arachnid research under their belts, Forbes and Jain knew right away that it was a new species in the same genus. They immediately contacted Esposito to assist, resulting in two new-to-science scorpions—P. soda and P. conclusus—and a published paper in which Forbes and Jain are first authors.
“Harper and Prakrit went through all the steps to formally describe a species, sampling the populations and comparing them with existing specimens in our collection,” Esposito says. “There’s a lot of work involved, but they are incredibly passionate about this research. It’s inspiring to see that their hobby is one that advances biodiversity science.”
P. soda and P. conclusus are both alkali sink specialists, meaning they have adapted to the alkaline basins—dry, salty playas with high pH soils—in which they evolved. Each species has a very limited range and can only be found in the playas where they were discovered: Soda Lake (the former’s namesake) and Koehn Lake. During their summer break, Forbes and Jain visited the lakes to collect specimens of each new species. After scouting the alkali flats during the daytime for habitats most suited for playa scorpions, they set out with their vials and forceps at dusk, as these desert dwellers are primarily active at night. Luckily, most scorpions fluoresce under ultraviolet light, so the researchers used blacklights to scour the open playas while keeping an eye out for their glowing subjects. They also searched the scorpions’ typical hiding places, peering into cracks in the hard clay soil and combing through common alkali sink plants like iodine bush (Allenrolfea occidentalis) and bush seepweed (Suaeda nigra). At the end of each trip, they successfully collected a sample size of both males and females sufficient for the study.
My favorite part of this story that hasn’t been told yet is @calacademy ‘s own @RebaFay & @alisonkestrel first introduced Prakrit to cit sci when his mom turned up at a bioblitz with an enthusiastic 11-year old (?) & I met him a couple of years later at a @HoplandREC bioblitz! https://t.co/Zs8ToYz31b
While the species range for P. soda is small (just a few square miles), it is entirely located within Carrizo Plain National Monument—federally protected land that renders this species safe from human-driven threats. Unfortunately, this is not the case for P. conclusus.
“While no official assessment has been carried out for either species, P. conclusus can only be found on a narrow strip of unprotected land, less than two kilometers long and only a few meters wide in some places,” Forbes says. “The entire species could be wiped out with the construction of a single solar farm, mine, or housing development.”
Habitat of Paruroctonus conclusus at the type locality, taken in July 2021.
Though P. soda seems to be relatively safe compared to P. conclusus, the constant threat of climate change endangers all wildlife, particularly in delicate desert environments. As part of the Thriving California initiative, Academy scientists hope to collaborate with schools and communities throughout the state to conduct further biodiversity research. By harnessing scientific data—including crowd-sourced data from iNaturalist—and providing access to environmental and science learning, the initiative hopes to halt biodiversity loss in the Golden State.
Now high school graduates, this fall Forbes will study evolutionary biology at the University of Arizona and Jain will study integrative biology at the University of California, Berkeley. They will continue their work with Esposito and are currently collaborating on their next major project: a holistic book of California’s scorpions. In addition to their research and academic endeavors, they are excited to get back out in the field to find, collect, and identify more scorpions.
“I will never get tired of going out at night to find a certain scorpion for the first time,” Jain says. “Whether it be solving the mystery of a long-lost scorpion or discovering something new in an unexpected place, a trip to the desert is always a challenge and an adventure.”
***
Research article:
Jain P, Forbes H, Esposito LA (2022) Two new alkali-sink specialist species of Paruroctonus Werner 1934 (Scorpiones, Vaejovidae) from central California. ZooKeys 1117: 139-188. https://doi.org/10.3897/zookeys.1117.76872
After the revision of available type specimens from all available collections in the Russian museums and the Senckenberg Museum in Frankfurt-on-Main, as well as newly collected material in the Black Sea and the North-East Atlantic, a research team of scientists, led by Dr Vassily Spiridonov from Shirshov Institute of Oceanology of Russian Academy of Sciences, re-described Macropodia czernjawskii and provided the new data on its records and updated its ecological characteristics.
