Research on bats and pangolins – potential vectors of zoonotic pandemics like COVID-19 – invited to a free-to-publish special issue in ZooKeys

Captively bred pangolins. 
Photo by Hua L. et al., taken from their study on the current status, problems and future prospects of captive breeding of pangolins, openly accessible in ZooKeys at: https://doi.org/10.3897/zookeys.507.6970

Accepted papers will be published free of charge in recognition of the emergency of the current global situation

Was it the horseshoe bat or could it rather be one of the most traded mammal in the world: the pangolin, at the root of the current devastating pandemic that followed the transmission of the zoonotic SARS-CoV-2 virus to a human host, arguably after infected animal products reached poorly regulated wet markets in Wuhan, China, last year? 

To make matters worse, the current situation is no precedent. Looking at the not so distant past, we notice that humanity has been repeatedly falling victim to viral deadly outbreaks, including Zika, Ebola, the Swine flu, the Spanish flu and the Plague, where all are linked to an animal host that at one point, under specific circumstances transferred the virus to people. 

Either way, here’s a lesson humanity gets to learn once again: getting too close to wildlife is capable of opening the gates to global disasters with horrific and irreversible damage on human lives, economics and ecosystems. What is left for us to understand is how exactly these transmission pathways look like and what are the factors making certain organisms like the bat and the pangolin particularly efficient vectors of diseases such as COVID-19 (Coronavirus). This crucial knowledge could’ve been easier for us to grasp had we only obtained the needed details about those species on time.

Aligning with the efforts of the biodiversity community, such as the recently announced DiSSCo and CETAF COVID-19 Task Force, who intend to create an efficient network of taxonomists, collection curators and other experts from around the globe and equip them with the tools and large datasets needed to combat the unceasing pandemic, the open-access peer-reviewed scholarly journal ZooKeys invites researchers from across the globe to submit their work on the biology of bats and pangolins to a free-to-publish special issue. 

The effort will be coordinated with the literature digitisation provider Plazi, who will extract and liberate data on potential hosts from various journals and publishers. In this way, these otherwise hardly accessible data will be re-used to support researchers in generation of new hypotheses and knowledge on this urgent topic.

By providing further knowledge on these sources and vectors of zoonotic diseases, this collection of publications could contribute with priceless insights to make the world better prepared for epidemics like the Coronavirus and even prevent such from happening in the future. 

Furthermore, by means of its technologically advanced infrastructure and services, including expedite peer review and publication processes, in addition to a long list of indexers and databases where publications are registered, ZooKeys will ensure the rapid publication of those crucial findings, and will also take care that once they get online, they will immediately become easy to discover, cite and built on by any researcher, anywhere in the world. 

***

The upcoming “Biology of bats and pangolins” special issue is to add up to some excellent examples of previous research on the systematics, biology and distribution of pangolins and bats published in ZooKeys

In their review paper from 2015, Chinese scientists looked into the issues and prospects around captive breeding of pangolins. A year later, their colleagues at South China Normal University provided further insights into captive breeding, in addition to new data on the reproductive parameters of Chinese pangolins.

Back in 2013, a Micronesian-US research studied the taxonomy, distribution and natural history of flying fox bats inhabiting the Caroline Islands (Micronesia). A 2018 joint study on bat diversity in Sri Lanka focused on chiropteran conservation and management; while a more recent article on the cryptic diversity and range extension of the big-eyed bats in the genus Chiroderma

***

For more information, visit ZooKeys website

Follow ZooKeys on Twitter and Facebook.

*** 

References:

Buden D, Helgen K, Wiles G (2013) Taxonomy, distribution, and natural history of flying foxes (Chiroptera, Pteropodidae) in the Mortlock Islands and Chuuk State, Caroline Islands. ZooKeys 345: 97-135. https://doi.org/10.3897/zookeys.345.5840

Edirisinghe G, Surasinghe T, Gabadage D, Botejue M, Perera K, Madawala M, Weerakoon D, Karunarathna S (2018) Chiropteran diversity in the peripheral areas of the Maduru-Oya National Park in Sri Lanka: insights for conservation and management. ZooKeys 784: 139-162. https://doi.org/10.3897/zookeys.784.25562

Hua L, Gong S, Wang F, Li W, Ge Y, Li X, Hou F (2015) Captive breeding of pangolins: current status, problems and future prospects. ZooKeys 507: 99-114. https://doi.org/10.3897/zookeys.507.6970

Lim BK, Loureiro LO, Garbino GST (2020) Cryptic diversity and range extension in the big-eyed bat genus Chiroderma (Chiroptera, Phyllostomidae). ZooKeys 918: 41-63. https://doi.org/10.3897/zookeys.918.48786

Zhang F, Wu S, Zou C, Wang Q, Li S, Sun R (2016) A note on captive breeding and reproductive parameters of the Chinese pangolin, Manis pentadactyla Linnaeus, 1758. ZooKeys 618: 129-144. https://doi.org/10.3897/zookeys.618.8886

Citizen scientists discover a new snail and name it after Greta Thunberg

A new to science species of land snail was discovered by a group of citizen scientists working together with scientists from Taxon Expeditions, a company that organises scientific field trips for teams consisting of both scientists and laypeople. Having conducted a vote on how to name the species, the expedition participants and the local staff of the National Park together decided to name the mollusc Craspedotropis gretathunbergae. The species name honors the young Swedish activist Greta Thunberg for her efforts to raise awareness about climate change. The study is published in the open-access journal Biodiversity Data Journal.

“The newly described snail belongs to the so-called caenogastropods, a group of land snails known to be sensitive to drought, temperature extremes and forest degradation”,

says snail expert and co-founder of Taxon Expeditions, Dr. Menno Schilthuizen.

All individuals were found very close to the research field station (Kuala Belalong Field Studies Centre) at the foot of a steep hill-slope, next to a river bank, while foraging at night on the green leaves of understorey plants.

Citizen scientist J.P. Lim, who found the first specimen of Greta Thunberg’s snail says:

“Naming this snail after Greta Thunberg is our way of acknowledging that her generation will be responsible for fixing problems that they did not create. And it’s a promise that people from all generations will join her to help”.


Taxon Expeditions participant J.P. Lim collecting snails.
Credit: Taxon Expeditions – Pierre Escoubas
License: CC-BY 4.0

The expedition team approached Ms. Thunberg who said that she would be “delighted” to have this species named after her. 

Video about Taxon Expeditions & Greta Thunberg snail
Credit: Taxon Expeditions

However, this is not the first time that Taxon Expeditions team names a species in honour of an environmental advocate. In 2018, they named a new species of beetle after famous actor and climate activist Leonardo DiCaprio. Mr. DiCaprio temporarily changed his profile photo on Facebook to the photo of “his” beetle to acknowledge this honour.


View of the Ulu Temburong National Park in Brunei from the canopy bridge.
Credit: Taxon Expeditions – Pierre Escoubas
License: CC-BY 4.0

Original source:

Schilthuizen M, Lim JP, van Peursen ADP, Alfano M, Jenging AB, Cicuzza D, Escoubas A, Escoubas P, Grafe U, Ja J, Koomen P, Krotoski A, Lavezzari D, Lim L, Maarschall R, Slik F, Steele D, Ting Teck Wah D, van Zeeland I, Njunjić I (2020) Craspedotropis gretathunbergae, a new species of Cyclophoridae (Gastropoda: Caenogastropoda), discovered and described on a field course to Kuala Belalong rainforest, Brunei. Biodiversity Data Journal 8: e47484. https://doi.org/10.3897/BDJ.8.e47484

Field research in Turkmenistan’s highest mountain reveals high biological diversity

Camera trap image of male Markhor Capra falconeri at the Koytendag State Nature Reserve
Photo by Koytendag State Nature Reserve

New open-access book presents a comprehensive report on the remarkable ecosystems of the Koytendag nature reserve

Situated in the extreme south-east of Turkmenistan: on the border with Uzbekistan and close to the border with Afghanistan, Koytendag presents one of the most distinct landscapes in Central Asia. Reaching elevations of up to 3,137 m, this is also the highest mountain in Turkmenistan.

Location of Koytendag
Image by Atamyrat Veyisov

Koytendag State Nature Reserve and its three Wildlife Sanctuaries: Hojapil, Garlyk and Hojaburjybelent, were established between 1986 and 1990 to protect and preserve the mountain ecosystem of the Koytendag region and maintain the ecological balance between the environment and increasing economic activities.

Since 2013, a series of scientific expeditions and assessments were coordinated and funded by the Royal Society for the Protection of Birds (RSPB) to pave the way for the protection and preservation of the unique landscape and rare wildlife the site is recognised for.