Even though recognised in the Mediterranean Sea, the Macropodia czernjawskii spider crab was ignored by scientists (even by its namesake Vladimir Czernyavsky) in the regional faunal accounts of the Black Sea for more than a century. At the same time, although other species of the genus have been listed as Black sea fauna, those listings are mostly wrong and occurred either due to historical circumstances or misidentifications.Now, scientists re-describe this, most likely, only species of the genus occurring in the Black Sea in the open-access journal Zoosystematics and Evolution.
The studied spirder crab species Macropodia czernjawskii in the wild, Tuaphat (near Gelendzhik), Caucasus, Black Sea. Photo by Sergey Anosov
The spider crab genus Macropodia was discovered in 1814 and currently includes 18 species, mostly occurring in the Atlantic and the Mediterranean. The marine fauna of the Black Sea is predominantly of Mediterranean origin and Macropodia czernjawskii was firstly discovered in the Black Sea in 1880, but afterwards, its presence there was largely ignored by the scientists.
After the revision of available type specimens from all available collections in the Russian museums and the Senckenberg Museum in Frankfurt-on-Main, as well as newly collected material in the Black Sea and the North-East Atlantic, a research team of scientists, led by Dr Vassily Spiridonov from Shirshov Institute of Oceanology of Russian Academy of Sciences, re-described Macropodia czernjawskii and provided the new data on its records and updated its ecological characteristics.
“The analysis of the molecular genetic barcode (COI) of the available material of Macropodia species indicated that M. czernjawskii is a very distinct species while M. parva should be synonimised with M. rostrata, and M. longipes is a synonym of M. tenuirostris”,
states Dr Spiridonov sharing the details of the genus analysis.
All Macropodia species have epibiosis and M. czernjawskii is no exception: almost all examined crabs in 2008-2018 collections had significant epibiosis. It normally consists of algae and cyanobacteria and, particularly, a non-indigenous species of red alga Bonnemaisonia hamifera, officially reported in 2015 at the Caucasian coast of the Black Sea, was found in the epibiosis of M. czernjawskii four years earlier.
“It improves our understanding of its invasion history. Museum and monitoring collections of species with abundant epibiosis (in particular inachid crabs) can be used as an additional tool to record and monitor introduction and establishments of sessile non-indigenous species,”
suggests Dr Spiridonov.
The spider crab species Macropodia czernjawskii in the wild, Tuaphat (near Gelendzhik), Caucasus, Black Sea. Photo by Sergey Anosov
***
Original source:
Spiridonov VA, Simakova UV, Anosov SE, Zalota AK, Timofeev VA (2020) Review of Macropodia in the Black Sea supported by molecular barcoding data; with the redescription of the type material, observations on ecology and epibiosis of Macropodia czernjawskii (Brandt, 1880) and notes on other Atlanto-Mediterranean species of Macropodia Leach, 1814 (Crustacea, Decapoda, Inachidae). Zoosystematics and Evolution 96(2): 609-635. https://doi.org/10.3897/zse.96.48342
Pensoft creates a specialised data paper article type for the omics community within Biodiversity Data Journal to reflect the specific nature of omics data. The scholarly publisher and technology provider established a manuscript template to help standardise the description of such datasets and their most important features.
By Mariya Dimitrova, Raïssa Meyer, Pier Luigi Buttigieg, Lyubomir Penev
Data papers are scientific papers which describe a dataset rather than present and discuss research results. The concept was introduced to the biodiversity community by Chavan and Penev in 2011 as the result of a joint project of GBIF and Pensoft.
Since then, Pensoft has implemented the data paper in several of its journals (Fig. 1). The recognition gained through data papers is an important incentive for researchers and data managers to author better quality metadata and to make it Findable, Accessible, Interoperable and Re-usable (FAIR). High quality and FAIRness of (meta)data are promoted through providing peer review, data audit, permanent scientific record and citation credit as for any other scholarly publication. One can read more on the different types of data papers and how they help to achieve these goals in the Strategies and guidelines for scholarly publishing of biodiversity data (https://doi.org/10.3897/rio.3.e12431).
Fig. 1 Number of data papers published in Pensoft’s journals since 2011.