As a result, the efforts of the conducted field studies of multidisciplinary international research teams are brought together in a comprehensive report, which is now openly available as an Advanced Book from the scientific publisher and technology provider Pensoft, edited by Geoff Welch (RSPB) and Prof. Pavel Stoev (National National Museum of Natural History of Bulgaria and Pensoft). Soon, the book will also be available in Russian.

The book is split into eight sections focused on different areas within the study of biodiversity: Flora, Surface dwelling invertebrates, Cave fauna, Fish, Amphibians, Reptiles, Birds and Mammals. An additional chapter is dedicated to the hydrogeology of the site because of its key role in supporting both the cave fauna and the local communities.

Entrance to the newly discovered record-breaking underground lake at the Koytendag State Nature Reserve
Photo by Mikhail Pereladov

In the summary of the report, the authors make a list of the most significant findings made during the research. These include the discovery of a cave hosting the largest underground lake in the whole North Eurasia (4,400 m2) and a total of 48 species of higher plants that can only be found in Koytendag. In terms of Koytendag’s surface-dwelling fauna, the report lists a number of species new to science: a scorpion (most likely yet unnamed species currently recognised as a species complex) and a spider. Meanwhile, a total of seven previously unknown species were found underground, including the very first exclusively subterranean animal found in the country: the insect-like ‘marvellous’ dipluran named Turkmenocampa mirabilis, and a strongly adapted to the underground waters of a desert sinkhole Gammarus troglomorphus. Additionally, the annual monitoring, conducted since 1995 by the reserve staff, report an encouraging increase in the populations of the rare markhors and mouflons. An intact predator-prey community was also identified as a result of observations of numerous Eurasian lynxes and grey wolves, as well as prey species.

Entrance of the cave Kaptarhana, (Lebap Province, Eastern Turkmenistan), where scientists discovered the first ever exclusively subterranean dweller for the country (find more here).
Photo by Aleksandr Degtyarev

Stephanie Ward, RSPB Central Asia Partner Development Officer, says:

“RSPB has been working in Turkmenistan under a Memorandum of Understanding with the Government since 2004. In that time we have had the privilege of working with a team of talented and dedicated national experts across the diverse and inspiring nature of this fascinating country. Our work in Koytendag has captured the attention and interest of many international scientists who hope that their contemporary biodiversity research will help to deepen the understanding and therefore ensure protection of the unique wonders of this mountain ecosystem. As a potential UNESCO World Heritage Site, we will continue to collaborate with the Turkmen people on the research and promotion of Koytendag State Nature Reserve.

Book editor and member of the research team Prof. Pavel Stoev adds:

“Koytendag Mountain is among the least explored and, simultaneously, one of the most biologically diverse regions in Central Asia. The rapid assessments of its flora and fauna revealed a high number of highly specialised species, all of which have undergone a long evolution to adapt to the harsh environments of the mountain. The establishment of Koytendag State Nature Reserve and the associated wildlife sanctuaries is a step in the right direction for the protection of this unique biota.”

###

Cover of the book, available as an open-access Advanced book from: https://doi.org/10.3897/ab.e37858.

Original source:

Welch G, Stoev P (2019) A report of RSPB-supported scientific research at Koytendag State Nature Reserve, East Turkmenistan. Advanced Books. https://doi.org/10.3897/ab.e37858

Additional information:

This work was carried out under the Memorandum of Understanding between the Ministry of Agriculture and Environment Protection of Turkmenistan and the RSPB, within the Project on “Improvement of the status of birds and other biodiversity in Turkmenistan”.

About Koytendag State Nature Reserve:

Koytendag State Nature Reserve was established in 1986 to protect and preserve the mountain ecosystem of the Koytendag region and maintain the ecological balance between the environment and the increasing anthropogenic activities. Of particular importance was the protection of rare species, such as the markhor; important habitats, including pistachio and juniper forests; and the impressive dinosaur trackways at Hojapil.

Advanced Books publishing by Pensoft:

Launched by Pensoft and powered by the scholarly publishing platform ARPHA, the Advanced Books approach aims to issue new books or re-issue books previously only available in print or PDF. In the Advanced Books format, the publications are semantically enhanced and available in HTML and XML as well, in order to accelerate open access, data publication, mining, sharing and reuse. The Advanced books builds on the novel approaches developed by the Pensoft’s journals.



Extraordinary treefrog discovered in the Andes of Ecuador

An adult of the newly described species, Hyloscirtus hillisi. Photo by Gustavo Pazmiño, BIOWEB Ecuador.

A new treefrog species was discovered during a two-week expedition to a remote tabletop mountain at Cordillera del Cóndor, a largely unexplored range in the eastern Andes.

“To reach the tabletop, we walked two days along a steep terrain. Then, between sweat and exhaustion, we arrived to the tabletop where we found a dwarf forest. The rivers had blackwater and the frogs were sitting along them, on branches of brown shrubs similar in color to the frogs’ own. The frogs were difficult to find, because they blended with their background,” Alex Achig, one of the field biologists who discovered the new species comments on the hardships of the expedition.

Curiously, the frog has an extraordinary, enlarged claw-like structure located at the base of the thumb. Its function is unknown, but it could be that it is used either as a defence against predators or as a weapon in fights between competing males.

Having conducted analyses of genetic and morphologic data, scientists Santiago R. Ron, Marcel Caminer, Andrea Varela, and Diego Almeida from the Catholic University of Ecuador concluded that the frog represented a previously unknown species. It was recently described in the open-access journal ZooKeys.

Unlike other frogs, the new species has a claw at the base of the thumb. Photo by Gustavo Pazmiño, BIOWEB Ecuador.

The species name, Hyloscirtus hillisi, honors Dr. David Hillis, a member of the National Academy of Sciences of the United States of America, who discovered three closely related frog species in the same genus in the 1980s, while conducting a series of field trips to the Andes of southern Ecuador. Throughout his career, Dr. Hillis has made significant contributions to the knowledge of Andean amphibians and reptiles.

Despite being newly described, Hyloscirtus hillisi is already at risk of extinction. It has a small distribution range near a large-scale mining operation carried out by a Chinese company. Habitat destruction in the region has been recently documented by the NGO Amazon Conservation.

###

Original source:

Ron SR, Caminer MA, Varela-Jaramillo A, Almeida-Reinoso D (2018) A new treefrog from Cordillera del Cóndor with comments on the biogeographic affinity between Cordillera del Cóndor and the Guianan Tepuis (Anura, Hylidae, Hyloscirtus). ZooKeys 809: 97-124. https://doi.org/10.3897/zookeys.809.25207

A metamorph of the new species, Hyloscirtus hillisi. Photo by Darwin Núñez, BIOWEB Ecuador.

Towards untangling the ‘antennal grabbing’ phenomenon in mating cuckoo bees

Scientists report this behavior for the first time in the genus Nomada, following both lab and field observations in Germany

One can seldom spot a cuckoo bee, whose peculiar kleptoparasitic behaviour includes laying eggs in the nests of a certain host bee species, let alone a couple mating.

Nevertheless, German scientists – Dr. Matthias Schindler, University of Bonn, Michaela Hofmann and Dr. Susanne S. Renner of the University of Munich, and Dr. Dieter Wittmann, recently managed to record copulation in three different cuckoo bee species in the genus Nomada.

Intriguingly, in field and lab settings alike, the observed couples demonstrated the phenomenon the researchers called “antennal grabbing” where the male cuckoo bee winds his antennae around

Insertion phase of copulation in a couple of the species Nomada flavoguttata. Note the male’s antennae spirally entangling the female’s.

the female’s during copulation, thus transferring pheromones. Even though such behaviour is relatively common in Hymenoptera, this is the first known record for the genus Nomada.

While the particular biological reason for the “antennal grabbing” in different species remains unsettled, the scientists discuss the phenomenon in view of both previous hypotheses and their own observations in a new paper published in the open access Journal of Hymenoptera Research.

The courtship in Nomada cuckoo bee starts with the ‘swarming’ of males at willow shrubs and gooseberry or their patrolling in groups with males of the Andrena or Melitta species that will “foster” their offspring.

Two males of the species Nomada flavoguttata patrolling at a blossom of a common dandelion.

There is no aggression among the males. They were observed to rub their bellies and heads against the grass, in order to leave sexual pheromones, thus marking the “dating spot” for potential mates.

Earlier chemical studies of Nomada bees noted that the mandibular glands of males produce chemical compounds identical with those of their Andrena or Melitta hosts, leading to the suggestion that the males transfer pheromones that help the females mimic the odor of the host bee, and later enter its nest unnoticed to lay its eggs. An alternative explanation for the “antennal grabbing” is that males are spraying a substance onto the females to make them unattractive to other potential mates.