The data paper concept was initially based on the standard metadata descriptions, using the Ecological Metadata Language (EML). Apart from distinguishing a specialised place for dataset descriptions by creating a data paper article type, Pensoft has developed multiple workflows for streamlined import of metadata from various repositories and their conversion into data paper a manuscripts in Pensoft’s ARPHA Writing Tool (AWT). You can read more about the EML workflow in this blog post.
Similarly, we decided to create a specialised data paper article type for the omics community within Pensoft’s Biodiversity Data Journal to reflect the specific nature of omics data. We established a manuscript template to help standardise the description of such datasets and their most important features. This initiative was supported in part by the IGNITE project.
How can authors publish omics data papers?
There are two ways to do publish omics data papers – (1) to write a data paper manuscript following the respective template in the ARPHA Writing Tool (AWT) or (2) to convert metadata describing a project or study deposited in EMBL-EBI’s European Nucleotide Archive (ENA) into a manuscript within the AWT.
The first method is straightforward but the second one deserves more attention. We focused on metadata published in ENA, which is part of the International Nucleotide Sequence Database Collaboration (INSDC) and synchronises its records with these of the other two members (DDBJ and NCBI). ENA is linked to the ArrayExpress and BioSamples databases, which describe sequencing experiments and samples, and follow the community-accepted metadata standards MINSEQE and MIxS. To auto populate a manuscript with a click of a button, authors can provide the accession number of the relevant ENA Study of Project and our workflow will automatically retrieve all metadata from ENA, as well as any available ArrayExpress or BioSamples records linked to it (Fig. 2). After that, authors can edit any of the article sections in the manuscript by filling in the relevant template fields or creating new sections, adding text, figures, citations and so on.
An important component of the OMICS data paper manuscript is a supplementary table containing MIxS-compliant metadata imported from BioSamples. When available, BioSamples metadata is automatically converted to a long table format and attached to the manuscript. The authors are not permitted to edit or delete it inside the ARPHA Writing Tool. Instead, if desired, they should correct the associated records in the sourced BioSamples database. We have implemented a feature allowing the automatic re-import of corrected BioSamples records inside the supplementary table. In this way, we ensure data integrity and provide a reliable and trusted source for accessing these metadata.
Fig. 2 Automated generation of omics data paper manuscripts through import and conversion of metadata associated with the Project ID or Study ID at ENA
Here is a step-by-step guide for conversion of ENA metadata into a data paper manuscript:
The author has published a dataset to any of the INSDC databases. They copy its ENA Study or Project accession number.
The author goes to the Biodiversity Data Journal (BDJ) webpage, clicks the “Start a manuscript” buttоn and selects OMICS Data Paper template in the ARPHA Writing Tool (AWT). Alternatively, the author can also start from the AWT website, click “Create a manuscript”, and select “OMICS Data Paper” as the article type, the Biodiversity Data Journal will be automatically marked by the system. The author clicks the “Import a manuscript” button at the bottom of the webpage.
The author pastes the ENA Study or Project accession number inside the relevant text box (“Import an European Nucleotide Archive (ENA) Study ID or Project ID”) and clicks “Import”.
The Project or Study metadata is converted into an OMICS data paper manuscript along with the metadata from ArrayExpress and BioSamples if available. The author can start making changes to the manuscript, invite co-authors and then submit it for technical evaluation, peer review and publication.
Our innovative workflow makes authoring omics data papers much easier and saves authors time and efforts when inserting metadata into the manuscript. It takes advantage of existing links between data repositories to unify biodiversity and omics knowledge into a single narrative. This workflow demonstrates the importance of standardisation and interoperability to integrate data and metadata from different scientific fields.
We have established a special collection for OMICS data papers in the Biodiversity Data Journal. Authors are invited to describe their omics datasets by using the novel streamlined workflow for creating a manuscript at a click of a button from metadata deposited in ENA or by following the template to create their manuscript via the non-automated route.
To stimulate omics data paper publishing, the first 10 papers will be published free of charge. Upon submission of an omics data paper manuscript, do not forget to assign it to the collection Next-generation publishing of omics data.