###

Original source:

Schindler M, Hofmann MM, Wittmann D, Renner SS (2018) Courtship behaviour in the genus Nomada – antennal grabbing and possible transfer of male secretions. Journal of Hymenoptera Research 65: 47-59. https://doi.org/10.3897/jhr.65.24947

Integration of Freshwater Biodiversity Information for Decision-Making in Rwanda

Teams from Ghana, Malawi, Namibia and Rwanda during the inception meeting of the African Biodiversity Challenge Project in Kigali, Rwanda. Photo by Yvette Umurungi.

The establishment and implementation of a long-term strategy for freshwater biodiversity data mobilisation, sharing, processing and reporting in Rwanda is to support environment monitoring and the implementation of Rwanda’s National Biodiversity Strategy (NBSAP). In addition, it is to also help us understand how economic transformation and environmental change is affecting freshwater biodiversity and its resulting ecosystem services.

As part of this strategy, the Center of Excellence in Biodiversity and Natural Resource Management (CoEB) at the University of Rwanda, jointly with the Rwanda Environment Management Authority (REMA) and the Albertine Rift Conservation Society (ARCOS), are implementing the African Biodiversity Challenge (ABC) project “Integration of Freshwater Biodiversity Information for Decision-Making in Rwanda.”

The conference abstract for this project has been published in the open access journal Biodiversity Information Science and Standards (BISS). 

The CoEB has a national mandate to lead on biodiversity data mobilisation and implementation of the NBSAP in collaboration with REMA. This includes digitising data from reports, conducting analyses and reporting for policy and research, as indicated in Rwanda’s NBSAP.

The collation of the data will follow the international standards and will be available online, so that they can be accessed and reused from around the world. In fact, CoEB aspires to become a Global Biodiversity Informatics Facility (GBIF) node, thereby strengthening its capacity for biodiversity data mobilisation.

Data use training for the African Biodiversity Challenges at the South African National Biodiversity Institute (SANBI), South Africa. Photo by Yvette Umurungi.

The mobilised data will be organised using GBIF standards, and the project will leverage the tools developed by GBIF to facilitate data publication. Additionally, it will also provide an opportunity for ARCOS to strengthen its collaboration with CoEB as part of its endeavor to establish a regional network for biodiversity data management in the Albertine Rift Region.

The project is expected to conclude with at least six datasets, which will be published through the ARCOS Biodiversity Information System. These are to include three datasets for the Kagera River Basin; one on freshwater macro-invertebrates from the Congo and Nile Basins; one for the Rwanda Development Board archive of research reports from protected areas; and one from thesis reports from master’s and bachelor’s students at the University of Rwanda.

The project will also produce and release the first “Rwandan State of Freshwater Biodiversity”, a document which will describe the status of biodiversity in freshwater ecosystems in Rwanda and present socio-economic conditions affecting human interactions with this biodiversity.

The page of Center of Excellence in Biodiversity and Natural Resource Management (CoEB) at University of Rwanda on the Global Biodiversity Information Facility portal. Image by Yvette Umurungi.

***

The ABC project is a competition coordinated by the South African National Biodiversity Institute (SANBI) and funded by the JRS Biodiversity Foundation. The competition is part of the JRS-funded project, “Mobilising Policy and Decision-making Relevant Biodiversity Data,” and supports the Biodiversity Information Management activities of the GBIF Africa network.

 

Original source:

Umurungi Y, Kanyamibwa S, Gashakamba F, Kaplin B (2018) African Biodiversity Challenge: Integrating Freshwater Biodiversity Information to Guide Informed Decision-Making in Rwanda. Biodiversity Information Science and Standards 2: e26367. https://doi.org/10.3897/biss.2.26367

Five new blanket-hermit crab species described 130 years later from the Pacific

A blanket-hermit crab grasping an anemone.
A blanket-hermit crab grasping an anemone.

Since 1888, a lone crab species living in an extraordinary symbiosis has been considered to be one of its kind

At the turn of the twentieth century, two independent marine scientists – JR Henderson in 1888, and A Alcock in 1899, described two unusual blanket-hermit crabs from the Indo-West Pacific.

Unlike other hermit crabs, these extraordinary crustaceans do not search for empty shells to settle in for protection. Instead, they have developed a symbiotic relationship with sea anemones to cover their soft bellies. To do this, the crabs use highly specialized chelipeds to pull back and forth the anemone’s tissue to cover their soft bodies and heads whenever necessary – much like hiding under a blanket.

Among the numerous specimens collected during the famous HMS Challenger Expedition in 1874, there were two hermit crab specimens obtained from the Philippines. They amazed Henderson with their unusual physical characters, including an abdomen bent on itself rather than spirally curved, and the lack of any trace of either a shell or other kind of protective structure for their body.

As a result, in 1888, JR Henderson established a brand new genus and new species for it as Paguropsis typicus. The ending of the species name was subsequently grammatically corrected to Paguropsis typica.

image 1

A decade later, unaware of the previous discovery, A Alcock stumbled upon hundreds of hermit crab specimens off southern India, which exhibited quite spectacular behaviour. Having observed their symbiotic relations with sea anemones, the researcher also formally described in 1899 a new species and a new genus for his specimens.

However, shortly thereafter and upon learning of JR Henderson’s earlier work, A Alcock concluded that his hermit crab specimens and those of JR Henderson must be one and the same species, so the two scientific names were officially synonymized in 1901 in a publication with his colleague AF McArdle, with JR Henderson’s name taking precedence as required by the principle of priority set forth in the International Code of Zoological Nomenclature.

Now, 130 years later, an international team of scientists, led by invertebrate zoologist Dr Rafael Lemaitre of the National Museum of Natural HistorySmithsonian Institution, USA, not only found that A Alcock’s Indian specimens were indeed a separate species, leading to the resurrection of its name as Paguropsis andersoni, but that blanket-hermit crabs are not as rare as previously thought.

In their recent publication in the open access journal ZooKeys, the biologists described a total of five new species and a new genus of closely related blanket-hermit crabs. Furthermore, they expect that other species are to be discovered, since there are many vast marine shelf areas and deep-sea habitats spread across the Indo-West Pacific yet to be sampled.

To develop their exceptional symbiosis with sea anemones, the blanket-hermit crabs have obviously needed just as extraordinary evolutionary adaptations. Perhaps the most remarkable of these are their specialized chelate fourth legs that allow for the crustaceans to effectively grab and stretch the thin-walled body of the anemones to cover themselves. For five of the species, the scientists report and unusual grasping shape for this cheliped that is reminiscent of bear claws, while in the other two the shape resembles ice-block tongs.

Unfortunately, the identity of the sea anemone species involved in the symbiotic relationship with any of the studied blanket-hermit crabs is currently uncertain, and their biology remains unknown.

A blanket-hermit crab 'wearing' an anemone.
A blanket-hermit crab ‘wearing’ an anemone.

So far, the genus described by JR Henderson as Paguropsis, contains five species distributed in the subtropical and tropical Indo-West Pacific, and living at depths ranging from 30 to 1125 m. These include the two species discovered in the 19th century, and three new species, one of which, Paguropsis gigas, is the largest known blanket-hermit crab that reaches a body size of 15 cm when fully stretched (a large size by hermit crab standards).

For two of the newly discovered hermit crabs, the new genus Paguropsina is erected to reflect the numerous similarities between the two species and their Paguropsis relatives. The Latin suffix -ina refers to the comparatively smaller size of the two species. Both blanket-hermit species of Paguropsina are found in the subtropical and tropical western Pacific at depth between 52 and 849 m.

“Here there is no shell to play the part of ‘Sir Pandarus of Troy,’ but the sea-anemone settles upon the hinder part of the young hermit-crab’s tail, and the two animals grow up together, in such a way that the spreading zoophytes form a blanket which the hermit can either draw completely forwards over its head or throw half-back, as it pleases,” Alcock once eloquently described his marine discovery.

###

Original source:

Lemaitre R, Rahayu DL, Komai T (2018) A revision of “blanket-hermit crabs” of the genus Paguropsis Henderson, 1888, with the description of a new genus and five new species (Crustacea, Anomura, Diogenidae). ZooKeys 752: 17-97. https://doi.org/10.3897/zookeys.752.23712

New ant species from Borneo explodes to defend its colony

Minor worker of the new species in a defensive pose.
Minor worker of the new species in a defensive pose.