A colony of what is apparently a new species of the genus Hipposideros found in an abandoned gold mine in Western Kenya Photo by B. D. Patterson / Field Museum
Newly published findings about the phylogenetics and systematics of some previously known, but also other yet to be identified species of Old World Leaf-nosed bats, provide the first contribution to a recently launched collection of research articles, whose task is to help scientists from across disciplines to better understand potential hosts and vectors of zoonotic diseases, such as the Coronavirus. Bats and pangolins are among the animals already identified to be particularly potent vehicles of life-threatening viruses, including the infamous SARS-CoV-2.
The article, publicly available in the peer-reviewed scholarly journal ZooKeys, also pilots a new generation of Linked Open Data (LOD) publishing practices, invented and implemented to facilitate ongoing scientific collaborations in times of urgency like those we experience today with the COVID-19 pandemic currently ravaging across over 230 countries around the globe.
In their study, an international team of scientists, led by Dr Bruce Patterson, Field Museum‘s MacArthur curator of mammals, point to the existence of numerous, yet to be described species of leaf-nosed bats inhabiting the biodiversity hotspots of East Africa and Southeast Asia. In order to expedite future discoveries about the identity, biology and ecology of those bats, they provide key insights into the genetics and relations within their higher groupings, as well as further information about their geographic distribution.
“Leaf-nosed bats carry coronaviruses–not the strain that’s affecting humans right now, but this is certainly not the last time a virus will be transmitted from a wild mammal to humans. If we have better knowledge of what these bats are, we’ll be better prepared if that happens,”
says Dr Terrence Demos, a post-doctoral researcher in Patterson’s lab and a principal author of the paper.
One of the possibly three new to science bat species, previously referred to as Hipposideros caffer or Sundevall’s leaf-nosed bat Photo by B. D. Patterson / Field Museum
“With COVID-19, we have a virus that’s running amok in the human population. It originated in a horseshoe bat in China. There are 25 or 30 species of horseshoe bats in China, and no one can determine which one was involved. We owe it to ourselves to learn more about them and their relatives,”
comments Patterson.
In order to ensure that scientists from across disciplines, including biologists, but also virologists and epidemiologists, in addition to health and policy officials and decision-makers have the scientific data and evidence at hand, Patterson and his team supplemented their research publication with a particularly valuable appendix table. There, in a conveniently organized table format, everyone can access fundamental raw genetic data about each studied specimen, as well as its precise identification, origin and the natural history collection it is preserved. However, what makes those data particularly useful for researchers looking to make ground-breaking and potentially life-saving discoveries is that all that information is linked to other types of data stored at various databases and repositories contributed by scientists from anywhere in the world.
Furthermore, in this case, those linked and publicly available data or Linked Open Data (LOD) are published in specific code languages, so that they are “understandable” for computers. Thus, when a researcher seeks to access data associated with a particular specimen he/she finds in the table, he/she can immediately access additional data stored at external data repositories by means of a single algorithm. Alternatively, another researcher might want to retrieve all pathogens extracted from tissues from specimens of a specific animal species or from particular populations inhabiting a certain geographical range and so on.
###
The data publication and dissemination approach piloted in this new study was elaborated by the science publisher and technology provider Pensoft and the digitisation company Plazi for the purposes of a special collection of research papers reporting on novel findings concerning the biology of bats and pangolins in the scholarly journal ZooKeys. By targeting the two most likely ‘culprits’ at the roots of the Coronavirus outbreak in 2020: bats and pangolins, the article collection aligns with the agenda of the COVID-19 Joint Task Force, a recent call for contributions made by the Consortium of European Taxonomic Facilities (CETAF), the Distributed System for Scientific Collections (DiSSCo) and the Integrated Digitized Biocollections (iDigBio).
###
Original source:
Patterson BD, Webala PW, Lavery TH, Agwanda BR, Goodman SM, Kerbis Peterhans JC, Demos TC (2020) Evolutionary relationships and population genetics of the Afrotropical leaf-nosed bats (Chiroptera, Hipposideridae). ZooKeys 929: 117-161. https://doi.org/10.3897/zookeys.929.50240