Amongst the countless fascinating plants and animals inhabiting the tropical rainforests of Southeast Asia, there are the spectacular “exploding ants”, a group of arboreal, canopy dwelling ants nicknamed for their unique defensive behaviour.

When threatened by other insects, minor workers can actively rupture their body wall. Apart from leading to the ants’ imminent death, the “explosion” releases a sticky, toxic liquid from their enlarged glands, in order to either kill or hold off the enemy.

Three 'exploding' ants of the new species grasping onto a weaver ant.
Three ‘exploding’ ants of the new species grasping onto a weaver ant.

Curiously enough, while these ants’ peculiar behaviour was first mentioned in distant 1916, no new species have been formally described since 1935, due to insufficient evidence. Instead, scientists used to simply refer to them as the members of a remarkable species group – Colobopsis cylindrica, better known as “the exploding ants”.

That was until an interdisciplinary research team from Austria, Thailand and Brunei came together led by their shared fascination with these insects and their extraordinary mechanism of self-sacrifice (also called autothysis) in 2014. Thus, entomologists, botanists, microbiologists, and chemists from the Natural History Museum ViennaTechnical University ViennaIFA Tulln and Universiti Brunei Darussalam together identified roughly 15 separate species of exploding ants, with one of them now described as new to science in the open access journal ZooKeys.

Aptly named Colobopsis explodens, previously nicknamed “Yellow Goo” for its bright yellow gland secretion, the new species has been picked as the model species of the group, after the scientists deemed it to be “particularly prone to self-sacrifice when threatened by enemy arthropods, as well as intruding researchers”.

The new species grasping onto a larger unidentified 'exploding' ant.
The new species grasping onto a larger unidentified ‘exploding’ ant.

Being a “model species” means that the ant will serve as an important navigation point in future studies on exploding ants. Publications regarding their behaviour, chemical profile, microbiology, anatomy and evolution are currently in preparation, say the authors. In addition, there are several more new species expected to be described in the near future.

While minor workers exhibit the ability to “explode”, the other castes have specialities of their own. For example, major workers (also called “doorkeepers”) have big, plug-shaped heads used to physically barricade the nest entrances against intruders.

Major worker of the new species ('doorkeeper') with characteristically enlarged head.
Major worker of the new species (‘doorkeeper’) with characteristically enlarged head.

During a sampling trip to Brunei in 2015, project members Alexey Kopchinskiy and Alice Laciny even managed to observe queens and males on a mating flight. They sampled the first males of these ants ever to be seen.

The same expedition was used to record the ants’ activity schedule and conduct the first experiments on food preferences and exploding behaviour.

While the exploding ants play a dominant role in rainforests, their biology still holds a number of secrets. The observations and experiments conducted on the newly described species have laid important groundwork for future research that will uncover even more details about these enigmatic explosive insects.

Watch this video to observe the behaviour of the exploding ants in various settings.

###

Learn more about the ‘Exploding ants’ project at: http://explodingants.com/

###

Original source:

Laciny A, Zettel H, Kopchinskiy A, Pretzer C, Pal A, Salim KA, Rahimi MJ, Hoenigsberger M, Lim L, Jaitrong W, Druzhinina IS (2018) Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group. ZooKeys 751: 1-40. https://doi.org/10.3897/zookeys.751.22661

 

Life in marine driftwood: The case of driftwood specialist talitrids

Driftwood in the sea – either floating or stranded on beaches – is a common feature particularly in temperate regions. Large quantities of driftwood, termed driftwood depositories, may collect at the mouth of small streams associated with marshes and have been present for some 120 millennia – since the origin of flowering plants.

Once marine driftwood begins to decay, it undergoes a specific succession. Firstly, it is colonized by salt tolerant, wood degrading fungi and bacteria, along with a few invertebrates able to digest wood by producing native wood degrading enzymes. The latter include gribbles (isopods) and chelurid amphipods.

Driftwood hoppers (talitrids), as well as isopods, chilopods, insect larvae, some ants and termites, comprize the secondary colonizers. They are all characterized by their inability to utilize driftwood directly. Instead, they rely on symbiotic microflora for digestive purposes.

Within all talitrids, the driftwood hoppers count as few as seven species, most likely because they are extremely difficult to locate and, therefore, discover and describe. Apart from living in tiny burrows, they measure between 13 and <6 mm, which makes the latter the smallest known talitrid.

Having reviewed the driftwood specialized talitrids, Dr. David Wildish of the St. Andrews Biological Station, Canada, concludes that all seven known species demonstrate dwarfism based on slow metabolism and growth. Their sexual development begins earlier compared to faster growing related species. All of them are also characterized with reduced eye size and absence of dorsal pigment patterns.

In his review article published in the open access journal Zoosystematics and Evolution, the scientist confirms that dwarfism in driftwood hoppers has evolved due to poor diet, in turn resulting in slowed metabolism and growth. A further adaptive challenge is the empty gribble burrow size occupied by talitrids (burrow diameter between 0.6 to 5 mm) with the smaller ones being more widespread. Larger talitrids can only complete their life cycle in the larger burrows.

“The size gradient in gribble burrow diameter provides a satisfactory explanation for serial dwarfism within the driftwood talitrids and is why each species becomes successively smaller,” explains the researcher.

Responsibility for first establishing the driftwood talitrid ecological grouping was made during graduate studies by David Wildish, London University, U.K., and Laura Pavesi, University of Rome, Italy. The two criteria for inclusion of a talitrid in the driftwood grouping was: behavioral fidelity to the occupied driftwood and that the food source was solely rotting driftwood (see references).

The larger talitrid family are small/medium in body length (< 30 mm) crustaceans with more than 400 species described in the world list. Ecological groupings within the family include marine/estuarine supralittoral wrack generalists, sand-burrowing, marsh-living and driftwood specialists. A few freshwater and many terrestrial species are also known.

###

Original source:

Wildish DJ (2017) Evolutionary ecology of driftwood talitrids: a review. Zoosystematics and Evolution 93(2): 353-361. https://doi.org/10.3897/zse.93.12582

How bears bulk up ahead of the summer: A study into the Asiatic black bear’s spring diet

Much like gym enthusiasts, every year Asiatic black bears seem to be on the lookout for protein-rich food ahead of the summer, so that they can bulk up on lean muscle mass in place of the fat tissue formed last year prior to hibernation. This was concluded in a study by Dr. Shino Furusaka, Tokyo University of Agriculture and Technology and his team, based on direct observations on bears living across an area of about 60 km2 in Japan. The study is published in the open access journal ZooKeys.

In order to determine the bears’ food preferences and habits, the scientists followed a large number of animals in the Ashio area of the Ashio-Nikko Mountains in Japan from April to July in both 2013 and 2014. To avoid unnecessary intrusion, they stayed at a distance of at least 200 metres using video cameras with telescopic lenses to document the sightings. Having documented the plant species the bears consumed, the researchers studied their nutritional content and made conclusions about the nutrients needed for the species after hibernation.

While heavily dependent on food availability, generally the bears were noted to prefer food which is high in protein, but poor in fibre — likely because their stomachs and intestines were unable to efficiently digest the latter. Furthermore, the protein-rich diet ensures that the muscle mass is rebuilt to replace the lost winter fat.

Interestingly, the bears were observed to change their food preferences as spring progressed and that seemed to be linked to the shifts in the nutritional value of the available food.

Starting with their observations at the beginning of April, the scientists did not record any feeding behaviour until the end of the month. As leaf flush was yet to occur, the animals were active and feeding on overwintered grass. However, in early May, the bears began consuming newly emerged leaves, grass and, later in the month, they added flowers to their menu.

A shift in behaviour occurred in the following months. In June and July, the bears were seen to feed mainly on ants, with a small portion of their food intake consisting of grasses, sika deer carcasses and bees. Curiously, when the scientists looked into the nutritional content of the same plants which the animals sought only a few weeks ago, they found out that now they were significantly poorer in protein and richer in fibre.

Another finding showed that the calories in the different items were not related to the choice of food which likely proves that the key factor is none other than the amount of protein, provided that the fibre value is low enough for good digestibility.

Understanding the food preferences and habits of animals, as well as the reasons behind them, is essential for the development and revision of habitat management plans. However, previous knowledge of the feeding behaviour of Asiatic black bears has been based solely on faecal analyses which has not provided sufficient details on which nutritional factors influence the use of particular foods.

###

Original source:

Furusaka S, Kozakai C, Nemoto Y, Umemura Y, Naganuma T, Yamazaki K, Koike S (2017) The selection by the Asiatic black bear (Ursus thibetanus) of spring plant food items according to their nutritional values. ZooKeys 672: 121-133. https://doi.org/10.3897/zookeys.672.10078